» » Способ нанесения смазки на поверхности. Методы нанесения антифрикционных смазок на поверхности деталей трубопроводной арматуры

Способ нанесения смазки на поверхности. Методы нанесения антифрикционных смазок на поверхности деталей трубопроводной арматуры

Презентация на тему: Технология - Смазывание. Методы нанесения смазок











































1 из 42

Презентация на тему: Технология - Смазывание. Методы нанесения смазок

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

Способы подачи смазочного масла Ручные Кистью Губкой Масленкой Распылителем Потоком в ванне и разбрызгиванием Подшипники Шестерни Картер Тяжестью Капиние Фитиль Масленки постоянного уровня Масленные чашки Туманом Чистый туман Очищенный туман Масленки воздушной линии Подъемники масла Кольца Воротнички Маслоотражатели Шестерни с лопостями Капилляр Давлением Распылитель Централизованные системы Одноточечные масленки Циркуляцией Мокрый картер Сухой картер Гидравлика

№ слайда 6

Описание слайда:

Ручное смазывание Преимущества Низкие персональные затраты Аварийное смазывание Простота в применении Может быть выполнена инспекция оборудования, выполнена проверка Недостатки Пересмазывание сразу после смазки Чрезмерная утечка Требуются частые замены смазки Высокий риск загрязнения Точки смазывания могут остаться незамеченными Риски в области безопасности и экологии из-за утечки Высокая стоимость рабочей силы кисть распылитель капание Ручной шприц Шприц-масленка

№ слайда 7

Описание слайда:

Капельные и фитильные масленки Преимущества Простые устройства Изменяемая скорость подачи Легко проверить уровень и нанесение масла При капельной подаче можно использовать электромагнитный клапан для автоматической остановки потока масла Недостатки Грязь и вода могут ограничить поток в смазочном фитиле и засорить игольчатый клапан Смазочный фитиль должен часто меняться На скорость потока влияет вязкость, уровень и температура, требуется частая настройка Высокий риск загрязнений при работе и дозаправки масленок Капельная подача Используется сила притяжения для подачи масла Скорость подачи масла м. б. настроена при помощи игольчатого клапана Фитильная подача Масло подается за счет действия капиллярных сил Скорость подачи масла м.б. изменена путем изменения количества скруток и/или длины фильтра

№ слайда 8

Описание слайда:

Масленки с постоянным уровнем Преимущества Контролирует загрязнение (если надлежащим образом закрыт) Небольшой объем техобслуживания Легко отслеживать уровень масла и состояние смазочного материала Риски Риск загрязнения при операциях с масленкой с маслом и их перезаполнении Старение прокладок Загрязнение водой и частицами Настройка неправильного уровня масла Можно только добавлять масло, нет возможности снизить уровень масла (доливайте масло в масленку, только когда это необходимо)

№ слайда 9

Описание слайда:

№ слайда 10

Описание слайда:

Зубчатый привод, смазываемый разбрызгиванием Смазка разбрызгиванием: Зубья шестерни и/или выступы Вращающегося маслобойного кольца погружаются в резервуар и разбрызгивают масло на части, которые требуется смазать или на стенки корпуса, где есть канавки для потока масла к подшипникам. Уровень масла. Нижний зуб должен быть погружен полностью. Правильный уровень масла является критическим Риск наращивания осадка, вытесняющего эффективный уровень масла Риск при холодном пуске Ограничения на скорость/вязкость Риск при сухом пуске Трудно взять пробу масла Риск недостаточного смазывания подшипника и загрязнения

№ слайда 11

Описание слайда:

Смазка разбрызгиванием под давлением Принцип действия Нанесение струи «измельченного» смазочного материала в жидком виде. Размер капелек масла и вид распыленной жидкости зависят от давления, размера и типа форсунки, вязкости смазочного материала при температуре распыления и расстояния между выпускным отверстием форсунки и целевой поверхностью.

№ слайда 12

Описание слайда:

Смазка масляным туманом Масляный туман – это транспортировка масла в состоянии аэрозоля потоком воздуха на поверхности узлов для смазывания Происходит атомизация тумана (сухой и чистый) Общие потери (кроме очищающего тумана) Обедненная смесь Не поддерживает горение Безопасный / неопасный Низкое давление Преимущества Снижение износа подшипников и уплотнений Снижение трения и энергопотребления Отсутствует загрязнение шестеренок или рециркуляция Снижение затрат на техническое обслуживание и ремонт Рекомендуется для использования в насосах Недостатки Риск возникновения тумана распыляемой жидкости Ограничения по вязкости Влияние некоторых добавок (воздействует на инжекторы) Сложнее выявить тенденцию при анализе продуктов износа Эпизодические проблемы с «воскованием» маслоуловителя при низких температурах Эпизодические проблемы с засорением инжекторов налетом и осадком

№ слайда 13

Описание слайда:

Постоянная принудительная циркуляция масла Отличительные особенности Температуру, чистоту и объем поставки можно контролировать Редукторы с принудительной циркуляцией масла менее нагреваются, чем со всплеском Удобная зона для отбора проб Смена масла м.б. произведена «в рабочем состоянии» Минимальный риск сухого пуска Как правило, требуется большой объем масла Риск утечки, риск аэрации!!! Потенциал для восстановления присадками масла Принцип действия Как правило, смазка закачивается к подшипникам и зубчатым передачам и возвращается в резервуар под действием силы тяжести.

№ слайда 14

Описание слайда:

№ слайда 15

Описание слайда:

Преимущества Низкая стоимость решения Простое использование Простое обслуживание Во время смазывания специалист может дополнительно осмотреть машину Недостатки Высокая стоимость человеко/часов Длительные интервалы могут привести к голоданию Передозировка – надежность? И экологические риски Высокая вероятность попадания грязи Проблемы безопасности при использовании Нанесение пластичных смазок – ручной шприц для смазки

№ слайда 16

Описание слайда:

Оборудование для дозировки смазки Оборудование для дозировки Плунжерного типа Шприцы с рычагом (самые распространенные) Пистолетного типа Пневматические шприцы (воздушные) Шприцы с батарейным питанием Портативные тележки для смазывания (распределение из бочек (от 20кг до 200кг) Объем дозировки Одна доза обычно 2-3 грамма (0,1 унции, 1унция=28,35г) Осторожно, доза может меняться (от 0,85г до 2,85г) Необходимо чаще проверять калибровку дозаторов Давление Нормальное давление (344-690 Бар) Высокое давление (до 1000 Бар) Иногда применяются манометры

№ слайда 17

Описание слайда:

Пресс-масленки (фитинги) для консистентной смазки Тип Гидравлические Колпачковые Нипельные (вставляемые нажатием) Советы по применению Выдавите небольшое количество смазки из пистолета (чтобы избавиться от загрязнений) Используйте крышку или оставьте порцию смазки после смазывания Протрите и замените дефектные ниппели Осмотрите новые ниппели (заусенцы, мусор, повреждение) и при необходимости прочистите при помощи шприца смазки Крышка или порция смазки поможет уменьшить попадание грязи через фитинги смазки

№ слайда 18

Описание слайда:

Управление давлением при повторной смазке Медленно закачивайте смазку в подшипник в течение от трех до пяти секунд на обычный впрыск (2,8грамма). Увеличивайте или уменьшайте время для большего или меньшего выхода по объему за впрыск. Прекратите смазывание, если Вы почувствуете или увидите не нормальное противодавление. Допустимый предел давления зависит от задачи. Если противодавление высокое, проход может быть заблокирован затвердевшим загустителем. Нагнетатели для смазки могут развивать давление до 1000 Бар, манжетные уплотнения могут не выдержать при 34,5 Бар. Также имеется риск выхода из строя защитных шайб и попадания смазки на обмотку электродвигателя. Если риск высокий, установите сброс давления на нагнетателе для смазки или используйте пресс-масленки со сбросом давления. Если риск высокий, избегайте использование пневматических нагнетателей для смазки. 5. Для Вашей безопасности никогда не держите смазочный фитинг в руках в ходе работы. Пресс масленка с клапаном, устраняющим давление. Предотвращает возникновение избыточного давления во время смазки. Перекрывает поток при 3,45-7,58 Бар. Когда давление снижается, поток смазочного материала м.б. возобновлен. Фитинг с клапаном, устраняющим давление. Эти фитинги устанавливаются на выпускные (продувные) отверстия. Это предохранительные клапаны, снижающие давление при 0,07-0,35 Бар.

№ слайда 19

Описание слайда:

Повторная смазка, используемая для очистки от загрязнения Очистка для консистентной смазки – это как фильтрация для масла Применение Продувка используется для подшипников, соединительных элементов, игл, которые часто вступают в контакт с водой, грязью и другими загрязнителями. В ходе замены смазки прокладки полости и уплотнения подшипника очищаются от загрязнений. Также вытесняется старая, загрязненная смазка. Заправка новой смазкой помогает предотвратить попадание новых загрязнителей. В крайне грязных средах, проводите замену смазки через каждые 8 часов работы.

