» » Изобретение пневматической шины. История создания современных пневматических шин

Изобретение пневматической шины. История создания современных пневматических шин

Сегодня трудно даже поверить, что шина, наполненная воздухом, в отличие от большей части узлов, появилась после рождения автомобиля и сначала для него вовсе не предназначалась. На самоходных безлошадных экипажах она заменила массивные литые шины лишь через многие годы после своего появления на свет. Вдобавок изобретение пневмошины хотя и было предопределено прогрессом техники, все жеоказалось случайным.

Все началось в 1887 году с того, что шотландский ветеринар Джон Бойд Данлоп из Белфаста купил десятилетнему сыну Джонни трехколесный велосипед. Сидя в своем саду, он наблюдал за тем, как сын тщетно пытается проехать по рыхлой земле, глубоко увязая в ней тремя колесами, обутыми в жесткие и тонкие шины-обручи. Тогда папа Данлоп придумал надеть на колеса широкие обручи, сделанные из шланга для поливки сада, и надуть их воздухом. Мальчишки в округе дивились велосипеду Джонни, на котором он обгонял всех своих приятелей. Об этом узнал местный торговец велосипедами Элден и посоветовал Данлопу получить патент на изобретение. Такой патент № 10607 был выдан Д. Данлопу 23 июля 1888 года, а приоритет на применение «пневматического обруча» для транспортных средств подтверждал следующий патент от 31 августа того же года. С этих событий и ведет свою историю автомобильная пневматическая шина.



Идея Данлопа получила практическое развитие в мае 1889 года, когда на гонках «пневматический» (то есть на пневмошинах) велосипед, по воспоминаниям очевидцев, «исчез с глаз сразу же после старта», оставив позади конкурентов. Им заинтересовался английский предприниматель Харвей дю Кросс, который предложил Данлопу организовать серийное производство шин. Компания была основана осенью 1889 года, а в 1890 году получила имя Данлопа, хотя сам «отец шины», не увидев перспективы своего детища, отошел от дел. Сегодня английская компания «Данлоп» - один из крупнейших в мире изготовителей шин.

Большой вклад в совершенствование пневматиков внесла французская фирма «Мишлен». Ее деятельность на этом поприще тоже началась со случайности. Однажды," в 1891 году, владелец небольшой мастерской резиновых изделий Эдуард Мишлен встретил на дороге английского велосипедиста, горевавшего над прорванной пневмошиной. Завулканизировать ее в мастерской не представляло особого труда, но, чтобы снять и вновь надеть на колесо, требовалось немало сил и времени. Дело в том, что тогда шины приклеивались к ободам. Все это навело Мишлена на изобретение быстросъемной шины с камерой. Быстрота, впрочем, была относительной: новая шина крепилась на колесе несколькими обручами, которые привинчивались к ободу многочисленными гайками. Тогда же англичанин Бартлет и француз Дидье изобрели более легкие способы демонтажа и монтажа шин. Все это открыло пневматической шине доступ к автомобилю.

Впервые пневмошины конструкции Мишлена были установлены на французском двухместном автомобиле «Л"Эклер», который принял участие в гонках 1895 года по маршруту Париж-Бордо на дистанцию 1200 километров. В Англии в 1896 году шинами «Данлоп» был оснащен легковой «Ланчестер». Проходимость и мягкость хода заметно улучшились, но первые шины были так ненадежны, что их приходилось менять через несколько десятков километров. Кроме того, много времени уходило тогда на монтаж. Основные усовершенствования шины были связаны именно с преодолением этих трудностей и вели к повышению долговечности, облегчению и упрощению монтажа. Первая цель достигалась применением все более надежных и долговечных материалов, а также изобретением корда - особо прочного слоя из упругих текстильных нитей. Выполнить второе требование было непросто, и долгое время в путешествие или на гонки приходилось брать с собой несколько «запасок». Кроме них, возили сменные обручи, вулканизаторы, камеры, а для их накачивания - даже баллоны со сжатым воздухом. Но с 10-х годов XX века все чаще стали использовать быстросъемное крепление колеса к ступице на нескольких болтах. Это позволило заменять шины вместе с колесом, на что уходило всего несколько минут. А на гоночных автомобилях болты вскоре были заменены одной центральной гайкой.

Все эти новшества привели к признанию шин на автомобильном транспорте и в автоспорте, а также к бурному развитию шинной промышленности. Если в 1895 году во всем мире в шины было «обуто» всего 400 автомобилей, в 1900-м - 4000, то к 1925 году - уже 4 миллиона, то есть практически весь автомобильный парк. Последние массивные шины сохранились на некоторых грузовиках лишь до конца 30-х годов.

Возникли крупные компании по производству шин, многие из которых существуют поныне. Кроме «Данлопа» и «Мишлена», это американские «Гудьир», «Файрстоун», «Гудрич», немецкие «Континенталь» и «Метцелер» (ныне в ФРГ), итальянская «Пирелли».

Первые автомобили, появившиеся в России, уже были на пневматических шинах - импортных, но в 1900-х годах их производство наладили заводы «Проводник» в Риге (шины «Колумб») и «Треугольник» в Петербурге (шины «Елка» с оригинальным протектором). Русские шины, испытанные в многочисленных пробегах и состязаниях, отличались высокой долговечностью и прочностью. На гоночном автомобиле «Бенц» с «елками» в 1913 году был установлен всероссийский рекорд скорости - 201 км/ч.

После Октябрьской революции шинные заводы вошли в Резинотрест, который обеспечивал отечественной обувью все наши автомобили. Сегодня промышленность России ежегодно производит около 70 миллионов шин для автомобилей, мотоциклов, сельхозмашин.

Конечно, шину нынешних 2000-х годов объединяет с «прабабушкой» разве, что принцип. А сама конструкция изменилась, усложнилась, усовершенствовалась до неузнаваемости - для того, чтобы характеристики шин наиболее полно отвечали параметрам автомобилей, условиям их работы. Первыми крупными шагами было разделение шины на покрышку и камеру, а также появление кордной покрышки. Надо отметить такие важные этапы, как изобретение шины низкого давления типа «баллон», бескамерных, низкопрофильных; арочных и широкопрофильных шин низкого давления для грузовиков; шин зимнего типа с шипами противоскольжения; покрышек с радиальным расположением корда, а также с кордом из синтетических материалов и металлокордом; «безопасных» шин.

Многократно выросла долговечность шин. Если в начале века рекордным считали пробег 3-4 тысячи километров, то к 20-м годам он возрос до 30 тысяч, а в дальнейшем - до 100 тысяч.

Усовершенствование шины идет и сегодня. Его главные направления - дальнейшее увеличение пробега, допускаемых нагрузок, снижение расхода материалов и упрощение технологии, улучшение других показателей, повышение безопасности. Последнее направление интенсивно развивается с 60-х годов, и сегодня ряд фирм уже выпускает серийно так называемые безопасные шины. Они монтируются на обод иной конструкции, которая помогает удержать борта покрышки на полках обода при большой утечке воздуха.

