» » Автомобиль заправляется алюминием. Воздушно-алюминиевый элемент, батарея на основе воздушно- алюминиевого элемента и способ эксплуатации батареи Комбинированные источники тока

Автомобиль заправляется алюминием. Воздушно-алюминиевый элемент, батарея на основе воздушно- алюминиевого элемента и способ эксплуатации батареи Комбинированные источники тока


Владельцы патента RU 2561566:

Изобретение относится к источникам энергии, в частности к воздушно-алюминиевым источникам тока.

Известен химический источник тока (Пат. RU 2127932), в котором замена алюминиевого электрода осуществляется также путем вскрытия корпуса батареи с последующей установкой нового электрода.

Недостатком известных способов ввода электрода в батарею является то, что на период замены электрода батарею необходимо выводить из цепи энергообеспечения.

Известна топливная батарея (заявка RU 2011127181), в котором расходуемые электроды в виде лент протягиваются сквозь корпус батареи через гермовводы и гермовыводы по мере их выработки при помощи протяжных барабанов, что обеспечивает ввод расходуемых электродов в батарею без прерывания цепи энергообеспечения.

Недостатком известного способа является то, что гермовводы и гермовыводы не выводят из батареи выделившийся во время работы водород.

Технический результат изобретения - обеспечение автоматического ввода электрода с увеличенной рабочей площадью расходуемого электрода в топливном элементе без прерывания цепи энергообеспечения, повышение энергетических показателей работы топливного элемента.

Указанный технический результат достигается тем, что способ ввода расходуемого электрода в воздушно-алюминиевый топливный элемент, включает перемещение расходуемого электрода по мере его выработки внутрь корпуса топливного элемента. Согласно изобретению используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала и один конец которой вводят внутрь полости тонкостенного

стержня через отверстие в его нижней части, а перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек.

Перемещение расходуемого электрода, намотанного на тонкостенный стержень с винтовой канавкой, происходит в результате ввинчивания его в крышки, которые изготовлены из гидрофобного материала (фторопласт, пс, лиэтилен), при этом электролит остается внутри топливного элемента, а выделившийся во время работы водород удаляется по винтовой поверхности из корпуса топливного элемента.

Цилиндрическая образующая для расходуемого электрода выполнена в виде тонкостенного стержня с винтовой канавкой, на которую намотан электрод из алюминиевой проволоки. Стержень выполнен из диэлектрического гидрофобного материала, позволяющий не взаимодействовать с электролитом. Стержень с электродом из алюминиевой проволоки увеличивает активную площадь расходуемого электрода и таким образом повышает энергетические характеристики (величину снимаемого тока) воздушно-алюминиевого топливного элемента.

Сущность изобретения поясняется рисунками, где:

на фиг. 1 изображен воздушно-алюминиевый источник тока;

на фиг. 2 - вид А на фиг. 1;

на фиг. 3 - вид В на фиг. 1.

Воздушно-алюминиевый топливный элемент стоит из металлического корпуса 1 с отверстиями 2 для прохождения воздуха к трехфазной границе, газодиффузионного катода 3, электролита 4, 2-х гидрофобных крышек 5, расположенных с двух сторон металлического корпуса 1, электрода в виде тонкостенного стержня 6, алюминиевой проволоки 7, намотанной на винтовую канавку.

По мере расходования алюминиевой проволоки 7, происходит коррозия и пассивация поверхности электрода, которая приводит к уменьшению величины снимаемого тока и затуханию электрохимического процесса. Для активизации процесса необходимо ввинчивать тонкостенный стержень, с винтовой канавкой, в которой намотан расходуемый алюминиевый провод, в гидрофобные крышки 5. Выделение водорода происходит через винтовые поверхности гидрофобных крышек 5, при этом электролит остается внутри металлического корпуса 1 топливного элемента.

Данный способ позволяет автоматизировать процесс замены анода (расходуемый электрод) в воздушно-алюминиевом источнике тока (ВАИТ) без прерывания цепи энергообеспечения, а также удаление выделившегося во время работы водорода.

Способ ввода расходуемого электрода в воздушно-алюминиевый топливный элемент, включающий перемещение расходуемого электрода по мере его выработки внутрь корпуса топливного элемента, отличающийся тем, что используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала и один конец которой вводят внутрь полости тонкостенного стержня через отверстие в его нижней части, а перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек.