№ слайда 20

Описание слайда:

Пример: Первичный объем наполнения подшипников Скорость эксплуатации Соотношение скорости = Ограничение скорости подшипника Производитель подшипника Подшипники с двойным экраном Подшипники открытые и с одним экраном Смежные полости корпуса подшипника ISOTECH Максимум 50% Максимум 50% 100% ROLISA 30% 80-90% 50% TKS 33% 33-50% 70% MVR 30-40% 100% 40-50% 10-20% при скорости менее 0,1 при скорости 0,1-0,2 при скорости более 0,2 LRS - 100% 100%-при скорости менее 0,2 30-50% - при скорости 0,2-0,8 0% - при скорости более 0,8 FBJ 30% 80-90% 50% NACHI 20-30% 33-50% 33-50% NTN 30-35% 30-35% Максимум 50% FAFNIR 30-50% (до 52мм диам.н) 25-40% (более 52мм) 100% 33% FAG 30-40% 30-40% 100% - при скорости менее 0,2 22% - при скорости 0,2-0,8 0% - при скорости более 0,8 NSK 35% 25-40% 50-65% - при скорости до 0,5 33-60% - при скорости более 0,5 SNR 33% 20-30% - ZKL 33-55% 30% 30%

№ слайда 21

Описание слайда:

Объемные методы пополнения смазкой подшипников электродвигателей. Максимальный объем смазки. Общий объем Свежая смазка/год = частота/год х объем/за раз Метод формулы ISOTECH: Gq = 0,005 DB (предпочтительно) Где, Gq = Количество смазки, г D = Наружний диаметр подшипника, мм B = Общая ширина подшипника, мм (по высоте для упорных подшипников) Метод размера рамы (Frame Size) Размер рамы При скорости до 1800 об/мин При скорости до 3600 об/мин 48-215 8,2 см3 8,2 см3 254-286 16,4 см3 16,4 см3 324-365 24,6 см3 24,6 см3 404-449 40,1 см3 16,4 см3 5000 40,1 см3 24,6 см3 5800 49,2 см3 24,6 см3 9500 Как указано на табличке! Как указано на табличке! Метод диаметра вала Диаметр, мм Объем, см3 До 25,4 2,8 см3 25,4-38,1 5,6 см3 38,1-50,8 8,4 см3 50,8-63,5 11,2 см3 63,5-76,2 16,8 см3 76,2-101,6 25,2 см3 101,6-127,0 39,2 см3

№ слайда 22

Описание слайда:

Интервалы повторного смазывания роликового подшипника. Этапы определения периодичности замены смазки. 1) Найдите используемый вами подшипник в одной из трех шкал ниже. 2) Определите скорость вращения вала в об/мин, а затем найдите эту скорость на оси Х на графике 3) Поднимитесь вверх от выбранной скорости в об/мин до строки с пересечением линии диаметра вала для вашего подшипника. 4) В найденной точке пересечения перейдите влево к оси Шкалы, соответствующей типу подшипника. Шкала подшипников Шкала А Радиальные шариковые подшипники Шкала B Цилиндрические роликовые, игольчатые подшипники Шкала C Сферические и конические роликовые подшипники, упорные шарикоподшипники, цилиндрические роликовые подшипники с сепаратором, упорные сферические роликовые подшипники, игольчатые упорные подшипники, упорные цилиндрические роликовые подшипники Корректировка интервала: Интервал сократить на половину на каждые 150С выше 700С. Сократить интервал на половину для подшипников на вертикальном валу Сократить интервал на половину, если вибрация превышает 5мм/с Сократить интервал при высоком риске загрязнения частицами и влагой

№ слайда 23

Описание слайда:

Интервалы повторного смазывания подшипников электродвигателей (смазка) Примечание. 1) Уменьшите интервал в два раза при общей вибрации более 5 мм/с. 2) Для двигателей с вертикальным валом сократите на 1/3 по сравнению с указанными выше данными. 3) Большие двигатели от 184 кВт смазывайте не реже, чем один раз в два месяца. Тип обслуживания 0,2-5,5 кВт 7,4-29 кВт 37-110 кВт Более 110 кВт Легкий сервис Клапаны, дверные замки, переносные шлифовальные пола, редко работающие двигатели (1час/сутки) 10 лет 7 лет 4 года 1 год Стандартный сервис Станки, кондиционеры, конвейеры работающие в 1 или 2 смены, машины прачечной и текстильной промышленности, деревообрабатывающее оборудование, водяные насосы 7 лет 4 года 1,5 года 6 мес Тяжелый сервис Моторы, работающие круглосуточно (насосы, вентиляторы, редукторы, электродвигатели металлургических предприятий), машины работающие при высоких вибрациях 4 года 1,5 года 9 мес 3 мес Сверхтяжелый сервис В экстремально грязных условиях, сильной вибрации, где вал двигателя нагревается от горячих машин (насосы, вентиляторы), высокая температура окружающей среды 1 год 6 мес 6 мес 2 мес

№ слайда 24

Описание слайда:

Нагрев электродвигателей Последствия 1) Каждые 120С увеличения снижает на половину срок службы эл.двигателя. Рабочая температура д.б. ниже 700С 2) Передозировка уменьшает мощность на 5-10% (увеличивается потребление энергии) 3) По данным международной статистики, 23% всей электроэнергии потребляется эл.двигателями. 70% потребляется в обрабатывающей промышленности Причины 1) Неправильная или некачественная смазка. 2) Смазки слишком много 3) Смазки недостаточно. 4) Механические проблемы 5) Смазка на роторе/обмотке статора (и грязь) 6) Грязь на двигателе снаружи

№ слайда 25

Описание слайда:

№ слайда 26

Описание слайда:

Одноточечное смазывание Применение 1) Стандартные подшипники (узлы) 2) Обычно смазка и масло 3) В условиях с критичными изменениями температуры или вибрации Цели 1) Смазка в отдаленных местах или, когда доступ ограничен 2) Уменьшение затрат на рабочую силу 3) Обеспечение непрерывное или периодическое смазывание в течение трех, шести или двенадцати месяцев 4) Уменьшение потребления смазки 5) Увеличение надежности машин согласно IORS:2020

№ слайда 27

Описание слайда:

№ слайда 28

Описание слайда:

Пружинные лубрикаторы Принцип действия 1) Пружинный поршень вытесняет смазку 2) Поток зависит от консистенции смазки (противодействия) 3) Трение уплотнительного кольца поршня меняется на конических боковых стенках 4) Трение уменьшается с декомпрессией пружины (противовесом трения) 5) Ниппель потока – контролирует расход смазки 6) Типичный объем от 60 до 532 см3 7) Давление от 0,14 до 4,48 Бар 8) Возможно перезаправить шприцем

№ слайда 29

Описание слайда:

Газовые одноточечные лубрикаторы Корпус: Просвечивающий пластик Привод: Электрохимическая реакция, инициируемая газогенераторами Срок подачи смазки при 20 °C / SF01: 1, 2, 3... 12 месяцев Объем смазки: 60 и 125 см3 Рабочие температуры: от −20°C до +60°C Рост давления: Макс. 5 бар Принцип действия 1) Электронный элемент управления регулирует скорость выделения газа и скорость вытеснения смазочного материала 2) Типичная скорость потока 0,1-0,7 см3 в день 3) Может быть временно отключен 4) Влияние атмосферного давления 5) Газообразный водород огнеопасен и предрасположен к утечкам Электрохимический генератор давления Устанавливается инжектор для активации Гальваническая пластина помещается в раствор электролита Производится газ (азот или водород) Пузырь газа толкает поршень, вытесняя смазку

№ слайда 30

Описание слайда:

Лубрикаторы насосного (объемного) типа Корпус: Прозрачный пластик Привод: Привод многоразового использования, электромеханический Источник питания: Внешний 15-30v DC 0,2 A Срок подачи смазки STAR CONTROL TIME: управляется временем STAR CONTROL IMPULSE: управляется импульсом Объем смазки: 60 см3, 120 см3, 250 см3 Рабочие температуры: от −10°C до +50°C Рост давления: Макс. 5 бар Уровень звукового давления: менее 70 дБ(А) Особенности 1) Насос или поршень регулирует поток масла или смазочного материала независимо от сопротивления 2) Риск чрезмерной смазки 3) Нечувствителен к изменению температуры окружающей среды и вибрации 4) Может быть на время отключен 5) Давление на выходе 24 бара 6) Электропитание от переменного тока или батареи 7) Многократно используемый 8) Прозрачный резервуар

№ слайда 31

Описание слайда:

Факторы, влияющие на поток смазки одноточечного лубрикатора ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ В КАНАЛАХ 1) Проверьте сигнализацию 2) Обратите внимание при снятии старого лубрикатора, возможен обратный разряд смазки 3) Проверьте линию шприцем и манометром УВЕЛИЧИВАЮТ ПОТОК Высокая температура окружающей среды Смягчает смазку (более жидкая) Увеличивает давление сброса (сила пружины, давления газа, активация электролита) Увеличение до 4Х 2) Низколинейное ограничение Большие линии ID Короткие линии УМЕНЬШАЮТ ПОТОК Низкая температура окр.среды Застывание смазки (менее жидкая) Снижает нагнетаемое давление 2) Высококонсистентные смазки (NLGI Nos. 3-6) 3) Высоколинейное ограничение Узкие каналы ID Длинные линии 4) Блокировка каналов линии Волокнистая смазка Разделение Вертикальные каналы Вибрация Давление Термическое разложение Загрязнение 5) Течь газовой камеры ЛУБРИКАТОР ПРУЖИННОГО ТИПА ЛУБРИКАТОР ГАЗОВОГО ТИПА ТОЧЕЧНЫЙ ЛУБРИКАТОР НАСОСНОГО ТИПА

Описание слайда:

Централизованные многоточечные системы смазывания Параллельные (также называются «непрогрессивными») Все инжекторы работают независимо друг от друга и одновременно. Недостаток состоит в том, что если происходит сбой одного из клапанов, на насосную станцию не поступает сигнал о неисправности. Остальные продолжают работать.

№ слайда 34

Описание слайда:

Централизованные многоточечные системы смазывания Последовательные (также называются «прогрессивными») Все клапаны находятся в главной распределительной линии. Когда к главной распределительной линии подводится давление, работает первый клапан. По завершении его цикла поток проходит ко второму клапану и т.д. В этой системе, если происходит сбой одного из клапанов, все перестают работать.