Серьезные преимущества сулит применение новых синтетических материалов, способных произвести революцию в шинной технологии. Словом, как и для автомобиля, век для пневматической шины - возраст, открывающий заманчивые перспективы.

Типы шин колес

1. По типу ТС

ü для легковых АТС;

ü для грузовых.

2. По типу герметизации:

ü камерные;

ü бескамерные.

3. По величине давления в шине:

ü высокого давления (0,5…0,7 МПа);

ü низкого давления (0,18…0,5МПа);

ü сверхнизкого давления (0,05…0,18МПа);

ü с регулируемым давлением.

4. По климатическим условиям эксплуатации:

ü для тропического климата;

ü морозоустойчивые.

Камерные шины

В конструкцию камерной шины входят два элемента: камера и покрышка.

Камера ― закрытое кольцо,в виде эластичной резиновой оболочки, в которую подают воздух под давлением.

Особенностью конструкции камеры являются несколько меньшие размеры, по сравнению с размером внутренней полости покрышки. Это необходимо для плотной посадки камеры (без складок), поэтому камера в рабочем состоянии внутри покрышки находится в напряженном состоянии. Толщина резиновой оболочки составляет 1,5…2,5мм - легковые АТС, 2,5…5мм - грузовые. Наружная поверхность камеры может иметь выступы, в виде радиальных рисок, способствующих отводу воздуха при монтаже камеры в покрышке.

Для подачи воздуха, в камеру устанавливается вентиль - клапан, обеспечивающий поступление воздуха в одном направлении, в камеру.

Устройство вентиля

Выделяют три основных элемента: корпус, золотник и колпачок.

Корпус вентиля бывает 3-х типов:

1. Металлический, в виде латунной трубки, закрепленный к камере резьбовым соединением при помощи обрезиненных шайб;

2. Металлический, с обрезиненной пяткой;

3. Резинометаллический, из резины с металлической втулкой.

Золотник, представляет собой устройство, обеспечивающее герметизацию внутренней полости камеры. Представляет собой стержень, на котором установлен конусный резиновый уплотнитель, поджимаемый пружиной установленной на стержне.

Колпачок закрывает отверстие в корпусе вентиля, может содержать резиновый уплотнитель. Некоторые конструкции колпачков могут иметь специальный ключ для закручивания золотника.

Ободная лента - это конструктивный элемент, обеспечивающий защиту камеры в зоне контакта ее с ободом колеса колес грузового автомобиля.

В некоторых конструкциях шин может присутствовать бортовая лента , обеспечивающая защиту камеры и покрышки от повреждения глубоким ободом.

Покрышка создает необходимое сцепление шины с дорогой, защищает камеру от повреждений. Конструкция покрышки содержит большое количество элементов, которые позволяют выделить следующие 3 основные части:

1. Беговая часть;

2. Бортовая часть;

3. Боковая часть.

Основу крнструкции покрышки составляет каркас, который обеспечивает прочность, эластичность шины. Изготавливается из нескольких слоев специального материала в виде нитей, называемых кордом . Между каждым слоем корда устанавливаются резиновые прокладки. В зависимости от материала нитей, корд может быть: хлопчатобумажный, капроновый, нейлоновый и металлический (0,15мм).

В зависимости от расположения нитей в корде различают каркас шин с радиальным расположением нити и диагональным расположением нити.

Диагональный корд - часто расположенные продольные нити (основа) и редко расположенные поперечные нити - утки, связанные между собой резиновым слоем, при этом образуется полоса корда. Они накладываются одна на другую таким образом, что нити основы перекрещиваются в смежных слоях под углом 95-115 , образуя сетку.

Радиальный корд - имеет нити всех слоев, расположенных строго в радиальном направлении, т.е. параллельно друг другу. Нити корда в подушке слоя перекрещиваются в смежных слоях под небольшим углом в 20-40 , в радиальных боковых слоях 70-80 . Число слоев корда: 4-6 ― для легковых, 6-16 - для грузовых АТС. Толщина слоя корда 1-1,5 мм.

Протектор

Представляет собой устройство, предохраняющее каркас от повреждений при контакте с поверхностью дороги. Как правило, это слой резины значительной толщины, находящейся сверху каркаса, постепенно уменьшающей свою толщину к боковинам и бортам. Материал протектора - это специальная износостойкая резина.

Для улучшения сцепления с опорной поверхностью, протектор имеет специальные выступы различной формы, согласно определенного рисунка. Рисунок протектора определяет тип шин:

1. Дорожные, имеющие рисунок с площадь выступов 65…80% от общей площади протектора;

2. Повышенной проходимости, для эксплуатации по дорогам с грунтовой поверхностью, а так же в условиях бездорожья;

3. Комбинированные, с глубоким и крупным рисунком протектора для эксплуатации по дорогам с грунтовой поверхностью и на мягких грунтах;

4. Универсальные. Протектор с общей площадью выступов 55…60% от общей площади беговой дорожки. Предназначены для эксплуатации на дорогах с твердым покрытием, а так же грунтовых дорогах, имеет боковые выступы.

5. Карьерные. Имеют высокое сопротивление механическим повреждениям. Рисунок протектора может быть аналогичен рисунку повышенной проходимости, но имеет более широкие выступы и более узкие канавки, при этом основания выступов более широкие, а к верху поверхности сужаются. Общая площадь выступов 60…80%.

6. Зимние. Для эксплуатации на заснеженных и обледенелых дорогах. Рисунок состоит из отдельных резиновых блоков угловатой формы имеющих надрезы, а так же достаточно широкие и глубокие канавки. Площадь выступов 60…70%. Рисунок обеспечивает самоочищаемость протектора и интенсивный отвод влаги и грязи в зоне пятна контакта. Эксплуатация летом недопустима, так как приносит значительный износ, сопровождающийся шумом. Допускаемая скорость движения на шинах с подобным рисунком на 15% ниже, чем на обычных шинах. Зимний рисунок обеспечивает возможность установки шипов противоскольжения, которые так же снижают тормозной путь на 40…50%. Давление в ошипованых шинах на 0,02МПа выше. Ошипованые шины должны устанавливаться на все колеса АТС.

Устройство шипа противоскольжения

Шип состоит из корпуса и сердечника.

Сердечник изготавливают из метала, обладающего высокой твердостью, вязкостью и, как результат, износостойкостью.

Корпус изготавливают из сплава стали и свинца, оцинковывают либо хромируют для защиты от коррозии. Иногда корпус изготавливают из пластмассы.

Размеры шипа :

Диаметр: 8…9мм для шин легковых АТС, до 15мм для шин грузовых АТС;

Длинна: 10…30мм в зависимости от толщины протектора.

Число шипов зависит от:

1. массы АТС;

2. мощности двигателя;

3. условий эксплуатации.

Находится в пределах 8…12 штук в пятне контакта.

Длина выступающей части шипа 1…1,5мм для шин легковых АТС, 3…5 мм для шин грузовых АТС.

Съемный протектор

Встречается достаточно редко, представляет собой кольца, устанавливаемые в спец. гнезда каркаса.

