» » Алюминиевые аккумуляторы. Воздушно-алюминиевый элемент, батарея на основе воздушно- алюминиевого элемента и способ эксплуатации батареи Химические источники тока с алюминиевым анодом

Алюминиевые аккумуляторы. Воздушно-алюминиевый элемент, батарея на основе воздушно- алюминиевого элемента и способ эксплуатации батареи Химические источники тока с алюминиевым анодом

Французская компания Renault предлагает использовать в будущих электромобилях алюминиево-воздушные батареи от Phinergy. Давайте взглянем на их перспективы.

Renault решило сделать ставку на новый тип аккумулятора, который может позволить увеличить дальность пробега от одной зарядки в семь раз. При сохранении габаритов и веса сегодняшних батарей. Алюминиево-воздушные (Al-air) элементы имеют феноменальную плотность энергии (8000 Вт/кг, против 1000 Вт/кг у традиционных батарей), вырабатывая её при реакции окисления алюминия в воздухе. Такая батарея содержит в себе позитивный катод и негативный анод, сделанный из алюминия, а между электродами содержится жидкий электролит на водяной основе.

Компания разработчик батарей Phinergy заявила, что достигла большого прогресса в развитии подобных батарей. Их предложение – использовать катализатор, изготовленный из серебра, который позволяет эффективно задействовать кислород, содержащийся в обычном воздухе. Этот кислород смешивается с жидким электролитом, и тем самым освобождает электрическую энергию, которая содержится в алюминиевом аноде. Главный нюанс заключается в «воздушном катоде», который действует как мембрана в вашей зимней куртке – пропускает только О2, а не углекислый газ.

В чем отличие от традиционных батарей? У последних полностью закрытые ячейки, в то время как Al-air элементам нужен внешний элемент, «запускающий» реакцию. Важным плюсом является тот факт, что Al-air батарея действует как дизель-генератор – она вырабатывает энергию только тогда, когда вы ее включили. А когда вы «перекрыли воздух» такой батарее, весь её заряд остается на месте и не исчезает со временем, как у обычных аккумуляторов.

В процессе работы Al-air батареи используется алюминиевый электрод, но его можно сделать заменяемым, как картридж в принтере. Зарядку нужно делать каждые 400 км, она будет заключаться в доливании нового электролита, что намного проще, чем ждать, пока зарядится обычная батарея.

Компания Phinergy уже создала электрический Citroen C1, который оборудован 25 кг батареей емкостью 100 кВтч. Она дает запас хода в 960 км. С мотором мощностью в 50 кВт (около 67 лошадиных сил), машина развивает скорость в 130 км/ч, разгоняется до сотни за 14 секунд. Подобная батарея также тестируется на Renault Zoe, но её емкость – 22 кВтч, максималка у машины – 135 км/ч, 13.5 сек до “сотни”, но только 210 км запаса хода.

Новые батареи легче, в два раза дешевле, чем литий-ионные и в перспективе проще в эксплуатации, нежели современные. И пока что, единственная их проблема – это алюминиевый электрод, который сложен в производстве и замене. Как только эта проблема решится – можно смело ожидать еще большей волны популярности электромобилей!

  • , 20 Янв 2015

Любители электромобилей давно мечтают об аккумуляторах, которые позволят их четырехколесным друзьям преодолевать более полутора тысяч километров на одном заряде. Руководство израильского стартапа Phinergy полагает, что разрабатываемая специалистами компании алюминий-воздушная батарея отлично справится с этой задачей.

Генеральный директор Phinergy, Авив Сидон, на днях сообщил о начале партнерских отношений с крупным автопроизводителем. Ожидается, что дополнительное финансирование позволит компании наладить массовое производство революционных батарей уже к 2017 году.

На видеоролике (в конце статьи ) репортер информагентства Bloomberg, Эллиот Готкин, разъезжает за рулем малолитражки , которая была преобразована в электромобиль. При этом в багажнике данной машины была установлена алюминий-воздушная батарея Phinergy.

Электромобиль Citroen C1 с литий-ионным аккумулятором может проехать не более 160 км на одном заряде, но алюминий-воздушная батарея Phinergy позволяет ему преодолевать дополнительные 1600 километров.