Описание слайда:

Однолинейная последовательная система Преимущества Оснащен широким диапазоном опций управления системой мониторинга Может определить закупорку по результатам наблюдения за одной точкой с (например, манометром) Типовые задачи – критичное производственное оборудование Недостатки Может не подойти для масел с высокой вязкостью или высококонсистентных смазочных материалов, работы при низких температурах, использования очень длинного подводящего трубопровода меду насосом и инжекторами Определение неисправности, только в случае наблюдения за каждым отдельным инжектором

№ слайда 37

Описание слайда:

Двухлинейные параллельные системы Преимущества Работает без затруднений с очень вязкими (тяжелыми) смазочными материалами Приспособлен к использованию длинных (до 1000м), подводящих трубопроводов между насосом и измерительными приборами Приспособлен к использованию сотен инжекторов В инжекторах не используются пружины (потенциальная точка возникновения неисправности) Недостатки Может не подойти для масел с высокой вязкостью или высококонсистентных смазочных материалов, работы при низкой температуры, использования очень длинного подводящего трубопровода между насосом и инжекторами Нет индикации неисправности, если не проводить наблюдение за каждым отдельным инжектором Области применения Прокатные металлургические станы Целлюлозно-бумажные комбинаты

№ слайда 38

Описание слайда:

Пример двухлинейной параллельной системы Основные компоненты централизованной системы смазки Насосная станция Основные линии подачи смазки Ветвь линии смазки Линия смазки от инжектора 5) Дистанционно регулируемый клапан выключения 6) Инжекторы смазки 7) Блок регулирования давления

№ слайда 39

Описание слайда:

Описание устройства Оборудование для смазки канатов и тросов WRL обеспечивает быстрое и эффективное смазывание канатов и тросов диаметром от 8 мм (5/16”) до 67 мм (2,5/8”) со скоростью до 2000 м/в час. WRL помогает избежать ручного смазывания тросов и значительно повысить скорость выполнения операции. При этом качество смазывания оказывается существенно выше, т.к. смазка поступает под высоким давлением и проникает внутрь основания троса. Преимущества оборудования Автоматический режим работы Экономия смазки Защита канатов от коррозии Безопасен для работы (особенно на высотах) Смазывание прядей тросов, как с внешней, так и с внутренней стороны (давление до 400 атм.) Увеличение периода между циклами смазывания Смазывание тросов от 8 мм до 64 мм Быстрое и эффективное смазывание (до 2000 м/в час) Использование WRL - увеличивает срок эксплуатации металлического троса на 300%. Автоматическое устройство для смазки канатов и тросов

Описание слайда:

При изготовлении стальных канатов в соответствии с требованиями ГОСТ 3241-91 «Канаты стальные. Технические условия» установить следующие методы нанесения смазки: Для канатов двойной свивки - канаты несмазанные полностью тип А 0 пряди металлического сердечника и центральная прядь не смазываются; органический сердечник, не пропитанный в состоянии поставки; пряди каната и канат не смазываются; Канаты со смазанным сердечником тип А 1 пряди металлического сердечника и центральная прядь смазываются подачей смазки в конус свивки с использованием обтира; пропитанный органический сердечник в состоянии поставки или органический сердечник пропитывается методом окунания его в ванне со смазкой с использованием обтира; пряди каната и канат не смазываются. Канаты со смазанными прядями и сердечником тип А 2 пряди металлического сердечника и центральная прядь смазываются подачей смазки в конус свивки с использованием обтира; пропитанный органический сердечник в состоянии поставки или органическийсердечник пропитывается методом окунания его в ванне со смазкой с использованием обтира; пряди каната смазываются подачей смазки в конус свивки с использованием обтира; при свивке каната смазка не применяется Канаты с дополнительной смазкой тип А 3 пряди металлического сердечника и центральная прядь смазываются подачей смазки в конус свивки с использованием обтира; пропитанный органический сердечник в состоянии поставки или органический сердечник пропитывается методом окунания его в ванне со смазкой с использованием обтира; пряди каната смазываются подачей смазки в конус свивки с использованием обтира; канат смазывается в ванне методом его окунания. Методы нанесения смазки на канаты

№ слайда 42

Описание слайда:

Любые механизмы рано или поздно требуют замены смазочных материалов. Нанести смазку в труднодоступное место вам будет довольно просто, если воспользоваться простым советом и незамысловатым приспособлением.

Как наносить смазку в труднодоступные места:

«Маслом кашу не испортишь», так точно и смазки много не бывает, но в тоже время, когда ЛИТОЛ лезет со всех щелей, это тоже не есть хорошо. Добиться золотой середины возможно при помощи простого совета. Прошли те времена, когда масло, клей или смазку наносили отверткой или кисточкой. Дозировку смазки несложно произвести при помощи обыкновенного шприца.


Пример нанесения смазки

Довольно непросто нанести застывшую смазку типа ЛИТОЛа, ЦИАТИМа, или обыкновенный силиконовый герметик в миниатюрные части, зазоры изделия. Но вам поможет существенно упростить такую задачу нехитрый совет. Попробуйте наносить смазку или силикон при помощи обыкновенного шприца. Рекомендую сразу обломать или согнуть иголку от шприца – это послужит в роли крышечки, что бы остатки смазки не вылезали наружу.


Разобранный шприц

Вытягиваете со шприца поршень, и набираете туда при помощи отвёртки смазку (я ЛИТОЛ 24 туда засовывал).


Шприц со смазкой

Ну, собственно говоря, вот и вся хитрость, но такая организация поможет вам не запачкаться смазкой. Вы сможете равномерно и дозировано нанести смазку даже в самые труднодоступные места. Можно купить шприц с толстой иглой и ещё более точно попасть в месть трения, или присоединить капельницу и тоже попасть туда куда надо.

ОТРАСЛЕВОЙ СТАНДАРТ

Приказом Союзпромарматуры от «28 » марта 1975 г. № 39 срок введения установлен с «1 » января 1977 г. на срок до «1» января 1982 г.*

* Снято ограничение срока действия.

Несоблюдение стандарта преследуется по закону

Примечания: 1. Материалы, указанные со знаком*, применять по технической документации, утвержденной в установленном порядке.

Допускается применять другие материалы с аналогичными свойствами по согласованию с предприятием-разработчиком настоящего стандарта.

(Измененная редакция, Изм. № 2, 3).

Подготовку поверхностей деталей к нанесению смазок следует производить в помещении, оборудованном местной вытяжной вентиляцией. Температура воздуха в помещении - от 10 до 30 °С.

Перед нанесением смазки все трущиеся поверхности деталей следует проверить на отсутствие коррозии, очистить от загрязнения, металлической стружки, обезжирить и просушить.

Обезжиривание металлических деталей (шпинделей, резьбовых втулок, винтов, шпилек, гаек и др.) следует производить в водном моющем растворе: тринатрийфосфат технический - 15 г на литр воды и вещество вспомогательное - 2 г на литр воды. Температура моющего раствора - от 60 до 80 °С. Обезжиренные детали следует промыть 0,1-процентным раствором двухромовокислого калия. Температура раствора - от 60 до 80 °С.

Допускается при выпуске арматуры партиями до 4000 штук обезжиривание металлических деталей производить двукратной промывкой керосином последовательно в двух ваннах в течение 10 минут. Для первой промывки следует использовать керосин из второй промывочной ванны. При первой промывке рекомендуется пользоваться капроновыми ершами или малярными кистями.

Обезжиривание резьбовой части шпинделей в сильфонных сборках следует производить хлопчатобумажной салфеткой, смоченной в спирте и отжатой до полусухого состояния.

Антифрикционные смазки и материалы для промывки и обезжиривания должны быть согласованы заказчиком.

Подготовить подшипники качения к нанесению смазки:

обезжирить в ваннах с керосином в течение 20 минут и в ванне со спиртом в течение 3 минут.

Обезжиривание резиновых деталей следует производить двукратной протиркой хлопчатобумажными салфетками, смоченными в этиловом спирте.

Контроль чистоты поверхности следует производить:

а) визуальным осмотром;

б) хлопчатобумажной салфеткой (только для деталей специальной арматуры).

При протирке поверхностей деталей сухая хлопчатобумажная салфетка должна оставаться чистой.

Если салфетка будет иметь следы грязи или масла, детали следует отправить на повторную промывку.

Сушка деталей после обезжиривания должна производиться:

а) после обработки моющим раствором - по технологии предприятия-изготовителя;

б) после обработки растворителями - на воздухе до полного удаления запаха растворителя.

Температура воздуха - от 10 до 30 °С.

Время сушки - от 10 до 30 минут.

Сильфонные сборки специальной арматуры следует дополнительно просушить в течение от 15 до 30 минут в термостате при температуре от 100 до 110 °С.

Контроль качества сушки деталей и узлов следует производить с помощью фильтровальной бумаги: на поверхности фильтровальной бумаги, приложенной к детали, не должно оставаться следов растворителя. Допускается контроль качества сушки деталей арматуры общепромышленного назначения производить визуально.

Периодичность смены растворителей устанавливается технологическим процессом в зависимости от объема, количества промываемых деталей и норм расхода, установленных настоящим стандартом.

Антифрикционные смазки на поверхность деталей следует наносить в условиях, гарантирующих смазываемые поверхности от грязи, влаги. Температура воздуха в помещении - от 10 до 30 °С.

Марка смазки указывается в чертежах и должна удовлетворять требованиям действующих стандартов. Не допускаются к применению смазки, имеющие поврежденную упаковку, а также не имеющие упаковочного листа или паспорта, подтверждающего соответствие данной партии требованиям соответствующих стандартов.

Смазку на трущиеся поверхности деталей арматуры следует наносить непосредственно перед сборкой арматуры согласно указаниям чертежей, карт смазки, технических требований или инструкций по эксплуатации арматуры. Антифрикционные смазки могут быть использованы в течение года со дня вскрытия тары и должны храниться при температуре от 10 до 30 °С в условиях, гарантирующих смазки от попадания грязи и влаги.

(Измененная редакция, Изм. № 3).