Съемный протектор представляет собой резиновое кольцо внутри которого находится, стальной трос.. Устанавливается на шину при отсутствии внутреннего давления. Диаметр кольца меньше диаметра покрышки. Каждое кольцо имеет свой подушечный слой. Шины с таким протектором имеют название PC .

Подушечный слой покрышки

Иногда имеет название бреккер , обеспечивающий связь протектора с каркасом, предохраняет каркас от ударов воспринимаемых протектором, при качении по неровностям дороги. Состоит из нескольких слоев обрезиненного корда, при этом толщина резины вокруг корда значительно больше чем в каркасе покрышки. Толщина бреккера 3…7 мм. Число слоев корда зависит от назначения и типа шин. Наибольшее число слоев у шин повышает проходимость. В шинах легковых АТС бреккер может отсутствовать. При работе шины, температура бреккера достигает 110…120 , что выше температуры всех элементов машины.

Боковина - предохраняет каркас от повреждения, действия влаги. Изготовляют из протекторной резины толщиной 1,5…5мм.

Борт , удерживает шину на ободе колеса, имеет на наружной поверхности 1…2 слоя прорезиненной ленты, имеющей высокую износостойкость от истирания о обод колеса, а также от повреждений при монтаже и демонтаже шин на обод. Внутри борта устанавливается стальной проволочный сердечник, увеличивающий прочность борта и предохраняющий ее от растяжений.

Особенности конструкции бескамерной шины.

Не имеет камеры, ободной ленты, выполняя одновременно их функции. Общая конструкция бескамерной шины аналогична конструкции покрышки камерной шины.

Отличие - это присутствие на внутренней поверхности герметизирующего воздухонепроницаемого резинового слоя толщиной 1,5…5мм.

Этот слой привулканизирован к внутренней поверхности покрышки. Материал: высокогерметичная резина с повышенной газонепроницаемостью, изготовленная из натурального либо синтетического каучука. Борта бескамерной шины также содержат уплотнительный слой, обеспечивающий герметичность при контакте с ободом.

Вентиль бескамерной шины

Крепится непосредственно на ободе, имея уплотнение в виде двух резиновых шайб.

Безопасность бескамерной шины

Высокая герметичность шины и мест установки ее на ободе обеспечивает разгерметизацию при проколе лишь через место прокола, имеющая, как правило, небольшой диаметр. Проколы диаметром до 10мм могут быть устроены без снятия шины с колеса, путем закачивания специальной пасты через вентиль. Монтаж и демонтаж бескамерных шин необходимо выполнять только на специальных стендах .

Шины с регулируемым давлением

Могут быть как камерные, так и бескамерные. Имеют увеличенную ширину профиля, меньшее в 1,5…2 раза число слоев корда, имеет мягкие резиновые вставки между слоями корда. Обеспечивает в 2…4 раза выше площадь контакта при снижения давления в шине, а значит, уменьшается давление на грунт. Протектор имеет специальный рисунок с грунтозацепами, высотой 15…30мм, общей площадью 35…40% от всей площади опоры. Переменное давление находится в пределах 0,05…0,35 МПа. Обеспечивается, как правило, специальной системой регулирования давления, управляемой водителем.

Размеры шин колес

Ширина профиля В, высота профиля Н, посадочный диаметр d и наружный диаметр D.

Исходя из соотношения размеров, шины могут быть:

Маркировка шин обеспечивается в соответствии со стандартами, согласованными с Европейской организацией по шинам и ободам.

Согласно системе указывается численный код идентифицирующий способность шины по грузоподъемности при скорости, которая определяется символом скорости и при условиях, которые определены производителем шины. Этот код называется индексом нагрузки.

Символ скорости определяет скорость, с которой шина может нести нагрузку, Эксплуатационная характеристика шины включает в себя индекс нагрузки и символ скорости.

На легковой шине маркировка, как правило, включает в себя один символ скорости и один числовой индекс нагрузки.

Пример: 185/65 R14 86HMXV2

185 - ширина профиля.

65 – показатель сечения профиля.

R – радиальная конструкция.

14 – посадочный диаметр в дюймах.

Н – символ скорости.

MXV2 – рисунок протектора.

Обод колеса обеспечивает установку пневмошины на колесо, а также крепление к ступице колеса.

Ободом называется часть колеса, на котором монтируется шина. По конструкции ободья бывают:

1. Глубокие неразборные

2. Плоские разборные

Плоские разборные бывают:

1. Со съемным разрезным бортом

2. С цельным съемным бортом и разрезным замочным кольцом

3. Разрезные в поперечной плоскости

4. С отъемным бортом

Особенность устройства глубоких неразборных ободьев

Глубокие неразборные ободья имеют в средней части кольцевое углубление, называемое монтажным ручьем. Монтажный ручей облегчает монтаж и демонтаж шин. Его размеры зависят от размера шины.

Обод может быть симметричным и несимметричным. Симметрия может быть нарушена относительно диска колеса, который крепится к ободу при помощи сварки либо заклепочных соединений.

Маркировка обода дает полную или почти полную информацию которая должна быть отлита или выбита на видном месте. То есть на любой поверхности обода, кроме той части обода, которая обращена к шине.. На нашем рынке возможно столкнуться с разными вариантами маркировки - российской, американской, европейской. Они немного отличаются друг от друга манерой исполнения – одна и та же информация доносится до покупателя посредством разных, зависящих от конкретных национальных стандартов, символов. Рассмотрим в качестве примера маркировку внедорожного диска американской фирмы ALCOA.

1. Название фирмы, ее эмблема, знак, защищающий право производителя называться самим собой и страна-изготовитель.

2.Типоразмер - 15xl0jj. Это означает, что данный диск имеет посадочный диаметр 15 дюймов и ширину обода 10 дюймов. На европейском и на российском стандарте эти параметры указаны наоборот 10xl5jj где Jj – закодированная информация о конструкции бортов дисков. У бескамерного диска есть так называемые хампы – специальные кольцевые выступы на полках обода, удерживающие шины от соскакивания с диска при боковом ударе и при потере давления. Н – простой хамп, FH – плоский хамп, АН – ассиметричный хамп.

На диске обязательно указываетсядата изготовления (год и неделя). Число 0294 означает, что колесо выпущено во вторую неделю 1994 года.

НадписьRAPT NO 150410-A – это номер той партии отливок, из которой взята заготовка для диска. Если в процессе эксплуатации у диска обнаружится заводской дефект, торговая инспекция сможет по этому номеру определить, в каком звене технологической цепочки допущен брак. Российские и европейские производители обычно обозначают номер отливки четырехзначным числом.

N48 T-DOT – клеймо контролирующего органа (говоря по нашему, ОТК), подтверждающее, что товар проверен по всем параметрам и годен к употреблению. DOT означает, что диск соответствует американским стандартам безопасности.

Некоторые фирмы клеймят свою продукцию индексами, в виде птицы, цветка и прочего.

На литых дисках для бескамерных шин, помимо клейма обычного ОТК, ставится еще клеймо рентген контроля, которое свидетельствует о том, что диск не имеет внутренних дефектов – литьевых раковин.

MAX LOAD 3000 LB – предельная статическая весовая нагрузка на диск. Переведя 3000 фунтов в привычную нам систему измерений, получим 1362 кг.