Похожие патенты:

Настоящее изобретение относится к электрогенератору на топливных элементах, специально спроектированному как резервное устройство при отсутствии сетевого электроснабжения.

Настоящее изобретение относится к газогенератору для конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ, который может быть использован в любом процессе, требующем обедненного кислородом газа и/или обогащенного водородом газа, предпочтительно, используют его для генерирования защитного газа или восстановительного газа для запуска, выключения или аварийного отключения твердооксидного топливного элемента (SOFC) или твердооксидного элемента электролиза (SOEC).

Изобретение относится к технологии топливных элементов, а более конкретно к сборному модулю из батарей твердооксидных топливных элементов. Технический результат - обеспечение компактности, простота перехода батарея/система и улучшение характеристик системы.

Изобретение относится к энергоустановкам c твердополимерными топливными элементами (ТЭ), в которых получают электроэнергию за счет электрохимической реакции газообразного водорода с двуокисью углерода, и электрохимической реакции окиси углерода с кислородом воздуха.

Предложена система (100) топливного элемента, включающая в себя топливный элемент (1) для генерирования энергии путем осуществления электрохимической реакции между газом-окислителем, подаваемым на электрод (34) окислителя, и топливным газом, подаваемым на топливный электрод (67); систему (HS) подачи топливного газа для подачи топливного газа на топливный электрод (67); и контроллер (40) для регулирования системы (HS) подачи топливного газа, чтобы подавать топливный газ на топливный электрод (67), причем контроллер (40) осуществляет изменение давления, когда выход стороны топливного электрода (67) закрыт, при этом контроллер (40) периодически изменяет давление топливного газа у топливного электрода (67) на основе первого профиля изменения давления для осуществления изменения давления при первом размахе давления (ДР1).

Изобретение относится к способу изготовления металлического стального сепаратора для топливных элементов, который обладает коррозионной стойкостью и контактным сопротивлением не только в начальной стадии, но также и после влияния условий высокой температуры и/или высокой влажности в топливном элементе в течение длительного периода времени.

Изобретение относится к твердотельным оксидным топливным элементам со способностью к внутреннему риформингу. Твердотельный оксидный топливный элемент обычно включает катод, электролит, анод и слой катализатора, находящийся в соприкосновении с анодом.

Настоящее изобретение относится к керамической мембране, проводящей щелочные катионы, по меньшей мере, часть поверхности которой покрыта слоем из органического катионо-проводящего полиэлектролита, который нерастворим и химически устойчив в воде при основном рН.

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные катоды, расположенные по обе стороны металлического анода. При этом газодиффузионные воздушные катоды имеют центральные поперечные изгибы и отделены от металлического анода проницаемыми для электролита пористыми сепараторами, изготовленными из материала с высоким омическим сопротивлением. Металлический анод имеет форму прямоугольного параллелепипеда, сопряженного с клином, и опирается клином на упомянутые пористые сепараторы. Предложенный металло-воздушный источник тока обладает повышенной удельной емкостью, стабильными характеристиками и увеличенным ресурсом работы, поскольку позволяет увеличить отношение массы растворяющейся части металлического анода к объему электролита, а следовательно, удельную энергоемкость и время работы источника тока без замены металлического анода. 10 ил., 2 пр.

Изобретение относится к источникам энергии, а именно к способам замены расходуемого электрода в воздушно-алюминиевом топливном элементе без прерывания цепи энергообеспечения. Используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала. Один конец проволоки вводят внутрь полости тонкостенного стержня через отверстие в его нижней части. Перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек. Обеспечивается повышение энергетических показателей работы топливного элемента. 3 ил.

Первой в мире сумела изготовить воздушно-алюминиевую батарею, пригодную для эксплуатации в автомобиле. 100-килограммовая батарея Al-Air содержит достаточно энергии, чтобы обеспечить 3000 км хода компактного легкового автомобиля. Phinergy провела демонстрацию технологии с Citroen C1 и упрощённой версией батареи (50 пластин по 500 г, в корпусе, наполненном водой). Машина проехала 1800 км на одном заряде, останавливаясь только для пополнения запасов воды - расходуемого электролита (видео).