При выполнении работ по подготовке поверхности деталей к нанесению смазки:

а) концентрация паров керосина в помещении, где происходит обезжиривание, не должна превышать 10 мг на 1 дм воздуха:

б) конструкция оборудования, используемого при обезжиривании, должна обеспечить защиту работающих от попадания растворителя;

в) рабочие, производящие обезжиривание растворителями, должны быть обеспечены фартуками, обувью, перчатками, респираторами;

г) рабочие, производящие обезжиривание водными моющими растворами, должны обеспечиваться резиновыми фартуками, обувью и перчатками.

На предприятии должна быть разработана и утверждена главным инженером инструкция по требованиям безопасности, пожарной безопасности и промышленной санитарии, учитывающая местные производственные условия.

К выполнению работ по подготовке поверхностей деталей к нанесению смазок допускаются лица, изучившие устройство оборудования и технологический процесс и прошедшие инструктаж по требованиям безопасности, пожарной безопасности и промышленной санитарии.

ГОСТ 9.054-75

Группа Т99

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система защиты от коррозии и старения

КОНСЕРВАЦИОННЫЕ МАСЛА, СМАЗКИ И ИНГИБИРОВАННЫЕ
ПЛЕНКООБРАЗУЮЩИЕ НЕФТЯНЫЕ СОСТАВЫ

Методы ускоренных испытаний защитной способности

Unified system of corrosion and ageing protection.
Anticorrosive oils, greases and inhibited film-forming petroleum compounds.
Accelerated test methods of protective ability


МКС 19.040
75.100

Дата введения 1976-07-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 11 мая 1975 г. N 1230 дата введения установлена 01.07.76

Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ИЗДАНИЕ с Изменениями N 1, 2, 3, 4, утвержденными в июне 1980 г., июне 1985 г., декабре 1985 г., декабре 1989 г. (ИУС 8-80, 10-85, 3-86, 3-90).


Настоящий стандарт распространяется на масла, смазки и нефтяные ингибированные пленкообразующие нефтяные составы (далее - консервационные материалы), применяемые в качестве средств временной противокоррозионной защиты изделий.

Стандарт устанавливает методы лабораторных ускоренных испытаний (далее - испытания) для оценки защитной способности коксервационных материалов.

Стандарт устанавливает шесть методов испытаний:

1-й - при повышенных значениях относительной влажности и температуры воздуха, без конденсации, с периодической или постоянной конденсацией влаги;

2-й - при повышенных значениях относительной влажности и температуры воздуха и воздействии сернистого ангидрида с периодической конденсацией влаги;

3-й - при воздействии соляного тумана;

4-й - при постоянном погружении в электролит;

5-й - при воздействии бромистоводородной кислоты;

6-й - при повышенных значениях относительной влажности и температуры, с постоянной конденсацией в первой части цикла в условиях контакта разнородных металлов.

Метод испытаний или комплекс методов, установленных настоящим стандартом, выбирают в зависимости от цели испытаний консервационного материала и условий размещения изделий по приложению 1.



1. МЕТОД 1

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в условиях повышенной относительной влажности воздуха и температуры, без конденсации, с периодической или постоянной конденсацией влаги на образцах.

1.1. Отбор образцов

1.1.1. Образцами для испытаний служат консервационные материалы, отвечающие требованиям, установленным нормативно-технической документацией на эти материалы.

1.2. Аппаратура, материалы, реактивы

1.2.1. Для проведения испытаний применяют следующие аппаратуру, материалы и реактивы:

камеры с автоматическим (или неавтоматическим) регулированием параметров относительной влажности и температуры воздуха;

ГОСТ 1050-88 и (или) меди марки М0, M1 или М2 по ГОСТ 859-2001 и (или) алюминия марки АК6 по ГОСТ 4784-97 ;

стаканы стеклянные по ГОСТ 25336-82 ;

растворители органические: бензин по ГОСТ 1012-72 и спирт по ГОСТ 18300-87 ;

эксикатор по ГОСТ 25336-82 ;

чашки фарфоровые по ГОСТ 9147-80 ;

термостат или сушильный шкаф, обеспечивающий заданную температуру;

вода дистиллированная рН=5,4-6,6.


1.2.2. Требования к устройству камер с автоматическим регулированием параметров относительной влажности и температуры воздуха, способам создания, поддержания и регулирования режимов в рабочем объеме камеры должны соответствовать требованиям ГОСТ 9.308-85 .

1.2.3. При использовании для испытаний камеры с неавтоматическим регулированием относительной влажности и температуры воздуха соотношение объема камеры и площади поверхности металлических пластинок должно быть не менее 25 см на 1 см. Для выравнивания параметров режима в камере должна быть предусмотрена циркуляция воздуха со скоростью не более 1 м/с.

Конструкция камеры должна исключать возможность попадания конденсата на испытуемые образцы с элементов конструкций камер и вышерасположенных образцов и обеспечивать равномерное воздействие на них коррозионной среды.

При испытании пластичных смазок допускается применение эксикаторов.


1.2.4. В камере для испытаний должен быть обеспечен заданный режим в течение всего времени испытаний.

1.2.5. Для испытаний применяют пластинки поверхностью [(50,0x50,0)±0,2] мм, толщиной 3,0-5,5 мм.

Допускается при проведении исследовательских испытаний применять пластинки других размеров и из других металлов и сплавов.

Испытание пластичных смазок проводят на пластинках, марка металла которых указана в нормативно-технической документации на испытуемый материал.

(Измененная редакция, Изм. N 1, 2, 4).

1.2.6. Непараллельность больших граней пластинок при испытаниях пластичных смазок не должна превышать 0,006 мм.

1.2.7. Шероховатость поверхности пластинок () должна быть в пределах 1,25-0,65 мкм по ГОСТ 2789-73 .

1.2.8. Пластинка должна иметь отверстие для подвешивания, расположенное посредине одной из сторон, на расстоянии 5 мм от края.

1.2.9. Пластинки должны иметь маркировку (порядковый номер) на поверхности или на бирках из неметаллических материалов, прикрепленных к пластинке капроновой нитью.

1.3. Подготовка к испытаниям

1.3.1. Пластинки обезжиривают последовательно бензином и спиртом, затем высушивают.

Не допускается касаться руками поверхности подготовленных к испытаниям пластинок.

1.3.2. Одну пластинку помещают в эксикатор (для сравнения с испытуемыми при оценке результатов).

1.3.3. Для нанесения на испытуемые пластинки масел и тонкопленочных покрытий пластинки, подвешенные на крючки вертикально, погружают на 1 мин в консервационный материал при температуре 20 °С - 25 °С, затем пластинку извлекают и выдерживают на воздухе в подвешенном состоянии в течение времени, установленного технической документацией на данный консервационный материал, но не менее 1 ч для масел и не менее 20 ч для пленочных покрытий.

1.3.4. Пластичные смазки наносят на поверхность пластинок слоем 1 мм с помощью трафарета или одним из способов, указанных в приложении 2.

1.3.5. Пластинки с нанесенными консервационными материалами подвешивают в камере в вертикальном положении.

Пластины с пластичными смазками, испытуемыми в эксикаторе, допускается располагать горизонтально.

1.3.4, 1.3.5. (Измененная редакция, Изм. N 1).

1.3.6. Расстояние между пластинками, а также между пластинками и стенками камеры должно быть не менее 50 мм.

1.3.7. Расстояние от нижних граней пластинок до дна камеры должно быть не менее 200 мм.

1.3.8. Количество пластинок (не менее трех) каждой марки металла устанавливают с учетом необходимости промежуточных съемов образцов.

1.3.9. В эксикатор наливают дистиллированную воду на высоту 30-35 мм от дна.

На выступ внизу цилиндрической части эксикатора помещают фарфоровую вставку с отверстиями.

Чашки с пластинками устанавливают в эксикатор, который закрывают крышкой и помещают в термостат, нагретый до температуры испытания смазок.

(Измененная редакция, Изм. N 1).

1.4. Проведение испытаний

1.4.1. Испытания проводят по трем режимам: без конденсации, с периодической и постоянной конденсацией влаги на образцах.

Испытание пластичных смазок проводят по режиму с постоянной конденсацией влаги.

(Измененная редакция, Изм. N 1).

1.4.2. Испытания без конденсации влаги на образцах проводят при температуре (40±2) °С и относительной влажности 95%-100%.

1.4.3. Испытания с периодической конденсацией влаги на образцах проводят циклами. Каждый цикл испытаний состоит из двух частей.

В первой части цикла образцы подвергают воздействию воздушной среды с температурой (40±2) °С и относительной влажностью 95%-100% в течение 7 ч.

Во второй части цикла создают условия конденсации влаги на образцах путем их охлаждения до температуры ниже температуры камеры на 5 °С - 10 °С или охлаждением образцов и камеры одновременно путем выключения нагрева камеры.

Продолжительность второй части цикла 17 ч.

1.4.2, 1.4.3.

1.4.4. Испытания при постоянной конденсации влаги на образцах проводят при температуре (49±2) °С и относительной влажности 100%.

1.4.5. Начало испытаний считают с момента достижения всех параметров режима.

1.4.6. Продолжительность испытаний устанавливают нормативно-технической документацией на консервационный материал или в соответствии с целью проведения испытаний.

1.4.7. В процессе испытаний производят осмотр пластинок или съем части пластинок через равные промежутки времени от начала испытаний, но не реже одного раза в сутки для установления времени появления первого коррозионного очага.

При проведении сравнительных испытаний первый осмотр образцов допускается проводить с учетом времени, установленного для испытаний образца с известной защитной способностью.

1.4.8. Вынужденные перерывы, превышающие 10% общего времени испытаний, должны быть зафиксированы и учтены при оценке защитных способностей материалов.

1.4.9. После испытания с пластин снимают смазку фильтровальной бумагой и ватой, смоченной бензином, а затем промывают бензином и осматривают.

(Измененная редакция, Изм. N 1).

1.5. Обработка результатов

1.5.1. Коррозионным разрушением считают коррозионные очаги на поверхности металлических пластинок в виде отдельных точек, пятен, нитей, язв, а также изменение цвета на меди до зеленого, темно-коричневого, фиолетового, черного, на алюминии - до светло-серого.