В видеоролике видно, что инженеры заполняют специальные резервуары внутри демонстрационного автомобиля дистиллированной водой. Прогнозируемый бортовым компьютером диапазон хода авто отображается на дисплее мобильного телефона гендиректора Phinergy.

Вода служит основой для электролита, через который проходят ионы, выделяя при этом энергию. Электричество идет на питание электродвигателей автомобиля. По словам инженеров стартапа, запас воды в резервуарах демонстрационного автомобиля необходимо пополнять «каждые несколько сотен километров».

В качестве анода в алюминий-воздушных батареях используются алюминиевые пластины, а наружный воздух выступает катодом. Алюминиевая составляющая системы медленно разрушается, так как молекулы металла соединяются с кислородом и выделяют энергию.

Если точнее: четыре атома алюминия, три молекулы кислорода и шесть молекул воды объединяются, чтобы создать четыре молекулы гидратированного оксида алюминия с выделением энергии.

Исторически сложилось так, что алюминий-воздушные батареи использовались лишь для нужд армии. Всему виной необходимость периодического удаления оксида алюминия и замены пластин алюминиевого анода.

Представители Phinergy говорят, что запатентованный катодный материал позволяет кислороду из наружного воздуха свободно попадать в аккумуляторную ячейку, при этом данный материал не позволяет диоксиду углерода, который также содержится в воздухе, загрязнять батарею. Именно это в большинстве случаев мешало нормальной эксплуатации алюминий-воздушных батарей в течение длительного периода. По крайней мере, до настоящего момента.

Специалисты компании также ведут разработку , которые можно подзаряжать с помощью электричества. В данном случае металлические электроды не разрушаются столь стремительно, как в случае алюминий-воздушных аналогов.

Сидон говорит, что энергия одной алюминиевой пластины помогает электромобилю преодолевать примерно 32 километра (это позволяет нам предположить, что удельная выработка электроэнергии на пластину составляет около 7 кВт*ч). Так вот в демонстрационной машине установлено 50 таких пластин.

Вся батарея, как отмечает топ-менеджер, весит всего 25 кг. Из этого следует, что ее плотность энергии более чем в 100 раз выше, чем у обычных литий-ионных аккумуляторов современного образца.

Вполне вероятно, что в случае серийной модели электромобиля батарея может стать значительно более тяжелой. К повышению ее массы приведет оснащение аккумулятора системой теплового кондиционирования и защитным кожухом, которых в прототипе не наблюдалось (судя по ролику).

В любом случае, появление аккумулятора с плотностью энергии, которая на порядок выше, чем у современных литий-ионных батарей, будет отличной новостью для автопроизводителей, которые сделали ставку на электрические машины — так как это, по существу, устраняет любые проблемы, вызванные ограниченной дальностью хода современных электрокаров.

Перед нами очень интересный прототип, но многие вопросы остаются без ответа. Как будет осуществляться эксплуатация алюминий-воздушных батарей в серийных электромобилях? Насколько сложной будет процедура замены алюминиевых пластин? Как часто придется их менять? (после 1500 км? после 5000 км? или реже?).

В доступных на данном этапе маркетинговых материалах не описано, каким будет совокупный углеродный след металл-воздушных батарей (с момента добычи сырья до монтажа аккумулятора в авто) по сравнению с современными литий-ионными аналогами.

Этот момент, вероятно, заслуживает детального изучения. И исследовательскую работу необходимо завершить до начала массового внедрения новой технологии, поскольку извлечение и переработка алюминиевых руд и создание пригодного к использованию металла — это очень энергоемкий процесс.

Тем не менее, не исключен еще один сценарий развития событий. Дополнительные металл-воздушные батареи могут быть добавлены к литий-ионным, но использоваться они будут лишь в случае поездок на дальние дистанции. Такой вариант может быть весьма привлекательным для производителей электромобилей, даже если батареи нового типа будут иметь более высокий углеродный след, чем .