Алюминий не заменит литий-ионные аккумуляторы (он не заряжается от розетки), но великолепно дополняет их. Ведь 95% поездок автомобиль совершает на короткие расстояния, где достаточно стандартных аккумуляторов. Дополнительная батарея обеспечивает бэкап на случай, если аккумулятор разрядился или если нужно далеко ехать.

Воздушно-алюминиевая батарея генерирует ток за счёт химической реакции металла с кислородом из окружающего воздуха. Алюминиевая пластина - анод. С двух сторон ячейка покрыта пористым материалом с серебряным катализатором, который фильтрует CO 2 . Металлические элементы медленно деградируют до Al(OH) 3 .

Химическая формула реакции выглядит так:

4 Al + 3 O 2 + 6 H 2 O = 4 Al(OH) 3 + 2,71 В

Это не какая-то сенсационная новинка, а хорошо известная технология. Её давно используют военные, поскольку такие элементы обеспечивают исключительно большую плотность энергии. Но раньше инженерам никак не удавалось решить проблему с фильтрацией CO 2 и сопутствующей карбонизацией. Компания Phinergy утверждает, что решила проблему и уже в 2017 году можно производить алюминиевые батареи для электромобилей (и не только для них).

Литий-ионные аккумуляторы Tesla Model S весят около 1000 кг и обеспечивают пробег 500 км (в идеальных условиях, в реальности 180-480 км). Скажем, если сократить их до 900 кг и добавить алюминиевую батарею, то масса машины не изменится. Дальность хода от аккумулятора снизится на 10-20%, зато максимальный пробег без зарядки увеличится аж до 3180-3480 км! Можно доехать от Москвы до Парижа, и ещё что-то останется.

В чём-то это похоже на концепцию гибридного автомобиля, но здесь не требуется дорогой и громоздкий двигатель внутреннего сгорания.

Недостаток технологии очевиден - воздушно-алюминиевую батарею придётся менять в сервисном центре. Наверное, раз в год или чаще. Впрочем, это вполне заурядная процедура. Компания Tesla Motors в прошлом году показывала, как аккумуляторы Model S меняют за 90 секунд (любительское видео).

Другие недостатки - энергозатратность производства и, возможно, высокая цена. Изготовление и переработка алюминиевых батарей требует большого количества энергии. То есть с экологической точки зрения их использование только повышает общее потребление электроэнергии во всей экономике. Но зато потребление более оптимально распределяется - оно уходит из крупных городов в отдалённые районы с дешёвой энергией, там находятся ГЭС и металлургические заводы.

Неизвестно и то, сколько будут стоить такие элементы питания. Хотя сам алюминий - дешёвый металл, но катод содержит дорогое серебро. Phinergy не рассказывает, как именно изготовляет запатентованный катализатор. Возможно, это сложный техпроцесс.

Но при всех своих недостатках воздушно-алюминиевая батарея всё равно кажется очень удобным дополнением к электромобилю. По крайней мере, как временное решение на ближайшие годы (десятилетия?), пока не исчезнет проблема ёмкости аккумуляторов.

В Phinergy, тем временем, экспериментируют с «перезаряжаемой»

Phinergy, израильский стартап, продемонстрировал алюминий-воздушный аккумулятор, который способен питать электромобиль до 1000 миль (1609 км). В отличие от других метал-воздушных батарей, о которых мы писали в прошлом, алюминий-водушная батарея Phinergy потребляет алюминий как топливо, таким образом предоставляя прирост энергии в таком количестве, что впору тягаться с газом или дизелем. Phinergy заявляет, что подписали контракт с глобальным автопроизводителем для "массового производства" батарей в 2017 году.

Метал-воздушные батареи отнюдь не новая идея. Цинк-воздушные батареи широко используются в слуховых аппаратах, и поетнциально способны помочь с . IBM заняты работой над литий-воздушной батареей, которая, как и у Phinergy, нацелена на длительное снабжение . В последние месяцы выяснилось, что натрий-воздушные батареи также имеют право на жизнь. Во всех трех случаях, воздух - тот самый компонент, который делает батареи такими желанными. В обычной батарейке, химическая реакция исключительно внутреннего характера, потому они, как правило, очень плотные и тяжелые. В метал-воздушных батареях, энергия получается путем окисления металла (лития, цинка, алюминия) кислородом, окружающим нас, а не заключенного в батарее. В результате получается более легкая и простая батарея.