1.5.2. Защитную способность пластичных смазок оценивают визуально за время, указанное в нормативно-технической документации на испытуемый материал.

Смазка считается выдержавшей испытание, если на больших поверхностях пластинок на расстоянии не менее 3 мм от отверстия и краев нет заметных невооруженным глазом зелени, пятен или точек. Если следы коррозии будут замечены только на одной пластинке, испытание повторяют. При повторном обнаружении следов коррозии хотя бы на одной пластинке смазку считают не выдержавшей испытание.

Защитную способность масел и ингибированных пленкообразующих нефтяных составов оценивают по площади коррозионного разрушения за определенное время испытаний и (или) по времени появления первого минимального коррозионного очага.

Продукты коррозии с поверхности пластинок снимают согласно требованиям ГОСТ 9.909-86 .

(Измененная редакция, Изм. N 1, 4).

1.5.3. За минимальный коррозионный очаг принимают коррозионное разрушение в виде:

одной коррозионной точки диаметром не более 2 мм;

двух коррозионных точек диаметром менее 1 мм, видимых невооруженным глазом.

Коррозионные очаги на торцах пластинок и на расстоянии менее 3 мм от краев не учитывают.


1.5.4. Для оценки защитной способности консервационных материалов по площади коррозионного поражения определяют процент площади коррозионных очагов от площади испытуемой пластинки.

1.5.5. Площадь коррозионных очагов определяют визуально трафаретом, изготовленным из прозрачного материала (кальки, тонкого органического стекла, целлулоида и т.п.), с нанесенной на него сеткой из ста равных ячеек. Размеры трафарета должны соответствовать размерам пластинки [(50,0x50,0)±0,2] мм.

Трафарет накладывают на поверхность пластинки и производят суммирование процентов площади коррозионных очагов, полученных в каждом делении трафарета.

(Измененная редакция, Изм. N 2).

1.5.6. Определение площади коррозионного разрушения на пластинках других размеров производят в соответствии с требованиями ГОСТ 9.308-85 .

1.5.7. (Исключен, Изм. N 4).

1.5.8. Защитную способность консервационных материалов можно определить по изменению цвета и блеска поверхности металлической пластинки.

Определение степени блеска поверхности металлической пластинки производят визуально путем сравнения поверхности испытуемой металлической пластинки с пластинкой, хранящейся в эксикаторе (п.1.3.2).

1.5.9. Изменение блеска и цвета поверхности пластинки допускается определять также путем измерения отражательной способности поверхности пластинки согласно требованиям ГОСТ 9.308-85 .

Равномерное изменение цвета поверхности пластинки из черных металлов до светло-серого и незначительное изменение цвета пластинки из цветных металлов с сохранением металлического блеска не считают коррозионными разрушениями.

1.5.10. Допускается оценивать защитную способность масел и ингибированных пленкообразующих нефтяных составов по изменению массы за время испытаний. Оценку защитных способностей весовым методом проводят по показателю коррозии () в г/м, вычисляемому по формуле

где - изменение массы пластинки, г;

- площадь поверхности пластинки, м.

(Измененная редакция, Изм. N 4).

1.5.11. Защитную способность консервационных материалов оценивают по среднему арифметическому результату значений, определенных на параллельно испытываемых пластинках.

Расхождение результатов испытаний на отдельных пластинках не должно превышать 20%.

2. МЕТОД 2

Сущность метода заключается в выдерживании консервационных материалов (кроме рабоче-консервационных масел), нанесенных на металлические пластинки, в атмосфере повышенных значений температуры и относительной влажности воздуха при воздействии сернистого ангидрида с периодической конденсацией влаги на образцах.

2.1. Отбор образцов - по п.1.1.

2.2. Аппаратура, материалы, реактивы - по п.1.2.

Камера для испытаний из органического стекла или другого коррозионно-стойкого материала, снабженная оборудованием, обеспечивающим постоянную концентрацию сернистого ангидрида в камере и контроль концентрации в течение времени испытаний;

ангидрид сернистый жидкий технический по ГОСТ 2918-79 .

2.3. Подготовка к испытаниям - по п.1.3, кроме п.1.3.4.



(Измененная редакция, Изм. N 1).

2.4. Проведение испытаний

2.4.1. Испытания проводят циклами.

Каждый цикл испытаний состоит из двух частей:

в первой части цикла образцы подвергают воздействию сернистого ангидрида в концентрации 0,015% объемных при температуре (40±2) °С и относительной влажности воздуха 95-100% в течение 7 ч;

во второй части цикла создают условия конденсации влаги на образцах по п.1.4.3. Продолжительность второй части цикла - 17 ч.

(Измененная редакция, Изм. N 2).

2.4.2. Подачу сернистого ангидрида в камеру и контроль его содержания осуществляют по ГОСТ 9.308-85 . Допускается применять другие способы подачи сернистого ангидрида и другие способы контроля его содержания в камере, обеспечивающие поддержание заданного режима.

2.4.3. Дальнейший порядок проведения испытаний соответствует требованиям пп.1.4.5-1.4.8.

2.5. Обработка результатов - по п.1.5.

3. МЕТОД 3

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в атмосфере соляного тумана.

3.1. Отбор образцов - по п.1.1.

3.2. Аппаратура, материалы, реактивы - по п.1.2.

Натрий хлористый по ГОСТ 4233-77 .

3.3. Подготовка к испытаниям - по п.1.3, кроме п.1.3.4.

При проведении исследовательских испытаний пластичных смазок последние наносят на поверхность пластинок слоем (0,030±0,005) мм одним из способов, указанных в приложении 2.

(Измененная редакция, Изм. N 1).

3.4. Проведение испытаний

3.4.1. В камере устанавливают температуру (35±2) °С и создают атмосферу соляного тумана распылением 5%-ного раствора хлористого натрия.

3.4.2. Дисперсность и водность соляного тумана контролируют по ГОСТ 15151-69 .

3.4.3. Дальнейший порядок проведения испытаний соответствует требованиям пп.1.4.5-1.4.8.

3.5. Испытания допускается проводить по методу, изложенному в приложении 3.

3.6. Обработка результатов - по п.1.5.

4. МЕТОД 4

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в растворе электролита.

4.1. Отбор образцов - по п.1.1.

4.2. Аппаратура, материалы, реактивы:

пластинки металлические по пп.1.2.1, 1.2.5-1.2.9;

стаканы стеклянные по ГОСТ 25336-82 ;

магний хлористый по ГОСТ 4209-77 ;

кальций хлористый по ТУ 6-09-5077-87; ТУ 6-09-4711-81;

натрий сернокислый по ГОСТ 4166-76 , ГОСТ 4171-76 ;

натрий хлористый по ГОСТ 4233-77 ;

натрий углекислый по ГОСТ 83-79 , ГОСТ 84-76 ;

(Измененная редакция, Изм. N 4).

4.3. Подготовка к испытаниям

4.3.1. Металлические пластинки подготавливают по пп.1.3.1-1.3.3.

4.3.2. Готовят электролит (раствор солей в дистиллированной воде), рецептура которого приведена в табл.1.

Таблица 1

Наименование солей

Концентрация, г/л (в расчете на сухое вещество)

Магний хлористый

Кальций хлористый

Натрий сернокислый

Натрий хлористый

4.3.1, 4.3.2. (Измененная редакция, Изм. N 4).

4.3.3. Готовят 25%-ный раствор углекислого натрия в дистиллированной воде.

4.3.4. Устанавливают рН электролита в пределах 8,0-8,2 путем добавления раствора углекислого натрия, подготовленного по п.4.3.3.

4.4. Проведение испытаний

4.4.1. Пластинки с нанесенными на них консервационными материалами погружают в раствор электролита, в котором выдерживают при комнатной температуре в течение времени, установленного нормативно-технической документацией на консервационный материал, но не менее 20 ч.

Пластинки из разных металлов погружать в электролит одновременно не допускается.

4.4.2. Уровень электролита в стакане должен быть на 10-15 мм выше верхнего края пластинок. Расстояние от нижних граней пластинок до дна стеклянного стакана должно быть не менее 10-15 мм.

(Измененная редакция, Изм. N 4).

4.4.3. После испытаний пластинки протирают, промывают opганическими растворителями и осматривают.

4.5. Обработка результатов - по п.1.5.

5. МЕТОД 5

Сущность метода заключается в определении способности масел вытеснять бромистоводородную кислоту с поверхности металлической пластинки.

5.1. Отбор образцов - по п.1.1.

5.2. Аппаратура, материалы, реактивы:

пластинки металлические из стали марки 10 по ГОСТ 1050-88 ;

кислота бромистоводородная по ГОСТ 2062-77 ;

стаканы стеклянные по ГОСТ 25336-82 .

(Измененная редакция, Изм. N 4).

5.3. Подготовка к испытаниям

5.3.1. Металлические пластинки подготавливают по п.1.3.1.

5.3.2. Готовят 0,1%-ный раствор бромистоводородной кислоты.

5.4. Проведение испытаний

5.4.1. В стеклянный стакан наливают не менее 200 см испытываемого консервационного материала, в другой стакан - раствор бромистоводородной кислоты.

5.4.2. Пластинку погружают не более чем на 1 с в раствор бромистоводородной кислоты, затем извлекают из раствора и 12 раз в течение 1 мин погружают в испытуемое масло при комнатной температуре.

5.4.3. Пластинки подвешивают и выдерживают на воздухе при комнатной температуре в течение 4 ч, затем промывают органическими растворителями и осматривают.

5.5. Обработка результатов - по п.1.5.

6. МЕТОД 6

Сущность метода заключается в выдерживании консервационных и рабоче-консервационных масел, нанесенных на стальные пластинки, находящиеся в контакте с медью, в условиях повышенных температуры и относительной влажности воздуха при непрерывной конденсации влаги в первой части цикла.

6.1. Отбор образцов - по п.1.1.