FORGED в переводе с английского означает«кованый». Наличие такой надписи в маркировке не обязательно, она не предусмотрена никакими стандартами. Как правило, ее делают на супермодных дисках, откованных из легкого сплава. Это значит, что фирма-производитель просто желает потрафить тщеславному покупателю и привлечь денежную клиентуру. Ведь кованый, а особенно кованый магниевый диск –дорогой и престижный – признак состоятельности владельца. И без надписи FORGED тут уж никак не обойтись....

Есть в американской маркировке надпись: MAX PSI COLD. Она означает, что давление в шине, надеваемой на этот диск, не должно превышать, в нашем примере, 50 фунтов на квадратный дюйм (3,5 кг/см 2); слово cold (холодный) напоминает, что измерять давление в шине следует, когда она холодная, то есть до поездки или не сразу после нее.

Указывать на диске давление воздуха требует условие страховки АТС Допустим, при заносе на большой скорости колесо автомобиля наезжает боковой поверхностью на бордюр – шина соскакивает с обода, диск лопается (если он литой, кованый мнется). Причиной аварии возможно считать качество диска. При обращении в суд с намерением иска к его производителю, суд решит дело в пользу потерпевшей стороны лишь в том случае, если были четко соблюдены все предписания и ограничения, касающиеся предмета спора. А если обнаружится, что в шине, надетой на диск с надписью МАХ PSI 50/, PSI было хоть на фунт больше (это выясняют измерив, давление в уцелевших шинах, - подразумевается, что оно одинаковое во всех четырех колесах) – иск не принимается.

Это логично: обод надежно держит шину, лишь, когда давление в шине в норме, а предел давления, указывается в маркировке диска (в этом смысле, надпись МАХ PSI на диске вполне оправдана технически).

Диски колес

Обеспечивают крепление колеса к ступице. Диски колес имеют специальное отверстие, обеспечивающее установку диска на ступицу, а так же отверстие для крепления колеса к ступице. Число отверстий определяется величиной нагрузки испытываемой узлом крепления колеса к ступице. Кроме того, диск содержит отверстие для вентиляции, в виде определенных штамповок.

Бездисковые колеса

Устанавливаются на ступице колеса посредством специальных кронштейнов, устанавливаемых на ободе. Бездисковые колеса чаще всего выполняют с разъемным ободом в виде отдельных сегментов.

Крепление колеса к ступице

Крепление колеса к ступице обеспечивается с помощью гаек и шпилек, либо болтовых соединений. Часть гайки болта выполняет роль опорной поверхности, имеет сферическую форму для центрирования колеса на ступице. Для предотвращения самоотвертывания гаек колес грузовых АТС, гайки колес левого борта имеют левую резьбу, а гайки правого борта имеют правую резьбу.

При болтовом соединении, для дополнительной центровки колеса на ступице устанавливают специальные шпильки.

Крепление спаренных колес на ступице колеса

Внутренние колеса, при спаренной установке, крепятся при помощи специального резьбового соединения, имеющего внутреннюю и наружную резьбы. Этот элемент называется футорка.

Ступицы колес

Представляют собой подшипниковый узел, обеспечивающий вращение колеса относительно неподвижного элемента, т.е. оси. Как правило, в конструкцию ступицы устанавливаются 2 подшипника: внутренний и наружный. Внутренняя обойма подшипника устанавливается на неподвижной оси, наружная - в корпусе ступицы.

Внутренний подшипник ступицы упирается внутренним кольцом в ось колеса, наружное кольцо внутреннего подшипника упирается в корпус ступицы.

Наружный подшипник упирается наружным кольцом в ступицу колеса, а внутреннее кольцо упирается в опорное устройство в виде гайки, стопорных шайб и шплинта.

Согласно особенности установки подшипников на оси, внутренний подшипник имеет больший диаметр чем наружный.

В ступицах могут устанавливаться как шариковые, так и роликовые подшипники, которые требуют постоянной регулировки и контроля затяжки при эксплуатации.

Упорная шайба крепления ступицы, для предотвращения отвинчивания гайки, крепящей ступицу, может иметь специальный фиксатор. Так же после закручивания гайки и прижатия шайбы, гайка может шплинтоваться, керниться, либо фиксироваться упорной шайбой путем ее загиба.

Фиксация гайки путем загибания шайбы используется в конструкции ступиц ведущих колес, которые имеют внутри оси полость, через которую проходит ведущий элемент - полуось.

Для передачи момента от полуоси к ступице, устанавливаются болтовые либо гаечные резьбовые крепления, либо шлицевые.

Особенности установки управляемых колес АТС

Изменение направления движения колесного транспортного средства происходит вследствие поворота управляемых колес на тот или иной угол относительно продольной вертикальной плоскости АТС.

Поворот управляемых колес осуществляется путем воздействия на них поворотной силы, создаваемой элементами управления АТС. Поворот колес может осуществляться и при наезде их на неровности, что может привести к нарушению устойчивости движения. Чтобы избежать этого нарушения, а так же обеспечить во всех случаях движения автоматическое возвращение управляемых колес в прямолинейное движение, необходима стабилизация управляемых колес, достигаемая определенной установкой этих колес относительно оси. Для стабилизации колес, необходимо обеспечить наклон оси поворота колеса (шкворневая ось) в продольной и поперечной плоскостях.

Угол наклона оси поворота колеса обозначается . Данный угол обеспечивает самовозврат колес прямолинейному движению после прекращения действия на него поворотной силы. Самовозврат колеса обеспечивается за счет того, что при повороте колеса относительно оси шкворня, оно стремится опуститься ниже плоскости опорной поверхности на величину h . Величина возникаемого стабилизирующего момента зависит от , который составляет 6…8 градусов в современных автомобилях, а так же величины веса автомобиля приходящегося на колеса.

Кроме наклона оси колеса в поперечной плоскости, наклон осуществляется и в продольной плоскости. Угол наклона в продольной плоскости называется , он обеспечивает положение оси поворота таким образом, что продолжение ее пересекает опорную поверхность в точке А , находящейся впереди точки Б контакта колеса с опорной поверхностью. При этом создается плече АБ , которое обеспечивает сохранение прямолинейного движения АТС при значительных скоростях движениях.

Кроме углов наклона шкворней, управляемые колеса одной оси имеют развал и схождение .

Угол развала колеса представляет собой угол между вертикальной плоскостью и плоскостью колеса.

Указанный угол обеспечивается за счет наклона оси поворотного устройства колеса (цапфы). Назначение угла - обеспечение вертикального расположения колеса при движении независимо от возможной деформации деталей поворотного устройства, присутствия зазоров в поворотном устройстве. Угол уменьшает расстояние между точкой пересечения продолжения поворотной оси колеса и центром площадки контакта шины с дорогой. Угол постоянно должен контролироваться и регулироваться за счет изменения величин зазора подшипника в элементах поворотных устройств. Угол уменьшает нагрузку на внешний подшипник ступицы колеса, так как возникает осевая сила, прижимающая ступицу внутреннего подшипника. Угол составляет 1…2 градуса.