Алюминий-воздушная батарея Phinergy является новинкой по двум причинам: во-первых, компания, очевидно, нашла способ предотвращения коррозии алюминия углекислым газом. Во-вторых, батарея на самом деле питается алюминием, как топливом, медленно преобразуя простой алюминий в диоксид алюминия. Прототип алюминий-воздушной батареи Phinergy состоит из как минимум 50 алюминиевых пластин, каждая из которых предоставляет энергию на 20 миль езды. После 1000 миль, пластины необходимо механически перезарядить - эвфемизм простому физическому удалению пластин из батареи. Алюминий-воздушные батареи необходимо пополнять водой каждый 200 миль, чтобы восстановить уровень электролита.

В зависимости от вашей точки зрения, механическая зарядка и прекрасна, и ужасна. С одной стороны, вы даете машине жизнь еще на 1000 миль, грубо говоря, поменяв батарейку; с другой стороны, покупать новую батарею для каждой тысячи миль, мягко говоря, не очень экономно. В идеале, это все, скорее всего, опустится до вопроса цены аккумулятора. Учитывая сегодняшний рынок, килограмм алюминия стоит $2, а набор из 50 пластин в 25 кг. Путем несложных подсчетов, получаем, что "перезарядка" машины обойдется в $50. $50 за поездку на 1000 миль это, по правде говоря, неплохо, при сравнении с $4 за галлон газа, которого хватит на 90 миль. Диоксид алюминия можно перерабатывать назад в алюминий, однако, это не дешевый процесс.

Французская компания Renault предлагает использовать в будущих электромобилях алюминиево-воздушные батареи от Phinergy. Давайте взглянем на их перспективы.

Renault решило сделать ставку на новый тип аккумулятора, который может позволить увеличить дальность пробега от одной зарядки в семь раз. При сохранении габаритов и веса сегодняшних батарей. Алюминиево-воздушные (Al-air) элементы имеют феноменальную плотность энергии (8000 Вт/кг, против 1000 Вт/кг у традиционных батарей), вырабатывая её при реакции окисления алюминия в воздухе. Такая батарея содержит в себе позитивный катод и негативный анод, сделанный из алюминия, а между электродами содержится жидкий электролит на водяной основе.

Компания разработчик батарей Phinergy заявила, что достигла большого прогресса в развитии подобных батарей. Их предложение – использовать катализатор, изготовленный из серебра, который позволяет эффективно задействовать кислород, содержащийся в обычном воздухе. Этот кислород смешивается с жидким электролитом, и тем самым освобождает электрическую энергию, которая содержится в алюминиевом аноде. Главный нюанс заключается в «воздушном катоде», который действует как мембрана в вашей зимней куртке – пропускает только О2, а не углекислый газ.

В чем отличие от традиционных батарей? У последних полностью закрытые ячейки, в то время как Al-air элементам нужен внешний элемент, «запускающий» реакцию. Важным плюсом является тот факт, что Al-air батарея действует как дизель-генератор – она вырабатывает энергию только тогда, когда вы ее включили. А когда вы «перекрыли воздух» такой батарее, весь её заряд остается на месте и не исчезает со временем, как у обычных аккумуляторов.

В процессе работы Al-air батареи используется алюминиевый электрод, но его можно сделать заменяемым, как картридж в принтере. Зарядку нужно делать каждые 400 км, она будет заключаться в доливании нового электролита, что намного проще, чем ждать, пока зарядится обычная батарея.

Компания Phinergy уже создала электрический Citroen C1, который оборудован 25 кг батареей емкостью 100 кВтч. Она дает запас хода в 960 км. С мотором мощностью в 50 кВт (около 67 лошадиных сил), машина развивает скорость в 130 км/ч, разгоняется до сотни за 14 секунд. Подобная батарея также тестируется на Renault Zoe, но её емкость – 22 кВтч, максималка у машины – 135 км/ч, 13.5 сек до “сотни”, но только 210 км запаса хода.

Новые батареи легче, в два раза дешевле, чем литий-ионные и в перспективе проще в эксплуатации, нежели современные. И пока что, единственная их проблема – это алюминиевый электрод, который сложен в производстве и замене. Как только эта проблема решится – можно смело ожидать еще большей волны популярности электромобилей!