6.2. Аппаратура, материалы, реактивы:

камера влажности или любой термостат, обеспечивающие температуру нагрева (50±1) °С и относительную влажность воздуха 95%-100%;

ультратермостат любого типа, обеспечивающий температуру дистиллированной воды (30±1) °С;

весы аналитические по ГОСТ 24104-2001 ;

ячейки стеклянные (см. черт.1 приложения 4), снабженные отводами для подключения к ультратермостату;

термометр ТЗК-3П по ГОСТ 9871-75 ;

термометр ТЛ-21-Б2 по ТУ 25-2021.003-88;

трубки резиновые с внутренним диаметром 6-8 мм;

пластинки металлические из стали 10 по ГОСТ 1050-88 , с диаметром (22,00±0,52) мм и толщиной (4,0±0,3) мм. Пластины должны иметь в центре отверстия диаметром 3 мм и резьбой М3;

пластины из меди марок М0, M1 или М2 по ГОСТ 859-78 *, диаметром (7,00±0,36) мм и толщиной (4,00±0,30) мм;
_________________
* На территории Российской Федерации действует ГОСТ 859-2001 . - Примечание "КОДЕКС".

бумага фильтровальная по ГОСТ 12026-76 ;

шкурка шлифовальная на тканевой или бумажной основе любого типа по ГОСТ 5009-82 или ГОСТ 6456-82 ;

вода дистиллированная рН=5,4-6,6;

кислота соляная по ГОСТ 3118-77 , 20%-ный раствор;

ингибитор БА-6 или ПБ-5 по нормативно-технической документации;

растворители по п.1.2.1.

(Измененная редакция, Изм. N 3, 4).

6.3. Подготовка к испытанию

6.3.1. Стальные пластинки обрабатывают шлифовальной шкуркой со всех сторон до шероховатости от 1,25 до 0,65 мкм по ГОСТ 2789-73 , затем промывают бензином, спиртом, высушивают между листами фильтровальной бумаги и определяют массу с погрешностью не более 0,0002 г.

6.3.2. После взвешивания стальные пластины промывают бензином, спиртом, высушивают между листами фильтровальной бумаги, подвешивают на стеклянные крючки и погружают на 1 мин в испытуемое масло при температуре помещения, затем выдерживают на воздухе в течение 1 ч.

Медные пластинки консервационным материалом не покрывают.

6.3.3. Собирают прибор согласно принципиальной схеме (см. черт.2 приложения 4).

6.3.4. Наружную часть стеклянных ячеек промывают бензином, спиртом и устанавливают в камеру влажности.

Отводные трубки стеклянной ячейки с помощью резиновых шлангов соединяют с ультратермостатом, заполненным дистиллированной водой для охлаждения стеклянной ячейки.

6.4. Проведение испытания

6.4.1. Подготовленные металлические пластинки (п.6.3) помещают на горизонтальную поверхность стеклянной ячейки (черт.2 приложения 4).

6.4.2. После установки металлических пластинок включают ультратермостат и камеру влажности.

6.4.3. Время начала испытаний отсчитывают с момента достижения температуры паровоздушного пространства в камере влажности (50±1) °С, температуры воды в ультратермостате (30±1) °С.

6.4.4. Испытания проводят циклами. Каждый цикл состоит из двух частей: 7 ч испытаний на заданном режиме и 17 ч при отключенных камере влажности и ультратермостате.

6.4.5. Продолжительность испытаний устанавливают в нормативно-технической документации на масло или в соответствии с целью испытаний.

6.4.6. По окончании испытаний пластинки извлекают и промывают в бензине. Продукты коррозии с поверхности стальных пластинок снимают ингибированной 20%-ной соляной кислотой, погружая на 5 мин в раствор, при этом продукты коррозии с поверхности пластинок удаляют жесткой кистью или щеткой, затем промывают от кислоты под струей водопроводной воды, дистиллированной водой, спиртом, высушивают между листами фильтровальной бумаги и определяют массу с погрешностью не более 0,0002 г.

6.5. Обработка результатов

6.5.1. Оценку защитной способности масла проводят по изменению массы стальных пластинок по формуле п.1.5.10.

6.5.2. За результат испытания принимают среднеарифметическое результатов двух параллельных определений.

6.6. Точность метода

6.6.1. Сходимость

Два результата определений, полученные последовательно одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значения, указанного в табл.2.

(Измененная редакция, Изм. N 3).

6.6.2. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значения, приведенного в табл.2.

Таблица 2

Изменение массы стальных пластинок на единицу площади

Сходимость

Воспроизводимость

До 2 включ.

Св. 2 до 5

16% от среднеарифметического


(Измененная редакция, Изм. N 3, 4).

ПРИЛОЖЕНИЕ 1. ВЫБОР МЕТОДОВ ИСПЫТАНИЙ

ПРИЛОЖЕНИЕ 1

Условия размещения изделий

Методы испытаний по настоящему стандарту

На открытой площадке, под навесом и в закрытом неотапливаемом помещении

Условно-чистая

1-й с периодической и постоянной конденсацией влаги, 5* и 6-й**

Промышленная

1-й с периодической и постоянной конденсацией влаги, 2, 5* и 6-й**

Морская

1-й с периодической и постоянной конденсацией влаги, 2, 3, 4, 5* и 6-й**

В помещении с регулируемыми параметрами

Условно-чистая, промышленная, морская

1-й без конденсации влаги

_______________
* Метод 5 применяют только при оценке защитной способности масел.

** Метод 6 применяют для испытания консервационных и рабоче-консервационных масел в условиях контакта разнородных металлов.


ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 2, 3).

ПРИЛОЖЕНИЕ 2 (рекомендуемое). СПОСОБЫ НАНЕСЕНИЯ ПЛАСТИЧНЫХ СМАЗОК НА ПОВЕРХНОСТЬ ПЛАСТИНО

СПОСОБЫ НАНЕСЕНИЯ ПЛАСТИЧНЫХ СМАЗОК НА ПОВЕРХНОСТЬ ПЛАСТИНОК

Пластичные смазки наносят на металлические пластинки тремя способами:

1. Нанесение смазки растиранием

1.1. Смазку наносят на одну сторону поверхности пластинки вручную с последующим растиранием пластинки о пластинку.

1.2. Толщину слоя смазки контролируют взвешиванием на аналитических весах с погрешностью не более ±0,0002 г. Толщину () слоя смазки, мм, вычисляют по формуле

где - масса пластинки со смазкой, г;

- масса чистой пластинки, г;

- площадь поверхности пластинки, см;

0,9 - средняя плотность смазки, г/см.

Для смазок с существенно отличным (более чем на 0,2 г/см) значением плотности в формулу подставляют истинное значение плотности.

1.3. Другую сторону пластинки и боковые поверхности защищают лакокрасочным покрытием или той же смазкой.

2. Нанесение смазки с применением ножевого устройства

2.1. Для нанесения слоя смазки на металлическую пластинку применяют устройство (см. чертеж), которое состоит из корпуса 1, на рабочей поверхности которого имеется квадратный вырез размером [(50,0x50,0)±0,2] мм, переходящий в цилиндрический; подвижной площадки 2, выполненной совместно с ходовым винтом, подающей гайки 10, приводящей в поступательное движение ходовой винт с площадкой; ножа 5, перемещающегося вдоль стола по направляющим 6; пластинчатых пружин 9, которые прижимают друг к другу притертые поверхности стола и ножа; индикатора 7, обеспечивающего измерения перемещений площадки и толщины слоя смазки 4 с погрешностью не более ±0,002 мм; металлической пластинки 3, на которую наносится смазка; кронштейна 8 для закрепления индикатора.

2.2. Подготовка устройства

Шток индикатора выводят в крайнее верхнее положение. Центр иглы индикатора совмещают с центром подвижной площадки. Положение штока фиксируют защелкой, укрепленной на кронштейне. Затем вынимают нож, промывают его бензином, спиртобензольной смесью и протирают безворсовой хлопчатобумажной тканью. Подвижную площадку устройства выводят в крайнее нижнее положение. Стенки выреза и подвижную площадку протирают последовательно хлопчатобумажной тканью, смоченной бензином, спиртобензольной смесью и насухо хлопчатобумажной тканью; после этого площадку поднимают до уровня стола.

2.3. Нанесение смазки на металлическую пластинку

Металлическую пластинку, подготовленную по п.1.3.1 настоящего стандарта, кладут на подвижную площадку. Вращая подающую гайку, опускают площадку с пластинкой так, чтобы ее поверхность была ниже поверхности стола устройства. Вставляют нож скосом от себя и подводят его под шток индикатора. Шток освобождают из защелки, опускают до касания верхней грани ножа и медленно поднимают подвижную площадку с пластинкой. Как только стрелка индикатора дрогнет, прекращают подъем площадки с пластинкой, поднимают шток индикатора и перемещают нож в крайнее от себя положение. Затем опускают шток индикатора до соприкосновения с пластинкой. Показание стрелки индикатора принимают за нулевое. После этого подвижную площадку медленно опускают. Пластинку прекращают опускать в тот момент, когда стрелка индикатора дойдет до деления, соответствующего требуемой толщине слоя смазки. После этого шток индикатора поднимают в крайнее верхнее положение. На пластинку наносят с некоторым избытком смазку, следя за тем, чтобы в ней не было пузырьков воздуха и посторонних включений. Избыток смазки срезают, перемещая нож устройства к себе и от себя до полного выравнивания поверхности смазки.

При образовании на поверхности смазки пустот и задиров повторно наносят смазку на места задиров, а пустоты прокалывают и заполняют смазкой, после чего срезают ножом излишек смазки.

После того, как смазка будет нанесена на пластинку, поднимают площадку и снимают пластинку.

(Измененная редакция, Изм. N 4).

2.4. Незащищенную поверхность пластинки и боковые грани защищают от коррозии по п.1.3.