По материалам

Fuji Pigment показала инновационный тип воздушно-алюминиевой батареи, зарядка которой может осуществляться при помощи солёной воды. Батарея имеет модифицированную структуру, обеспечивающую более длительным сроком эксплуатации, который теперь составляет минимум 14 дней.

В структуру воздушно-алюминиевой батареи в качестве внутреннего слоя были внедрены керамические и углеродистые материалы. Эффекты коррозии анода и аккумулирования побочных примесей были подавлены. В результате было достигнуто более длительное время эксплуатации.

Воздушно-алюминиевая батарея с рабочим напряжением 0,7 – 0,8 В, производящая 400 – 800 мА тока на элемент, имеет теоретический энергетический уровень на единицу объёма порядка 8100 Вт*ч/кг. Это второй показатель из максимальных для аккумуляторных батарей различного типа. Теоретический энергетический уровень на единицу объёма в ионно-литиевых батареях составляет 120–200 Вт*ч/кг. Это означает, что у воздушно-алюминиевых батарей теоретически ёмкость может превышать данный показатель ионно-литиевых аналогов более чем в 40 раз.

Хотя коммерческие перезаряжаемые ионно-литиевые батареи широко используются сегодня в мобильных телефонах, ноутбуках и прочих электронных устройствах, их энергетическая плотность всё ещё недостаточна для использования в электромобилях на промышленном уровне. На сегодняшний день учёные разработали технологию воздушно-металлических батарей, имеющих максимальную энергетическую ёмкость. Исследователи изучали воздушно-металлические батареи на основе лития, железа, алюминия, магния и цинка. Среди металлов, алюминий в качестве анода представляет интерес ввиду большой удельной ёмкости и высокого стандартного электродного потенциала. К тому же, алюминий является недорогим и самым рециркулируемым металлом в мире.

Инновационный тип батарей должен обойти основную преграду на пути коммерциализации подобных решений, а именно, высокий уровень коррозии алюминия во время электрохимических реакций. Помимо этого, на электродах накапливаются побочные материалы Al2O3 и Al(OH)3, ухудшающие ход реакций.

Fuji Pigment заявила, что новый тип воздушно-алюминиевых батарей может производиться и может эксплуатироваться в обычных условиях окружающей среды, поскольку элементы обладают устойчивостью в отличие от ионно-литиевых батарей, способных возгораться и взрываться. Все материалы, применяемые для сборки конструкции батарей (электрода, электролита) – безопасны и дёшевы в производстве.

Читайте также:




Кандидат технических наук Е. КУЛАКОВ, кандидат технических наук С. СЕВРУК, кандидат химических наук А. ФАРМАКОВСКАЯ.

Энергоустановка на воздушно-алюминиевых элементах занимает лишь часть багажника автомобиля и обеспечивает дальность его пробега до 220 километров.

Принцип действия воздушно-алюминиевого элемента.

Работой энергоустановки на воздушно-алюминиевых элементах управляет микропрецессор.

Малогабаритный воздушно-алюминиевый элемент на солевом электролите может заменить четыре батарейки.

Наука и жизнь // Иллюстрации

Энергоустановка ЭУ 92ВА-240 на воздушно-аллюминиевых элементах.

Человечество, судя по всему, не собирается отказываться от автомобилей. Мало того: автомобильный парк Земли может в скором времени увеличиться примерно вдвое - главным образом за счет массовой автомобилизации Китая.

Между тем несущиеся по дорогам машины выбрасывают в атмосферу тысячи тонн угарного газа - того самого, присутствие которого в воздухе в количестве, большем десятой доли процента, для человека смертельно. А помимо угарного газа - и многие тонны окислов азота и прочих ядов, аллергенов и канцерогенов - продуктов неполного сгорания бензина.

Во всем мире давно ведется поиск альтернатив автомобилю с двигателем внутреннего сгорания. И наиболее реальной из них считается электромобиль (см. "Наука и жизнь" №№ 8, 9, 1978 г.). Первые в мире электромобили были созданы во Франции и в Англии в самом начале 80-х годов прошлого века, то есть на несколько лет раньше, чем автомобили с двигателями внутреннего сгорания (ДВС). И появившийся, например, в 1899 году в России первый самодвижущийся экипаж был именно электрическим.