  • , 20 Янв 2015

Использование: воздушно-металлические батареи в качестве автономного малогабаритного перезаряжаемого источника тока. Сущность изобретения: воздушно-металлический гальванический элемент коробчатого типа, включающий электролитную емкость с заправочным отверстием в ее верхней части, крышку, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру. В верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости V образована камера для сбора шлама V шл с соотношением объемов V: V шл = 5-15, толщина анода в пределах 1-3 мм и составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражениями: V = V эл + V ан; V эл =q эл QnK 1 ; V ан =q эх +q кор QnK 2 , V ан - объем анода, см 3 ;
n - количество циклов;
K 2 = (1,97-1,49) -конструктивный коэффициент,
а соотношение длины а, ширины b и высоты с составляет: 1: 0,38: 2,7; 1: 0,35: 3,1; 1: 0,33: 3,9. Воздушно-металлическая батарея содержит корпус, крышку с коммутацией, по крайней мере один воздушно-металлический гальванический элемент предлагаемой конструкции. Способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе включает разряд, замену анодов и электролита свежими, промывку элементов. Аноды перед использованием предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. 3 с.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к электрохимии, касается способа эксплуатации воздушно-металлических батарей и может быть использовано при применении воздушно-металлических батарей в качестве автономного малогабаритного перезаряжаемого источника тока. Известен гальванический элемент, например, воздушно-металлического типа. Элемент в основном содержит электролитную емкость, крышку, расходуемый металлический электрод плоской формы, помещенный в электролитную емкость. На некотором расстоянии от рабочей поверхности электрода расположен газодиффузионный катод, который снаружи свободно омывается газом, в частности воздухом. Для улучшения циркуляции электролита и тем самым повышения эффективности электрохимического преобразования энергии водород, образующийся в процессе электрохимической реакции, накапливается в электролитной емкости и повышающееся при этом давление используется для перемещения электролита. При этом электролитная емкость содержит газосборную камеру, газовое давление в которой может воздействовать на электролит. Через систему трубок вытесняемый электролит переходит из верхней части электролитной емкости в нижнюю (Европатент N 0071015 А2 от 22.06.82 - прототип). Недостатком известного гальванического элемента воздушно-металлического типа являются низкие удельные электроэнергетические характеристики из-за избыточного веса, вызванного усложнением конструкции. Известна первичная воздушно-металлическая батарея, содержащая корпус, крышку с коммутацией, по крайней мере один воздушно-металлический гальванический элемент (патент США N 4626482, H 01 M 12/6, 1986 - прототип). Недостатком известной первичной воздушно-металлической батареи являются низкие удельные электроэнергетические характеристики. Известен способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывки элемента (а.с. СССР, 621041, H 01 M 10/42, H 01 M 12/08). Недостатком известного способа является длительный период выхода батареи на заданный режим (10-20) мин. Целью изобретения является повышение удельных электроэнергетических характеристик воздушно-металлических элементов и батарей на их основе, повышение стабильности характеристик во времени, а также уменьшение времени выхода на режим до (1-3) мин. Поставленная цель достигается тем, что в известном воздушно-металлическом гальваническом элементе коробчатого типа, включающем электролитную емкость с заправочным отверстием в верхней ее части, крышку, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру, в верхней части вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости (V) образована камера для сбора шлама (V шл) с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах (1-3) мм составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражением:
V = V эл + V ан;
V эл = q эл Qnk 1 ;
V ан (q эх + q кор)Qnk 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию, см 3 /Ач;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
k 1 = (0,44-1,45) - конструктивный коэффициент;