3. Нанесение смазки погружением

Способ применяют для нанесения углеводородных смазок.

Смазку нагревают до температуры на 20-25 °С выше температуры плавления, но не ниже 100 °C. Пластинки, подвешенные на крючки, погружают в расплавленную смазку и выдерживают не менее 5 мин.

Толщину слоя смазки регулируют изменением температуры нагрева смазки, времени выдержки пластинки в расплаве и скорости ее извлечения из расплава.

Контроль толщины слоя смазки производят по п.1.2.

ПРИЛОЖЕНИЕ 3 (справочное). МЕТОД ИСПЫТАНИЙ ПРИ ВОЗДЕЙСТВИИ СОЛЯНОГО ТУМАНА

ПРИЛОЖЕНИЕ 3
Справочное

МЕТОД ИСПЫТАНИЯ ПРИ ВОЗДЕЙСТВИИ СОЛЯНОГО ТУМАНА

1. Отбор образцов для испытаний, их подготовку, режим испытаний, контроль на водность, дисперсность, обработку результатов производят в соответствии с требованиями настоящего стандарта.

2. Аппаратура

Для проведения испытаний применяют камеру из органического стекла или иного коррозионно-стойкого материала. Размер камеры 510x500x760 мм.

Камера должна иметь в боковой стенке герметически закрывающуюся дверцу размером 200x320 мм, а в верхней стенке - два отверстия диаметром 6-7 мм для выхода воздуха.

На расстоянии 20 мм от дна камеры размещают подогреватель (спираль из нихромовой проволоки, заключенная в трубку из кварца или термостойкого стекла). Камера должна быть снабжена терморегулятором для автоматического регулирования нагрева.

В центре дна камеры устанавливают пульверизатор, к которому подводят сжатый воздух.

На расстоянии 80-100 мм от пульверизатора закрепляют экран-пластинку из органического стекла размером 200x250 мм для предотвращения попадания брызг раствора на пластинки с нанесенными консервационными материалами.

3. Подготовка к испытаниям

На дно камеры наливают соляной раствор до уровня 70-80 мм и поддерживают его постоянным путем периодического добавления; устанавливают заданную температуру и включают подачу сжатого воздуха. Расход воздуха устанавливают в пределах 12-15 дм/мин.

ПРИЛОЖЕНИЕ 4 (обязательное). АППАРАТУРА ДЛЯ МЕТОДА 6

ПРИЛОЖЕНИЕ 4
Обязательное

Черт.1. Стеклянная ячейка

Стеклянная ячейка

1 - отводная трубка; 2 - горизонтальная поверхность стеклянной ячейки

Черт.2. Принципиальная схема прибора для проведения испытаний

Принципиальная схема прибора для проведения испытаний

1 - камера влажности; 2 - ультратермостат; 3 - ртутные стеклянные
лабораторные термометры; 4 - контактные термометры; 5 - резиновые шланги;
6 - стеклянная ячейка; 7 - медная пластинка; 8 - стальная пластинка

ПРИЛОЖЕНИЕ 4. (Введено дополнительно, Изм. N 3).



Текст документа сверен по:
официальное издание
Смазочные материалы, индустриальные
масла и родственные продукты.
Методы анализа: Сб. стандартов. -
М.: Стандартинформ, 2006

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области техники, связанной с разработкой и применением способов смазки скользящей поверхности лыж (систем нанесения покрытий на скользящую поверхность лыж).

Занятие лыжным спортом, так же как лыжные прогулки и походы, невозможно представить без использования специальных покрытий (лыжных смазок). Лыжные смазки применяют для того, чтобы лыжи хорошо скользили - лыжники говорят «катили», и не проскальзывали назад - на языке лыжников «держали». Поэтому все смазки разделяют на две большие группы: мази скольжения или парафины, которые обеспечивают наилучшее скольжение, и мази держания, которые обеспечивают отсутствие проскальзывания, «держат».

Парафины (мази скольжения) разделяются на две группы: без фтора (простые) и фтористые, обеспечивающие лучшее скольжение. При применении парафинов с добавками фтора учитывается не только температура воздуха, но и его влажность, а также тип и структура снега.

Скользящая поверхность современных лыж выполнена из полиэтиленов различных сортов. В гоночных моделях лыж скользящая поверхность изготавливается из аморфных полиэтиленов с высоким молекулярным весом. Различаются они содержанием добавок, например, графита (черная скользящая поверхность) или фтороуглерода (цветные вкрапления в пластике), «впекаемого» в структуру пластика. Полиэтилен состоит из маленьких кристаллов, окруженных менее структурированным аморфным материалом.

При нанесении покрытий по современным технологиям, то есть при нагревании скользящей поверхности лыж, некоторые из кристаллов материала покрытия начинают плавиться прежде, чем весь материал (при температуре приблизительно 135°С). Когда материал смазки вплавляется утюгом в скользящую поверхность, жидкий парафин проникает между кристаллами и смешивается с аморфным материалом. Это значит, что происходит не только насыщение скользящей поверхности материалом смазки, но и непосредственно изменяется ее химическая структура.

Обработка поверхности лыжи смазкой не только улучшает качество скольжения, но и предохраняет поверхность от механического разрушения кристаллами льда, механическими загрязнениями снега.

К сожалению, даже качественно нанесенное парафиновое покрытие разрушается при эксплуатации лыж и туристу приходится повторять трудоемкую операцию практически ежедневно, а спортсмену - многократно в течение соревнований. В связи с этим, необходимость применения эффективного способа нанесения скользящих покрытий, способного обеспечить высокое качество скольжения и длительность эксплуатации, является актуальной.

Известен способ смазки скользящей поверхности лыж , заключающийся в том, что нанесение смазки осуществляют электроутюгом, снабженным вращающейся щеткой, с которой соприкасается брусок лыжной мази. Нагретый утюг перемещают по скользящей поверхности лыжи, нагревая ее, и одновременно с этим, вращающаяся щетка захватывает частицы мази и наносит ее на нагретую поверхность лыжи.

Известен также способ смазки скользящей поверхности лыж , реализуемый с помощью устройства - плиты, в которой установлен плоский электронагревательный элемент. На плите смонтирована емкость с лыжной мазью, снабженная пресс-масленкой, приводимой в действие рычагом, свободный конец которого смонтирован на рукоятке. Передвигая устройство по поверхности лыжи, спортсмен дозирует вручную количество подаваемой на лыжу мази.

Применяется также способ по патенту , при реализации которого лыжа устанавливается в наклонном положении на специальном стенде скользящей поверхностью наружу. Вдоль этой поверхности размещено сопло, перемещаемое вверх-вниз по направляющим и соединенное трубопроводом с емкостью для разогрева лыжной мази.

Недостатком всех описанных аналогов является: во-первых, - отсутствие контроля температуры поверхности лыжи и, следовательно, неравномерный ее нагрев по длине, что обуславливает перегрев смазки и прожоги поверхности лыжи; а во-вторых, - недостаточное заполнение имеющихся на скользящей поверхности лыжи пор и микротрещин смазкой, что ухудшает ее беговые свойства.

Наиболее близким к предлагаемому техническому решению является способ нанесения смазки на скользящую поверхность лыжи по патенту , принятому за прототип. Способ заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия и равномерном распределении смазки.

В прототипе лыжи размещают в контейнере, затем наносят смазку на их скользящую поверхность с разогревом поверхности и смазки. Перед нагреванием контейнер, с помещенными в него лыжами, герметизируют. Лыжи в контейнере помещают на упоры, выполненные из материала смазки, между которыми по всей длине лыж, со стороны их скользящей поверхности, равномерным слоем насыпают смазку в виде порошка. Затем из контейнера откачивают воздух до вакуума 0,2-0,9 атм и нагревают в течение 4-20 мин внутренний объем контейнера с находящимися в нем лыжами и смазкой до 70-90°С. После окончания нагрева давление внутри контейнера повышают до 1-3 атм и поддерживают его в течение 1-3 мин и затем лыжи извлекают.

Прототип позволяет частично устранить недостатки известных способов, однако обладает следующими существенными недостатками:

1. Не обеспечивает глубокого проникновения материала смазки в структуру полимерного покрытия лыжи. Улучшить проникновение возможно только путем повышения температуры (снижения вязкости смазки и расширения пор полимерного покрытия). Однако такой путь на практике реализовать недопустимо из-за меньшей температуры плавления кристаллов полимерного покрытия, по сравнению с температурой плавления окружающего их аморфного материала, в который должен проникать парафин. На практике это приводит к прожогам скользящей поверхности и порче лыж.

2. Не обеспечивает длительного нахождения на скользящей поверхности и выделения материала смазки на поверхность из глубины материала лыжи при эксплуатации лыж. В результате происходит освобождение приглаженных парафином ворсинок полимерного материала поверхности лыжи и образование новых. При скольжении эти ворсинки снижают скорость и их необходимо либо срезать (шкурить), либо вплавлять в поверхность. И то и другое приводит к ухудшению качества скользящей поверхности и снижению срока эксплуатации дорогостоящих лыж.

Задача, на решение которой направлено изобретение, заключается в устранении недостатков существующего способа и создании нового способа, способного обеспечить равномерное нанесение смазки и лучшее заполнение микропор на поверхности скольжения лыжи, осуществить равномерное нанесение смазки на скользящую поверхность лыжи при температуре, ниже температуры плавления материала скользящей поверхности и осуществить глубокое проникновение парафина в ее поры.

Проведенный анализ реализуемых в настоящее время способов смазки скользящей поверхности лыж показал их несостоятельность и необходимость поиска новой технологии нанесения покрытий на скользящую поверхность лыж. Очевидно, что такая технология должна обеспечивать глубинное проникновение парафина в структуру полимерного материала скользящей поверхности при температуре, меньшей температуры его плавления при одновременной полировке поверхности и удалении ворсинок.

Суть предлагаемого технического решения заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, причем энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи. В зазор вводят смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20...100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки. Перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.