Тяговый электродвигатель в таких электрических автомобилях получал питание от непомерно тяжелых батарей свинцовых аккумуляторов с энергоемкостью всего лишь около 20 ватт-часов (17,2 килокалории) на килограмм. Значит, для того, чтобы "прокормить" двигатель мощностью в 20 киловатт (27 лошадиных сил) хотя бы в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Эквивалентное же ему по запасенной энергии количество бензина занимает бензобак емкостью всего в 15 литров. Вот почему лишь с изобретением ДВС производство автомобилей стало быстро расти, а электромобили десятилетиями считались тупиковой ветвью автомобилестроения. И только возникшие перед человечеством экологические проблемы заставили конструкторов вернуться к идее электромобиля.

Сама по себе замена ДВС электродвигателем, конечно, заманчива: при одной и той же мощности электродви гатель и массой полегче, и в управлении проще. Но даже теперь, спустя более чем 100 лет после первого появления автомобильных аккумуляторов, энергоемкость (то есть запасенная энергия) даже самых лучших из них не превышает 50 ватт-часов (43 килокалории) на килограмм. И потому весовым эквивалентом бензобака остаются сотни килограммов аккумуляторных батарей.

Если же учесть необходимость многочасовой зарядки аккумуляторов, ограниченное число циклов заряд-разряд и, как следствие, относительно короткий срок службы, а также проблемы с утилизацией отслуживших батарей, то приходится признать, что на роль массового транспорта аккумуляторный электромобиль пока непригоден.

Настал, однако, момент сказать, что электродвигатель может получать энергию и от другого рода химических источников тока - гальванических элементов. Наиболее известные из них (так называемые батарейки) работают в переносных приемниках и диктофонах, в часах и карманных фонариках. В основе работы такой батарейки, так же, как и любого другого химического источника тока, лежит та или иная окислительно-восстановительная реакция. А она, как известно из школьного курса химии, сопровождается передачей электронов от атомов одного вещества (восстановителя) к атомам другого (окислителя). Такую передачу электронов можно осуществить через внешнюю цепь, например, через лампочку, микросхему или мотор, и тем самым заставить электроны работать.

С этой целью окислительно-восстановительную реакцию проводят как бы в два приема - разбивают ее, так сказать, на две полуреакции, протекающие одновременно, но в разных местах. На аноде восстановитель отдает свои электроны, то есть окисляется, а на катоде окислитель эти электроны принимает, то есть восстанавливается. Сами же электроны, перетекая с катода на анод через внешнюю цепь, как раз и совершают полезную работу. Процесс этот, разумеется, небесконечен, поскольку и окислитель, и восстановитель постепенно расходуются, образуя новые вещества. И в результате источник тока приходится выбрасывать. Можно, правда, непрерывно или время от времени выводить из источника образовавшиеся в нем продукты реакции, а взамен подавать в него все новые и новые реагенты. Они в этом случае выполняют роль топлива, и именно потому такие элементы носят название топливных (см. "Наука и жизнь" № 9, 1990 г.).

Эффективность подобного источника тока определяется прежде всего тем, насколько удачно выбраны для него и сами реагенты, и режим их работы. С выбором окислителя особых проблем нет, поскольку окружающий нас воздух состоит более чем на 20% из прекрасного окислителя - кислорода. Что же касается восстановителя (то есть горючего), то с ним дело обстоит несколько сложнее: его приходится возить с собой. И потому при его выборе приходится прежде всего исходить из так называемого массо-энергетического показателя - полезной энергии, выделяемой при окислении единицы массы.

Наилучшими в этом отношении свойствами обладает водород, вслед за которым идут некоторые щелочные и щелочноземельные металлы, а затем - алюминий. Но газообразный водород пожаро- и взрывоопасен, а под большим давлением способен просачиваться через металлы. Сжижать его можно лишь при очень низких температурах, а хранить - достаточно сложно. Щелочные и щелочноземельные металлы тоже пожароопасны и, кроме того, быстро окисляются на воздухе и растворяются в воде.