a:b:c = 1:0,38:2,7;
a:b:c = 1:0,35:3,1;
a:b:c = 1:0,33:3,9. В известной первичной воздушно-металлической батарее, содержащей корпус, крышку с коммутацией, один или несколько воздушно-металлических гальванических элементов, в качестве такого элемента применен предлагаемый элемент; в известном способе эксплуатации воздушно-металлического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывки элемента аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. Общим признаком является наличие в воздушно-металлическом гальваническом элементе коробчатого типа электролитной емкости с заправочным отверстием в верхней ее части, крышки, расходуемого металлического анода плоской формы, помещенного в электролитную емкость, газодиффузионного катода, расположенного на некотором расстоянии от рабочей поверхности анода и свободно омываемого снаружи газом, например воздухом, газосборной камеры, наличие в батарее корпуса, крышки с коммутацией, одного или нескольких элементов, эксплуатация батареи путем разряда, замены анодов и электролита свежими, промывки элемента. Отличительным признаком является то, что в верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости (V) образована камера для сбора шлама (V шл) с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах (1 - 3) мм составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной камеры определяется выражением:
V = V эл + V ан;
V эл = q эл Qnk 1 ;
V ан =(q эх +q кор)Qnk 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию, см 3 /Ач;
q кор - удельный расход алюминия на коррозию, см 3 /Ач;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
k 1 = (0,44-1,45) - конструктивный коэффициент;
k 2 = (1,97-1,49) - конструктивный коэффициент;
а соотношение длины (a), ширины (b) и высоты (c) составляет:
a:b:c = 1:0,38:2,7;
a:b:c = 1:0,35:3,1;
a:b:c = 1:0,33:3,9. В батарее в качестве воздушно-металлического гальванического элемента применен предлагаемый элемент; при эксплуатации воздушно-металлического гальванического элемента и батареи на его основе аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. Заявляемая совокупность и взаимосвязь отличительных признаков в известных источниках патентной и научно-технической литературы не обнаружены. Таким образом, предлагаемое техническое решение обладает новизной и изобретательским уровнем. Изобретение является промышленно применимым, т.к. может быть использовано в качестве экологически чистого автономного источника тока в составе следующих систем:
- портативный переносной магнитофон типа "плеер" с функциями записи и воспроизведения через внешнюю акустическую систему;
- портативный телевизионный приемник на жидких кристаллах;
- портативный электрофонарь;
- электровентилятор;
- детские видеоигры на жидких кристаллах;
- детские радиоуправляемые электромобили;
- портативный радиоприемник;
- зарядное устройство для аккумуляторов;
- переносной измерительный прибор. Предлагаемый источник тока обеспечивает высокие удельные электроэнергетические характеристики, сохраняя их стабильными в течение всего своего ресурса, а также позволяет снизить время выхода на расчетный режим с 10 - 20 до 1-3 мин. Состояние показателей позволяет сделать вывод о целесообразности использования полученных геометрических соотношений в проектировании воздушно-алюминиевых батарей. Изобретение поясняется чертежом, где на фиг. 1 показан воздушно-алюминиевый элемент - вид N 1, на фиг. 2 - воздушно-алюминиевый элемент - вид N 2, на фиг. 3 - воздушно-алюминиевый элемент - вид N 3. На фиг. 4 изображена электролитная емкость воздушно-алюминиевого элемента, а на фиг. 5 - батарея на основе воздушно-алюминиевых элементов. Воздушно-алюминиевый гальванический элемент состоит из электролитной емкости 1, которая имеет по внешним боковым стенкам 2 окна 3, в верхней части 4 заправочное отверстие 5, окруженное непрерывным коническим выступом 6, выполняющим роль лабиринтного уплотнения, с внутренней стороны электролитной емкости 1 на средней части боковых стенок 2 и в ее нижней части выполнены два ограничительных выступа 7, в нижней части электролитной емкости 1 образована камера 8 для сбора шлама, который нарабатывается в процессе эксплуатации. В электролитную емкость 1 герметично вставлены газодиффузионные катоды 9 в окна 3 рамки 10. Герметичность электролитной емкости 1 достигается при помощи нейтрального по отношению к водному раствору электролита герметика. Электрическая связь катодов 9 с потребителем при использовании воздушно-алюминиевого элемента как вне батареи, а также в составе ее осуществляется с помощью катодного токосъемника 11, охватывающего электролитную емкость 1 двумя горизонтальными поджимами 12, которые