Анализ функциональных возможностей различных методов энергетического воздействия на скользящую полимерную поверхность лыж позволил установить эффективность применения ультразвуковых технологий, основанных на явлениях ультразвуковой пропитки, низкотемпературной сварки, снижения вязкости, дегазации .

Ультразвуковые технологии, применительно к решению проблемы подготовки скользящей поверхности лыж, позволяют реализовать следующие технологические процессы:

1. Ультразвуковую пропитку , основанную на звукокапилярном эффекте и снижении вязкости материалов, способную обеспечить ввод расплавленного материала смазки глубоко в материал поверхности при низких температурах, т.е. без термического повреждения поверхности. В процессе ввода ультразвуковых колебаний происходит ускорение молекул смазки за счет возникающей в ней кавитации и более глубокое их проникновение в скользящую поверхность лыжи. При введении ультразвука в смазку происходит его дегазация, что обеспечивает ровную поверхность парафинового покрытия, без газовых пузырьков - пустот.

2. Ультразвуковую сварку , реализуемую при температурах ниже температуры плавления соединяемых материалов и основанную на многократном ускорении процессов диффузии. Она обеспечивает не только интенсификацию проникновения парафина в полимерное покрытие, но и позволяет разрушать и вваривать в поверхность лыжи образовавшиеся на ней волоски (ворсинки).

3. Размягчение смазки (перевод в вязкопластичное состояние), происходящее при температуре ниже температуры ее плавления за счет снижения вязкости материала, подвергаемого УЗ воздействию. Возможно, также, низкотемпературное распыление материала смазки при применении ультразвуковых колебаний высокой интенсивности.

К несомненным достоинствам ультразвуковой технологии следует отнести, также, возможность исключения непосредственного механического контакта поверхности ультразвукового преобразователя с обрабатываемой поверхностью. Воздействие осуществляется через тонкий слой (0,5...3 мм) жидкого материала смазки в кавитирующем состоянии. Это исключает разогрев скользящей полиэтиленовой поверхности до температуры плавления или разложения полиэтилена.

Предложенный способ смазки скользящей поверхности лыж поясняется фиг.1, на которой приняты следующие обозначения:

1 - колебательная система, 2 - пьезокерамические элементы, 3 - отражающая накладка, 4 - корпус, 5 - защитный корпус, 6 - вентилятор, 7 - подложка, 8 - упорное кольцо, 9 - лыжа, 10 - скользящая поверхность лыжи, 11 - смазочный кавитирующий материал.

Для практической реализации предложенного способа нанесения смазки на скользящую поверхность лыжи 10 используются пьезоэлектрическая колебательная система 1 (фиг.2) и осуществляющий ее электрическое питание электронный генератор (не показан). Реализация предложенного способа осуществляется следующим образом. На скользящую поверхность лыжи 10 наносится материал смазки 11, после чего происходит обеспечение контакта ультразвуковой колебательной системы с наносимым покрытием и ввод ультразвуковых колебаний. При этом происходит поглощение УЗ колебаний в материале смазки 11 и смазка становится жидкой, в ней начинаются кавитационные процессы, при которых взрывы (захлопывания) кавитационных пузырьков обеспечивают проникновение смазки в глубь скользящей поверхности лыжи 10.

Для практической реализации предложенного способа создано специализированное малогабаритное оборудование, обеспечивающее необходимую и достаточную мощность излучения на заданной площади обработки.

Оборудование включает в себя:

1) специализированную ультразвуковую колебательную систему 1 (см. фиг 2), имеющую размер рабочей поверхности, превосходящий ширину скользящей поверхности лыжи и обеспечивающую равномерное распределение ультразвуковых колебаний на излучающей поверхности для обеспечения равномерного размягчения и нанесения парафина по всей ширине лыжи;

2) генератор электрических колебаний ультразвуковой частоты для питания колебательной системы, обеспечивающий регулировку выходной мощности и стабилизацию ультразвукового воздействия в процессе обработки поверхности лыж.

Технический результат заключается в создании нового способа, позволяющего повысить качество нанесенного на скользящую поверхность лыж покрытия, повышении производительности процесса при одновременном уменьшении энергозатрат и исключении необходимости применения систем термического нагрева. Эффект достигается за счет оптимизации параметров энергетического и временного воздействия. Разработанный способ нанесения покрытия на скользящую поверхность лыж обеспечивает снижение трения скольжения не менее чем на 5%, увеличение объема смазки, введенной в материал скользящей поверхности лыж - на 5...10% (в зависимости от типа лыж и покрытия), что позволяет не менее чем в 2 раза увеличить время эксплуатации лыж.

Поскольку используемые материалы смазок имеют различную исходную вязкость, различную температуру плавления, кавитационный процесс возникает в них при различных мощностях ультразвукового воздействия, и скорость перемещения преобразователя при нанесении покрытия может быть различной и устанавливаться экспериментальным путем для каждого вида смазки.

Для реализации предложенного способа разработана специализированная ультразвуковая колебательная система, выполненная по полуволновой схеме в виде пьезоэлектрического преобразователя Ланжевена . Внешний вид колебательной системы представлен на фиг.2. Спроектированная и разработанная ультразвуковая колебательная система работает следующим образом. При подведении к электродам пьезоэлементов 3 электрического напряжения происходит преобразование электрических колебаний в механические колебания, которые распространяются в колебательной системе 1 и усиливаются за счет выбора продольных и поперечных размеров накладки 2 таким образом, что продольный резонанс всей колебательной системы совпадает с диаметральным резонансом рабочей частотно-понижающей накладки.

Колебательная система 1 крепится в корпус 4 при помощи винтов, вкручивающихся в подложку 7 (фиг.1). Колебательная система снабжена крепежным фланцем, который зажимается между корпусом и подложкой 7. Колебательная система снабжена дополнительным защитным корпусом 5 (фиг.1). Воздух вентилятором 6, через отверстия, втягивается в корпус колебательной системы, проходя там, он охлаждает разогревающиеся пьезокерамические элементы 2.

Разработанная колебательная система имеет рабочую частоту 27±3,3 кГц, диаметр рабочей излучающей поверхности 65 мм. Для обеспечения регулируемого зазора между излучающей поверхностью ультразвуковой колебательной системы 1 и поверхностью лыж 10 использовано упорное кольцо 8.

Одним из составляющих ультразвукового технологического оборудования является электронный генератор электрических колебаний ультразвуковой частоты (на фигурах не показан). Он предназначен для питания ультразвуковой колебательной системы.

Для обеспечения максимальной эффективности работы колебательной системы, при всех возможных изменениях ее параметров, электронный генератор снабжен блоком автоматической подстройки частоты генератора и стабилизации амплитуды колебаний излучающей поверхности.

Разработанный генератор для питания ультразвуковой колебательной системы имеет следующие параметры:

Рабочая частота, кГц 27±3,3
Пределы регулирования мощности, % 0-100
Потребляемая электрическая мощность, Вт 250
Напряжение питания, В 220±22

Внешний вид аппарата представлен на фиг.3.

Кроме интенсификации процесса пропитки и удаления ворсинок, применение ультразвукового аппарата исключило необходимость применения специальных нагревательных приборов (утюгов) для разогрева материала смазки.

Проведенные исследования функциональных возможностей созданного ультразвукового аппарата позволили разработать следующую методику нанесения парафина на скользящую поверхность лыж:

1) предварительное включение и работа аппарата без нагрузки (на воздух) на мощности 100% в течение 3...5 минут. Такой режим обеспечивает прогрев излучающей поверхности до 80...85°С. При такой температуре на поверхности плавится материал смазки (парафин);

2) снижение мощности аппарата ниже 100%, не более 75%;

3) нанесение парафина на скользящую поверхность и работа аппарата на мощности 75...85% неограниченное время.

При этом скорость нанесения смазки отличалась незначительно при использовании различных материалов смазки. Уменьшение скорости не приводило к снижению качества нанесения смазки.

Проведенные испытания показали, что скорость скольжения лыжи после применения ультразвукового способа нанесения парафина на скользящую поверхность лыжи увеличивается на 5...7%, а длительность работы скользящей поверхности увеличивается на 13-15%.

Внешний вид созданного ультразвукового аппарата представлен на фиг.3.

Таким образом, предложенный способ обеспечивает повышение эффективности (повышение производительности и улучшение качества пропитки) нанесения покрытия на скользящую поверхность лыж за счет реализации возможностей ультразвуковой интенсификации процессов.

В результате реализации предлагаемого технического решения оптимизирована технология нанесения покрытия на лыжи, с точки зрения обеспечения максимальной производительности, реализации возможности контроля за процессом, снижены энергозатраты и исключено применение высокотемпературных устройств.

Разработанный в лаборатории акустических процессов и аппаратов Бийского технологического института Алтайского государственного технического университета способ нанесения покрытия на поверхность лыж прошел лабораторные и технические испытания и был практически реализован в действующей установке. Мелкосерийное производство устройств планируется начать в 2004 году.

Источники информации

1. Патент ФРГ №3704216 от 1987 г.

2. Патент Швеции №446942 от 1986 г.

3. Патент Франции №2577816 от 1986.

4. Патент РФ №2176539 (прототип).

5. Холопов Ю.В. Ультразвуковая сварка пластмасс и металлов Л.:

Машиностроение, 1988 г.

6. Донской А.В., Келлер O.K., Кратыш Г.С. Ультразвуковые электротехнические установки Л.: Энергоатомиздат, 1982.

7. Прохоренко П.П., Дежкунов Н.В., Коновалов Г.Е. Ультразвуковой капиллярный эффект. Минск, «Наука и техника», 1981, 135 с.

8. Меркулов А. Г., Харитонов А.В. Теория и расчет составных концентраторов, «Акустический журн.», 1959, N 2.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ смазки скользящей поверхности лыж, заключающийся в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, отличающийся тем, что энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи, вводят в зазор смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20-100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки, перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.