Рассмотренные углы обеспечивают установку колеса с определенным наклоном плоскости его качения, т.е. она не является вертикальной и не расположена продольно оси автомобиля, поэтому появляются силы на колесе, стремящиеся изменить направление движения колеса в сторону от направления движения АТС. Результатом действия сил, так как колесо зафиксировано по отношению к АТС, является движение колес по прямой линии, но с некоторым скольжением, вызывающим износ протектора шин. При этом увеличивается так же расход топлива на движение. Для устранения этого вредного явления управляемые колеса одной оси устанавливают с определенным значением схождения в горизонтальной плоскости. Схождение колес - это разность величин А и Б , согласно схемы, измеряемыми на высоте оси колес между краями ободьев колеса. Эта разность находится в пределах: Б-А=2…12 мм, что соответствует углу схождения колес не превышающему 1 градус.

Рассмотренные особенности кинематики управляемых колес являются определяющими в плане обеспечения безопасности движения, а так же экономичности эксплуатации автомобиля.

Привод колес

Согласно рассмотренного ранее материала, современные автомобили, как правило, имеют колесные опорные элементы, обеспечивающие контакт АТС с опорной поверхностью, а так же колесный движитель, т.е. создание толкающей силы, обеспечивающей движение АТС по опорной поверхности. Движение АТС по опорной поверхности происходит за счет преобразования подводимого к ведущему колесу крутящего момента от двигателя при условии существования необходимого сцепления колеса с дорогой. Подвод момента к колесу от двигателя обеспечивается за счет элементов трансмиссии, преобразующих и изменяющих момент двигателя в необходимых, согласно требований, условий движения пределах. Совокупность элементов трансмиссии преобразующих момент, а так же устройств подводящих момент к колесу обеспечивает привод колес в движение.

Типы приводов колес АТС

В зависимости от особенностей компоновки АТС в целом, положение и числа ведущих колес на АТС, различают:

1. Заднеприводные АТС - имеющие передачу крутящего момента от двигателя на ведущие колеса, располагаемые в задней части АТС;

2. Переднеприводные - передача крутящего момента на ведущие колеса, расположенные в передней части АТС;

3. Полноприводные - передача крутящего момента на все колеса АТС.

Исходя из современных требований, предъявляемых к АТС в плане проходимости, управляемости, безопасности движения, наиболее полно соответствуют их содержанию полноприводные конструкции, которые получили самое широкое распространение при создании АТС категории «В, С и D». Существуют Полноприводные АТС категории «Е».

Каждый из указанных приводов коле вызывают определенные отличия в конструкции основных элементов трансмиссии автомобиля, которые будут рассмотрены ниже.

Колеса были изобретены 5 тысяч лет назад. Первое их появление было зафиксировано в Древнем Египте. При строительстве пирамид для облегчения передвижения грузов использовали особые изобретения. Они назывались «катки» и выглядели, как круглые куски бревен. Их подкладывали под большие каменные глыбы. Это можно назвать началом в истории колеса.

На протяжении многих столетий колесо подвергалось видоизменениям и совершенствованиям. Однако в 19 веке произошел настоящий переворот во всей истории колеса. Около 200 лет назад была изобретена пневматическая шина, которая используется и в настоящее время для эксплуатации современного автомобиля. Ее открытию способствовало открытие процесса вулканизации. Что являлось толчком в развитии резинотехнической отрасли в промышленности.

Что такое шина?

О том, что же такое шина, существует множество мнений. Многие считают, что это резиновый баллон. С геометрической точки зрения шина - это тор. Механическая точка зрения определяет шину сосудом в форме упругой мембраны с высоким давлением.

Химия принимает шину, как материал, который имеет макромолекулы с длинными цепями. Шина воплотила в себе открытия химической промышленности, ведь при изготовлении шины применяют различные синтетические материалы. Производство шин каждый год затрачивает несколько миллионов тонн углеродной сажи, масел эластомеров, пигмента и других материалов.

В широком же смысле, шина - достижение научно-технического прогресса, а также синтез научных знаний и современных технологий.

В 1844 году впервые шина была запатентована официально.

Изобретение пневматической шины было официально запатентовано Робертом Уильямом Томсоном, 1822 года рождения. В 22 года – в год изобретения шины – он был инженером железнодорожного транспорта, а также имел свой бизнес в Лондоне.

В 1846 году 10 июня был датирован патент, описаны суть изобретения, конструкция шины и все необходимые для ее изготовления материалы. В патенте описывалось, что «воздушное колесо» предназначалось для телеги или экипажа.

Изобретение заключалось в следующем: шина накладывалась на колесо, которое имело деревянные спицы. Деревянный обод был обит обручем из металла, в него и вставлялись спицы. Шина состояла из камеры, которая представляла собой нескольких слоев парусины, которые были пропитаны раствором гуттаперчи или натуральным каучуком. Также шина состояла из наружного покрытия, а точнее, из кусков кожи, которые были соединены заклепками. Шина крепилась на обод болтами. В патенте было написано, что кожаная покрышка имела необходимое сопротивление износу, а также многочисленным изгибам. Кожа имеет свойство растяжения при попадании воды и расширения при внутреннем давлении. Поэтому камера была усилена парусиной.

Испытания проводились с экипажем с воздушными колесами. Томсон замерял силу тяги, в результате было обнаружено, что на щебеночном покрытии сила тяги снижается на 38%, а на покрытии из дробленой гальки - на 68%. Испытания доказали удобство езды, бесшумность и легкий ход.
После проведенных испытаний, их результаты опубликовали в журнале Mechanics Маgazin в 1849 году. Однако появление этого значительного изобретения, а также доказательств и обоснования продуманного воплощения в жизнь, оказалось недостаточным для повода к массовому производству. Основная причина – не было добровольцев изготавливать это изделие с приемлемой стоимостью. После смерти Томсона про «воздушное колесо» все забыли, однако были сохранены образцы изделия.

Первое практическое применение пневматической шины.

О пневматической шине вспомнили в 1888 году. Шотландец Джон Данлоп усовершенствовал трехколесный велосипед, соорудив из шланга для поливки сада широкие обручи и, надув их воздухом, надел их на колесо. Он получил патент на изобретение и стал известен как автор пневматической шины.

Шина быстро получила распространение в применении. В 1889 году Уильям Хьюм, который участвовал в гонках на велосипедах, для своего транспорта использовал пневматические шины. Его талант в этом деле находился на среднем уровне. Тем не менее, выиграл все заезды.

В 1889 году этому изобретению нашлось и коммерческое применение. Существующая и до сих пор самая крупная компания «Пневматическая шина и агентство Бута по продаже велосипедов» была организована в Дублине. Сейчас ее название – «Данлоп».

Усовершенсование

В 1890 году инженером Чальдом Уэлтчем было предложено отделить камеру от покрышки. Также он счел необходимым вставить в края покрышки проволоку и посадить на обод. Англичанин Бартлетт и француз Дидье также внесли свою лепту относительно монтажа и демонтажа шин.