У алюминия ни одного из этих недостатков нет. Всегда покрытый плотной пленкой оксида, он при всей своей химической активности почти не окисляется на воздухе. Алюминий сравнительно дешев и нетоксичен, его хранение не создает никаких проблем. Вполне разрешима и задача его введения в источник тока: из металла-горючего изготавливают анодные пластины, которые периодически - по мере их растворения - заменяют.

И, наконец, электролит. Он в данном элементе может быть любым водным раствором: кислотным, щелочным или солевым, поскольку алюминий реагирует и с кислотами, и со щелочами, а при нарушении оксидной пленки растворяется и в воде. Но использовать предпочтительнее щелочной электролит: это проще для проведения второй полуреакции - восстановления кислорода. В кислой среде он восстанавливается тоже, но лишь в присутствии дорогостоящего платинового катализатора. В щелочной же среде можно обойтись куда более дешевым катализатором - оксидом кобальта или никеля или активированным углем, которые вводятся непосредственно в пористый катод. Что же касается солевого электролита, то он обладает меньшей электропроводностью, а выполненный на его основе источник тока - примерно в 1,5 раза меньшей энергоемкостью. Поэтому в мощных автомобильных батареях целесообразно применять щелочной электролит.

У него, однако, тоже есть недостатки, главный из из которых - коррозия анода. Идет она параллельно с основной - токообразующей - реакцией и растворяет алюминий, преобразуя его в алюминат натрия с одновременным выделением водорода. Правда, с мало-мальски ощутимой скоростью эта побочная реакция идет лишь при отсутствии внешней нагрузки, именно потому воздушно-алюминиевые источники тока нельзя - в отличие от аккумуляторов и батареек - долго держать заряженными в режиме ожидания работы. Раствор щелочи в этом случае приходится из них сливать. Но зато при нормальном токе нагрузки побочная реакция почти неощутима и коэффициент полезного использования алюминия достигает 98%. Сам же щелочной электролит отходом при этом не становится: отфильтровав от него кристаллы гидроксида алюминия, этот электролит можно снова заливать в элемент.

Есть в применении щелочного электролита в воздушно-алюминиевом источнике тока и еще один недостаток: в процессе его работы расходуется довольно много воды. Это повышает концентрацию щелочи в электролите и могло бы постепенно изменять электрические характеристики элемента. Существует, однако, такой интервал концентраций, в котором эти характеристики практически не меняются, и если работать именно в нем, то достаточно лишь время от времени добавлять в электролит воду. Отходов в привычном смысле этого слова при работе воздушно-алюминиевого источника тока не образуется. Ведь получаемый при разложении алюмината натрия гидроксид алюминия - это просто белая глина, то есть продукт не только абсолютно чистый экологически, но и весьма ценный как сырье для многих отраслей промышленности.

Именно из него, например, обычно производят алюминий, сначала нагревая до получения глинозема, а затем подвергая расплав этого глинозема электролизу. Поэтому есть возможность организовать замкнутый ресурсосберегающий цикл эксплуатации воздушно-алюминиевых источников тока.

Но гидроксид алюминия обладает и самостоятельной коммерческой ценностью: он необходим при производстве пластмасс и кабелей, лаков, красок, стекол, коагулянтов для очистки воды, бумаги, синтетических ковров и линолеумов. Его используют в радиотехнической и фармацевтической промышленности, при производстве всякого рода адсорбентов и катализаторов, при изготовлении косметики и даже ювелирных изделий. Ведь очень многие искусственные драгоценные камни - рубины, сапфиры, александриты - выполняются на основе оксида алюминия (корунда) с незначительными примесями хрома, титана или бериллия соответственно.

Стоимость "отходов" воздушно-алюминиевого источника тока вполне соизмерима со стоимостью исходного алюминия, а масса их при этом в три раза больше массы исходного алюминия.

Почему же, несмотря на все перечисленные достоинства кислородно-алюминиевых источников тока, они так долго - до самого конца 70-х годов - всерьез не разрабатывались? Всего только потому, что они не были востребованы техникой. И лишь с бурным развитием таких энергоемких автономных потребителей, как авиация и космонавтика, военная техника и наземный транспорт, ситуация изменилась.