Французы Андре и Эдуард Мишлен первыми использовали пневматическую шину на автомобиле. Они имели большой опыт в изготовлении шин для велосипедов. В 1895 впервые в автомобильной гонке принял участие автомобиль с пневматическими шинами. Водителем был француз Бордо. Он справился с расстоянием в 1200 км, а также пришел к финишу. А уже в 1896 году пневматические шины были установлены на автомобиле «Ланчестер».

Пневматические шины были толчком в развитии плавности хода и проходимости автомобилей. Но надежность была под сомнением и требовала времени для монтажа. Последующее усовершенствование в этой области было связано с увеличением износоустойчивости шин, а также их быстрым монтажом и демонтажом.

Прошло много лет, и пневматическая шина навсегда вытеснила литую резиновую шину. Для дальнейшего усовершенствования шины использовали более дорогие и долговечные материалы. В шине появился корд – это прочный слой, который состоит из текстильных нитей. Также использовали быстросъемные конструкции, ведь это дало реальную возможность менять шины в течение нескольких минут.

Модернизация уже имевшейся модели пневматические шины получила повсеместное применение и привела к бурному всплеску инноваций в шинной промышленности. Толчок в развитии дала первая мировая война, который заключался в разработке шин для грузовиков и автобусов. Первым производителем стала Америка. Шины для грузовиков имели высокое давление, и были способны воспринимать большие нагрузки. Кроме того, они имели необходимые скоростные характеристики.

В 1925 году в мире было зафиксировано уже почти 4 миллиона автомобилей с пневматическими шинами. Исключениями были отдельные типы грузовиков. Начали появляться крупные компании по изготовлению шин. Некоторые из них успешно работают и на сегодняшний день. Например: «Данлоп» (Англия), «Пирелли» (Италия), «Мишлен» (Франция), «Гудьир», «Метцелер» (ФРГ), «Файрстоун» и «Гудрич» (США).

Наука и пневматические шины

Создание шин заканчивается к концу двадцатых годов прошлого века благодаря интуиции конструктора. Дело в том, что появилась необходимость научного подхода к усовершенствованию пневматических шин. В то время база химической технологии уже была хорошо освоена. Ее применяли для приготовления резиновых смесей шин.

Конструирование и испытания шин для автомобилей не сразу получили опыт. Проводились многочисленные научные исследования, и использовались на практике в деятельности многих компаний различных стран. Для разработки дальнейших эксплуатационных характеристик шин создавали особенные стенды для испытаний.

В тридцатые годы конструкторы видоизменяли форму и рисунок протектора и старались отразить важность роли шины в управляемости автомобиля.

Во времена второй мировой войны начали целостно использовать синтетический каучук. Это делалось для создания усовершенствованных шин в рецептурах резин.

Следующим этапом в развитии шинного производства можно считать применение корда из вискозы и нейлона. Так как шины с вискозой улучшили характеристики шин и сократили некоторую долю случаев выхода из строя шин. Шины с нейлоном были более прочными. Таким образом, разрывы каркаса некоторым образом свелись к нулю.

Компания «Мишлен» в середине двадцатого века предложила новую конструкцию шин. Изюминка в этой идее была заключена в жестком поясе, который состоял из слоев металлокорда. Нити корда были расположены не в диагональном виде, а в радиальном - от борта к борту. Далее эти шины называли радиальными и позволили автомобилю быть более проходимым транспортом. В то же время конструкторы работали над износоустойчивостью и сцепными свойствами шины.

В следующее десять лет было изменено отношение высоты шины к ширине профиля. Стремление к более низким профилям шин случилось благодаря повышению площади контакта с дорогой. Что способствовало повышению общего срока службы шины, а также улучшило устойчивость боков и сцепные свойства.

В семидесятые годы, по сравнению с пятидесятыми годами, пневматическая шина достигла определенного уровня усовершенствования. Были замечены следующие изменения: была увеличена безопасность, и снижен расход топлива. Кроме того, легковые автомобили перешли на использование радиальных шин.

Компания «Континенталь» в восьмидесятые годы предложила новое усовершенствование: конструкцию шины с особым креплением на Т-образном ободе колеса. Данное новшество обеспечило более безопасное движение на маленькой скорости, даже если будут спущены шины.
Одновременно с полетами в космос и исследованиями космоса началась новая эпоха в создании шин. Так как луноходы и лунороботы требовали производства новых видов шин, которым бы не было страшно ни жары, ни холода, ни даже вакуума, которые могли бы двигаться по любой поверхности.

Современный этап развития

В современное время действует тенденция к эксплуатации бескамерных радиальных шин низкого профиля. Эти шины предоставляют возможность использовать различные рабочие характеристики транспортного средства по степени грузоподъемности и объема и обеспечивать безопасность перевозок и эффективность работы транспортного средства.

Модернизация шин движется по всем направлениям и обосновывается широкой специализацией в соответствии с назначением. Долгое время уделялось большое внимание сцепным качествам, грузоподъемности и сопротивлению качения шин. Разработчики шинной промышленности трудятся над химическим составом, увеличением длительности срока службы шины и безопасности передвижения транспортных средств, рисунком протектора, упрощением производства и улучшением технико-экономических показателей шин.

В настоящее время уже не найти человека, который бы не знал, для чего предназначены шины на автомобилях. Но не все знают, что такими автопокрышки стали относительно недавно. Чтобы проследить историю автомобильных шин, необходимо вернуться практически на полтора века назад в историю.

Первые резиновые шины появились в середине 19-го века, почти сразу после изобретения Чарльзом Гудиером процесса получения резины из каучука. Изначально подобные шины представляли собой деревянные колеса, на которые надевали обод из сплошного резинового слоя. Литые резиновые шины были прорывом в обеспечении плавности езды, позволяя немножко смягчить поездку, поглощая удары от неровностей на дороге. Однако, хоть использование литых резиновых шин позволило уменьшить тряску и вибрацию, все равно поездка на транспортном средстве с такими колесами была далека от комфортной.

Считается, что идея использовать прослойку воздуха для смягчения ударов и для уменьшения трения качения пришла в голову шотландскому инженеру Роберту Томсону, получившему 10 декабря 1845 года патент на изобретение «усовершенствованного колеса для повозок и других передвигающихся объектов».

«Усовершенствованное колесо» Томсона состояло из деревянного обода, обитого металлическим обручем, на который при помощи болтов прикручивалось наружное покрытие из кожи. С внешней стороны куски кожи скреплялись с помощью заклепок. Внутри образовавшейся кожаной трубы помещался прообраз современной камеры, только у Томсона она была сделана из парусины, пропитанной резиновой смесью.

Томсон даже провел испытания, которые показали, что применение «воздушного колеса» позволяет существенно уменьшить силу, необходимую для передвижения экипажа. Подобные колеса Томсон предполагал использовать на каретах, особо отмечая, что карета теперь может двигаться особенно плавно и что она, благодаря использованию воздушных шин, выглядит будто парящей над землей. Свои результаты испытаний Роберт Томсон опубликовал 27 марта 1849 года в журнале «Mechanics Magazine», приложив подробные рисунки и описание своего изобретения.

Однако никого данное изобретение не заинтересовало, и производство «воздушных колес» так и не было начато.

Повторно пневматическая шина была изобретена в 1888 году Джоном Бойд Данлопом в Ирландии. Первое пневматическое колесо Данлопа состояло из накачанного воздухом куска садового шланга, надетого на обод колеса детского велосипеда его сына. Шланг прикреплялся к ободу при помощи намотанной ленты из прорезиненной парусины. Чтобы предотвратить быстрое истирание ленты об дорожную поверхность, Данлоп прикрепил кусок плотной резиновой ленты поверх намотанной парусиновой ленты.

В 1889 году была проведена гонка на велосипедах, на которой победу одержал гонщик, использовавший на своем велосипеде необычную для всех шину — с пневматической камерой.

Поняв перспективность своего изобретения, Джон Данлоп открыл в 1889 году мастерскую по производству пневматических велосипедных шин - «Пневматическая шина и агентство Бута по продаже велосипедов». Сейчас эта компания выросла из маленькой мастерской в международную корпорацию «Данлоп».

Однако в том виде пневматическую шину нельзя было использовать на автомобилях. Кроме того, шина была несъемной, что доставляло большие неудобства при эксплуатации. Спустя совсем небольшое время, в 1890 году, была решена проблема с адаптацией шины для монтажа на автомобилях. Инженер Кингстон Уэлтч предложил новую схему для колеса: покрышки делались съемными, отдельными от камеры. В края покрышки вставлялась металлическая проволока для прочности. Благодаря углублению камера лучше фиксировалась на ободе. Для исключения соскальзывания покрышки с обода его края выступали и удерживали бока шины.

В этом же году были разработаны способы относительно удобного монтажа и демонтажа шины. Начало использования пневматических шин на автомобилях уже было делом времени. Оставалось лишь адаптировать конструкцию для использования на автомобилях с их высокими (для того времени) скоростями и большими нагрузками на колеса.

Первыми автомобильные пневматические шины начали выпускать два брата-француза Андре и Эдуард Мишлен, представив их в 1895 году перед гонкой «Париж - Бордо». У братьев уже был опыт изготовления шин для велосипедов. Автомобильные шины они сделали специально к данной гонке. В наши дни фамилию братьев знает уже практически каждый - компания «Мишлен» выросла в корпорацию международного масштаба.

Благодаря использованию пневматических шин у автомобилей увеличилась плавность движения и проходимость, поездка по неровной дороге перестала быть столь неприятной. Однако всеобщему распространению подобных шин мешала их капризность в эксплуатации, а также сложности при монтаже и демонтаже. Потому цельнорезиновые и пневматические шины производились параллельно.

Дальнейшие изыскания инженеров по улучшению пневмошин были направлены на устранение вышеуказанных недостатков. Вскоре в шины стали внедрять специальные полосы из различных упрочняющих материалов - кордов, которые увеличивали срок службы и неприхотливость покрышки. Существенно ускорило монтаж/демонтаж колес появление специальных монтажных станков. Кроме всего прочего, сами колеса стали съемными. Теперь они крепились к ступицам при помощи нескольких болтов.

Вскоре прочность пневматических шин стала достаточной для использования их на грузовых автомобилях. Количество выпущенных шин уже насчитывалось миллионами.

Для улучшения управляемости разрабатывались различные рисунки протектора, производились изыскания с различными составами резиновой смеси. Для уменьшения зависимости от стран-поставщиков натурального каучука, используемого для изготовления резины, был разработан синтетический каучук. Это позволило снизить себестоимость шин, а также стабилизировать химический состав резины, что позволяло добиться постоянства химических и физических характеристик для каждой шины в серии.

Химические компании принимали активное участие в улучшении качества шин не только подбором новых добавок для резины, но и поиском лучшего материала для корда. Изначально корд изготавливался из текстиля, но он обладал низкой прочностью, из-за чего были нередки случаи разрывов шин. Инженеры компаний стали экспериментировать с синтетическими материалами – новейшими вискозой и нейлоном. Использование данных материалов позволило значительно увеличить прочностные характеристики шин. Теперь случаи взрывов шин стали совсем редким явлением.

В середине 20-го века компания «Мишлен» разработала совершенно новый тип шин: нити корда изготавливались из металла и располагались радиально - от борта до борта. Шины с таким типом корда получили название радиальных. Применение радиального корда позволило в несколько раз увеличить прочность и срок службы шины при той же массе. Или же, сохраняя прежние прочностные и скоростные характеристики, иметь гораздо меньшую массу.

При всех своих достоинствах традиционная шина с камерой обладает одним существенным недостатком - при проколе она практически мгновенно сдувается и движение становится невозможным. Для избавления от этого недостатка было необходимо найти способ обходиться без камеры. И потому были разработаны бескамерные шины, которые даже в случае прокола позволяли проехать какое-то расстояние без существенной потери своих прочностных качеств. Однако бескамерные шины более требовательны к качеству изготовления как самой шины, так и диска. Все это обусловлено тем, что в подобных колесах покрышка должна как можно плотнее прилегать в станке диска для обеспечения необходимого уровня герметичности, чтобы удерживать находящийся внутри воздух.

Современным автовладельцам покажется удивительным, но до 60-х годов 20-го века профиль шины представлял собой практически круг. Далее высота шины все время уменьшалась, достигая порой 50 процентов от ширины профиля. Низкопрофильные шины обладают лучшим сцеплением с дорогой благодаря большей поверхности соприкосновения. К тому же, благодаря уменьшению высоты профиля, улучшилась курсовая устойчивость, так как такая шина меньше деформируется при боковых нагрузках. Низкопрофильная шина обладает многими достоинствами, включая нестандартный внешний вид, который придает автомобилю с такими колесами некую спортивную агрессию. Но надо помнить, что при этом приходится жертвовать максимальной грузоподъемностью. Хотя это для спортивных автомобилей далеко не самый важный критерий. При тюнинге автовладельцы частенько ставят «спортивные» низкопрофильные шины даже на автомобили, не обладающие «спортивным» внешним видом. Но тут это уже дело вкуса.

Со времени появления первого «воздушного колеса» и до сегодняшнего дня не прекращаются изыскания, которые позволили бы улучшить потребительские качества пневматических шин. Если раньше исследования в основном шли в направлении повышения прочности покрышек и улучшения сцепления с дорожной поверхностью, то сейчас к этому добавилось и стремление создать шину, наносящую минимальный вред окружающей среде. Это включает в себя не только экологичность при изготовлении (шинное производство - исторически очень грязное с точки зрения экологии), но и нанесение минимального вреда при эксплуатации (отслаивающиеся кусочки резины и выделяющиеся газы являются важными загрязняющими экосистему факторами). Кроме того, не стоит забывать, что после прекращения эксплуатации шины необходимо как-то утилизировать. Этот процесс тоже далеко небезопасен для экологии.