Начались разработки оптимальных композиций анод - электролит с высокими энергетическими характеристиками при низких скоростях коррозии, подбирались недорогие воздушные катоды с максимальной электрохимической активностью и большим сроком службы, рассчитывались оптимальные режимы как для длительной эксплуатации, так и для короткого времени работы.

Разрабатывались и схемы энергетических установок, содержащие, кроме собственно источников тока, и ряд вспомогательных систем - подачи воздуха, воды, циркуляции электролита и его очистки, терморегулирования и пр. Каждая из них сама по себе достаточно сложна, и для нормального функционирова ния энергоустановки в целом потребовалась микропроцессорная система управления, которая задает алгоритмы работы и взаимодействия всем остальным системам. Пример построения одной из современных воздушно-алюминиевых установок представлен на рисунке (стр. 63.): на нем толстыми линиями обозначены потоки жидкостей (трубопроводы), а тонкими - информационные связи (сигналы датчиков и команд управления.

В последние годы Московским государственным авиационным институтом (техническим университе том) - МАИ совместно с научно-производственным комплексом источников тока "Альтернативная энергетика" - НПК ИТ "АльтЭН" создан целый функциональный ряд энергетических установок на основе воздушно-алюминиевых элементов. В том числе - экспериментальная установка 92ВА-240 для электромобиля. Ее энергоемкость и, как следствие, пробег электромобиля без подзарядки оказались в несколько раз выше, чем при использовании аккумуляторов - как традиционных (никель-кадмиевых), так и вновь разрабатываемых (серно-натриевых). Некоторые удельные характеристики электромобиля на этой энергоустановке приведены на прилегающей цветной вкладке в сравнении с характеристиками автомобиля и электромобиля на аккумуляторах. Сравнение это, однако, требует пояснений. Дело в том, что для автомобиля учтена лишь масса топлива (бензина), а для обоих электромобилей - масса источников тока в целом. В связи с этим необходимо заметить, что электродвигатель имеет значительно меньший вес, чем бензиновый, не требует трансмиссии и в несколько раз экономнее расходует энергию. Если учесть все это, то окажется, что реальный выигрыш нынешнего автомобиля будет в 2-3 раза меньшим, но все же пока достаточно большим.

Есть у установки 92ВА-240 и другие - чисто эксплуатационные - преимущества. Перезарядка воздушно-алюминиевых батарей вообще не требует электросети, а сводится к механической замене отработанных алюминиевых анодов новыми, на что уходит не более 15 минут. Еще проще и быстрей происходит замена электролита для удаления из него осадка гидроксида алюминия. На "заправочной" станции отработанный электролит подвергают регенерации и используют для повторной заправки электромоби лей, а отделенный от него гидроксид алюминия направляют на переработку.

Помимо электромобильной энергоустановки на воздушно-алюминиевых элементах теми же специалистами создан целый ряд малых энергоустановок (см. "Наука и жизнь" № 3, 1997 г.). Каждую из этих установок можно механически перезаряжать не менее 100 раз, и число это определяется в основном ресурсом работы пористого воздушного катода. А срок хранения этих установок в незаправленном состоянии вообще не ограничен, поскольку потерь емкости при хранении нет - саморазряд отсутствует.

В небольших по мощности воздушно-алюминиевых источниках тока можно использовать для приготовления электролита не только щелочь, но и обычную поваренную соль: процессы в обоих электроли тах протекают аналогично. Правда, энергоемкость солевых источников в 1,5 раза меньше, чем щелочных, но зато пользователю они причиняют гораздо меньше хлопот. Электролит в них получается совершенно безопасным, и работу с ним можно доверить даже ребенку.

Воздушно-алюминиевые источники тока для питания маломощной бытовой техники выпускаются уже серийно, и цена их вполне доступна. Что же касается автомобильной энергоустановки 92ВА-240, то она пока существует только в опытных партиях. Один ее экспериментальный образец номинальной мощностью 6 кВт (при напряжении 110 В) и емкостью 240 ампер-часов стоит около 120 тысяч рублей в ценах 1998 года. По предварительным расчетам, эта стоимость после разворачивания серийного производства снизится по крайней мере до 90 тысяч рублей, что позволит выпускать электромобиль ценою не намного большей, чем автомобиль с двигателем внутреннего сгорания. Что же касается стоимости эксплуатации электромобиля, то она и теперь вполне сопоставима со стоимостью эксплуатации автомобиля.