Раньше люди не задумывались над уроном, наносимым человечеством окружающей среде. Но сейчас, к счастью, все меняется к лучшему. Ведутся исследования, которые позволили бы не только минимизировать вред от классических резиновых шин, но и направленные на поиск абсолютно другого, экологически чистого, материала для изготовления обувки для автомобилей. Кроме того, ищется способ как-то отойти от необходимости использования воздушной камеры в качестве амортизирующего средства. Например, уже имеются предложения изготавливать шины, у которых вместо воздушной «подушки» был бы слой в виде губки или же в виде крупных ячеек.

История изобретения автомобильных шин

Доподлинно неизвестно, когда было изобретено колесо, но сам факт его изобретения является переломным моментом в истории всего человечества. Люди уже давно используют колеса для перемещения, однако понятие "колесо" для современного человека и представителя средневековья – это совсем не одно и то же. Если в 5 веке н.э., колесом считался круг из дерева, укрепленный металлическим ободом, то в нынешнее время, колесо – это шина, смонтированная на обод, которая обеспечивает плавность хода, повышает скорость движения автомобиля и улучшает его проходимость. Также следует помнить, что шина появилась немного ранее создания автомобиля. Причина, благодаря которой стала интересной история усовершенствования колеса – это появление в 1940 году шин из синтетической резины.

Превью - увеличение по клику.

Начало Золотого века велосипедов ознаменовало появление новой конструкции шин Данлопа

Работы по увеличению плавности хода начались еще с конных средневековых экипажей, изначально роль шин выполняли железные обручи. Были у них как плюсы, так и минусы. Действительно, при их использовании, долговечность деревянных колес намного увеличивалась, однако тряска и грохот были невыносимыми. Первый прародитель современных шин появился в середине 19 века, называли его "Воздушным колесом", само изобретение принадлежит шотландцу - Роберту Томсону. Собой оно представляло камеру и оболочку из небольших кожаных кусочков, которые соединялись между собой при помощи заклепок. Благодаря использованию каучука камера стала непромокаемой и герметичной. К сожалению, никого не заинтересовала данная разработка, хоть она и была недалека от нынешних разработок. Наверное, мир еще просто не был готов к таким инновациям.

Совершенно другого настроя был соотечественник Томсона – Джон Данлоп. Его настойчивость и инициативность помогла ему обрести известность. Его имя в истории ассоциируется с разработкой первых пневматических шин, которые получили массовое распространение. Главным стимулом к этой разработке стали просьбы маленького сына конструктора, которому никак не удавалась езда на велосипеде. В ход пошло все, что было под руками. Джон сделал из поливочного шланга обручи, надел их на колеса, а затем закачал в них воздух. Результат поразил как Джона, так и его сына. Недолго подумав, Джон Данлоп запатентовал свое изобретение. Чуть позднее Данлоп модернизировал свое изобретение. На 1888 год оно состояло из резиновой камеры, закреплявшейся на металлический обод колеса со спицами при помощи прорезиненной парусины, которая составляла каркас самой шины. Изобретение Данлопа было обречено на успех, ведь конец 19 века считается золотым веком велосипедов, самый большой спрос на них был именно в этот период. Отныне велосипеды больше не называли "костотрясами". После моды на велосипеды проследовало зарождение и других видов транспорта (мотоциклов и автомобилей). Спустя немного времени Данлоп шины стали использоваться повсеместно.

Что же касается автомобилей, то первыми за их "обувку" взялись два брата из Франции – Эдуард и Андрэ Мишлен (фамилия ничего не напоминает?). Первый автомобиль, на котором были применены пневматические шины, был Peugeot. На гонках 1895 года, которые, кстати, проводились в первый раз, он занял 9 место из девятнадцати участников. За время гонки, на трассе между городами Париж и Бордо, было использовано 22 комплекта шин, для дебюта неплохо.

Главное достоинство пневматических шин плавность и мягкость хода, а также улучшение управляемости, перекрывала неудобность в эксплуатации. Чтобы заменить комплект, необходимо было потратить немало времени, а главное, нужно было иметь специальные навыки. Это предопределяло дальнейшее развитие шин. Старались найти способ увеличения прочности и долговечности шин и упрощения монтажа и демонтажа. Скорость эволюции шины просто невероятная, через пятьдесят лет они не сильно отличались от современных прототипов. Главным событием в истории "шинопроизводства" стало применение синтетической резины в 1940 году. В 1970 году в массовое производство были запущены бескамерные радиальные низкопрофильные шины. Благодаря которым, удалось вывести показатель управляемости, а соответственно и безопасности транспортного средства на новый уровень. Несмотря на достигнутое, на первый взгляд, совершенство, разработка шин продолжается и по сей день.

Ближе к современности

Сегодняшнее разнообразие шин поражает. Их можно подобрать к различным видам автомобилей, дорожным покрытиям, сезонам и даже манерам езды. Для современного автолюбителя основной необходимостью и головной болью является забота о смене резины. Для безопасности и контроля на дороге следует менять шины каждый сезон. Зимой, протекторы летней резины забиваются, и она быстро приходит в негодность. Ну а летом, напротив, зимняя резина размягчается, теряется сцепление с дорогой и происходит быстрый износ шины. Все это происходит из-за того, что зимние и летние отличаются не только вариантами протектора, но и своим химическим составом.

Любому автомобилисту необходимо также следить за состоянием резины, ведь если она "облысеет" и высота рисунка протектора уменьшится, то это приведет к трагическим ситуациям. Протектор исполняет роль сцепления с дорогой при плохих погодных условиях (грязь, снег, дождь). Канавки протектора, по специально-спроектированным канальцам, выдавливают воду (т.е. естественную смазку с дорогой) и обеспечивают контакт с дорогой. Именно поэтому и следует следить за ресурсом протектора.

По аналогии можно предположить, ведь если в дождливую погоду протектор помогает, выталкивая воду, то на сухой дороге он уменьшает площадь соприкосновения с поверхностью, следовательно, ухудшается сцепление. Однако приоритеты в жизни и на гоночной трассе сильно различаются. В гонках, скорость куда важнее, чем безопасность, поэтому используется минимальная высота протектора, но из-за этого, ресурс гоночных шин всего 200 км.

В соревнованиях внедорожников на проходимость, триал и других, протектор шин особенно агрессивен. Тут главное не скорость и даже не безопасность, а сцепление с трассой. Чтобы машина не пробуксовывала в грязи и грунте, колеса должны быть "зубастыми". В рыхлых и болотистых местах принято сбавлять давление в колесах, для того чтобы увеличить площадь соприкосновения.

Самые-самые

Чем же еще могут удивить , помимо всего своего разнообразия, рисунков протектора и химического состава? Оказывается, есть и такие, которые невозможно встретить на обычной дороге. К примеру, карьерные самосвалы и Белаз"ы, имеющие грузоподъемность свыше 500 тонн. Для того чтобы выдержать такой вес и шины нужны особые: диаметр – 1.5 м., высота – 4 метра а масса – свыше 5 тонн. Интересен процесс монтажа и демонтажа таких шин.

Так же есть и обратные примеры. Шина седана АА 1936 года, марки Toyota меньше чем шина самосвала в 1875 раз. В 1993 была выпущена машинка с электромотором. Длина модели – 4.8 мм., а колеса - менее миллиметра.