Дело остается за малым - произвести более глубокую оценку и расширенные испытания, а затем при положительных результатах начинать опытную эксплуатацию.

Первой в мире сумела изготовить воздушно-алюминиевую батарею, пригодную для эксплуатации в автомобиле. 100-килограммовая батарея Al-Air содержит достаточно энергии, чтобы обеспечить 3000 км хода компактного легкового автомобиля. Phinergy провела демонстрацию технологии с Citroen C1 и упрощённой версией батареи (50 пластин по 500 г, в корпусе, наполненном водой). Машина проехала 1800 км на одном заряде, останавливаясь только для пополнения запасов воды - расходуемого электролита (видео).

Алюминий не заменит литий-ионные аккумуляторы (он не заряжается от розетки), но великолепно дополняет их. Ведь 95% поездок автомобиль совершает на короткие расстояния, где достаточно стандартных аккумуляторов. Дополнительная батарея обеспечивает бэкап на случай, если аккумулятор разрядился или если нужно далеко ехать.

Воздушно-алюминиевая батарея генерирует ток за счёт химической реакции металла с кислородом из окружающего воздуха. Алюминиевая пластина - анод. С двух сторон ячейка покрыта пористым материалом с серебряным катализатором, который фильтрует CO 2 . Металлические элементы медленно деградируют до Al(OH) 3 .

Химическая формула реакции выглядит так:

4 Al + 3 O 2 + 6 H 2 O = 4 Al(OH) 3 + 2,71 В

Это не какая-то сенсационная новинка, а хорошо известная технология. Её давно используют военные, поскольку такие элементы обеспечивают исключительно большую плотность энергии. Но раньше инженерам никак не удавалось решить проблему с фильтрацией CO 2 и сопутствующей карбонизацией. Компания Phinergy утверждает, что решила проблему и уже в 2017 году можно производить алюминиевые батареи для электромобилей (и не только для них).

Литий-ионные аккумуляторы Tesla Model S весят около 1000 кг и обеспечивают пробег 500 км (в идеальных условиях, в реальности 180-480 км). Скажем, если сократить их до 900 кг и добавить алюминиевую батарею, то масса машины не изменится. Дальность хода от аккумулятора снизится на 10-20%, зато максимальный пробег без зарядки увеличится аж до 3180-3480 км! Можно доехать от Москвы до Парижа, и ещё что-то останется.

В чём-то это похоже на концепцию гибридного автомобиля, но здесь не требуется дорогой и громоздкий двигатель внутреннего сгорания.

Недостаток технологии очевиден - воздушно-алюминиевую батарею придётся менять в сервисном центре. Наверное, раз в год или чаще. Впрочем, это вполне заурядная процедура. Компания Tesla Motors в прошлом году показывала, как аккумуляторы Model S меняют за 90 секунд (любительское видео).

Другие недостатки - энергозатратность производства и, возможно, высокая цена. Изготовление и переработка алюминиевых батарей требует большого количества энергии. То есть с экологической точки зрения их использование только повышает общее потребление электроэнергии во всей экономике. Но зато потребление более оптимально распределяется - оно уходит из крупных городов в отдалённые районы с дешёвой энергией, там находятся ГЭС и металлургические заводы.

Неизвестно и то, сколько будут стоить такие элементы питания. Хотя сам алюминий - дешёвый металл, но катод содержит дорогое серебро. Phinergy не рассказывает, как именно изготовляет запатентованный катализатор. Возможно, это сложный техпроцесс.

Но при всех своих недостатках воздушно-алюминиевая батарея всё равно кажется очень удобным дополнением к электромобилю. По крайней мере, как временное решение на ближайшие годы (десятилетия?), пока не исчезнет проблема ёмкости аккумуляторов.

В Phinergy, тем временем, экспериментируют с «перезаряжаемой»