электрически связаны с двумя вертикальными поджимами 13. В электролитную емкость 1 через заправочное отверстие 5 вставляется плоский металлический анод 14 с выступом 15 прямоугольной формы, предназначенным для осуществления токосъема. Плоскость выступа 15 служит также для уплотнения по линии "анод 14 - крышка 16". Заправочное отверстие 5 закрывается и уплотняется крышкой 16, содержащей одно отверстие 17 для пропускания через него анода 14 и одно или несколько отверстий 18 для отвода водорода из электролитной емкости 1 в процессе работы воздушно-алюминиевого элемента через крышку 16, являющуюся одновременно гидрофобной мембраной. Наличие в верхней части электролитной емкости 4 по периметру вокруг заправочного отверстия 5 выступа конической формы 6 позволяет усилить уплотнительные свойства крышки 16. Геометрические соотношения конструкции, позволяющие улучшить удельные электроэнергетические параметры следующие:
Н1/(Н2+Н3+Н4) = 1,05-1,20
Н3/Н2=Н3/Н4= 5-15
Н5/Н1= 1,1-1,5
Н6/Н3=1-1,1
L2/LI = 1-1,1
L3/LI= 1,1-1,5
L5/L6= 0,05-0,50
2xL4/L6= 0,95-0,75
Батарея на основе воздушно-алюминиевых элементов состоит из корпуса 19 с внутренними вертикальными пазами 20 для удержания воздушно-алюминиевых элементов и окон 21 для организации внешнего свободного притока воздуха внутрь батареи, замков 22 для крепления крышки с коммутацией 23 к корпусу 19, одной или нескольких электролитных емкостей 1 с установленными катодными токосъемниками 11, с вставленными в них анодами 14 и надетыми поверх крышками 16, токоразводящей двухсторонней платы 24, содержащей на стороне, повернутой к воздушно-алюминиевым элементам, токопроводящие дорожки 25 для осуществления электрической связи от катодов 9 к электролитным емкостям 1 через катодные токосъемники 11 к токоразводящей двухсторонней плате 24, несколько отверстий 26 прямоугольной формы для пропускания выступа 15 металлического анода 14 с целью осуществления электрической связи между металлическим анодом 14 и анодным токосъемником 27, несколько отверстий произвольной формы 28 для дренажа водорода из электролитной емкости 1 в атмосферу через крышку 23, несколько разъемов 29, расположенных на верхней стороне токоразводящей двухсторонней платы 24, перемыкаемых электропроводящей перемычкой 30 для выбора потребителем рабочего напряжения и связи с электропроводящими дорожками 25 и 31 с обеих сторон, несколько разъемов 32, расположенных на верхней стороне токоразводящей двухсторонней платы 24, служащих для подключения потребителя, а также крышки 23, закрывающей батарею сверху и содержащей несколько отверстий 33 под разъемы 32, несколько отверстий 34 под разъемы 29, одно или несколько отверстий 35 под дренаж водорода, два продольных паза 36 под замки 22, этикетку 37 с краткой инструкцией по эксплуатации. Принцип действия и способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе, например батарея 3 ВА-24, заключаются в следующем. Электрическая энергия в батарее генерируется при осуществлении электрохимической реакции окисления алюминия на аноде и восстановления кислорода на катоде. В качестве электролита используют водные растворы или едкого натрия (NaOH), или хлористого натрия (NaCI), или смеси указанных растворов с ингибирующими добавками: Na 2 SnO 3 3Н 2 О - в щелочном электролите и NaHCO 3 - в солевом. В процессе реакции наряду с расходом алюминия идет потребление кислорода из воздуха и воды из электролита, поэтому при эксплуатации батареи по мере их расходования в процессе разряда периодически проводят замену анода и электролита на свежие. Продуктами реакции являются гидроокись алюминия Al(OH) 3 и тепло. Батарея работает в диапазоне температур от -10 o C до +60 o C без дополнительного подогрева при запуске от минусовых температур. Одним из отрицательных факторов воздушно-алюминиевой батареи является коррозия анода. Это приводит к снижению электрических характеристик батареи и выделению небольшого количества водорода. В большей степени влияние коррозии проявляется на пусковых характеристиках, вследствие чего время выхода на заданный режим составляет (10-20) мин. Предлагаемая обработка анодов, при которой их поверхность покрывается оловом, позволяет снизить плотность тока коррозии и значительно улучшить режим эксплуатации воздушно-алюминиевой батареи, в результате чего повышаются электрические характеристики и время выхода на режим снижается до (1-3) мин. Нанесение покрытия на анод проводят перед началом включения батареи в работу. Предварительно анод обезжиривают, а затем обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01- 0,10) моль/л при комнатной температуре в течение 5-60 мин. Результаты испытаний предлагаемой воздушно-алюминиевой батареи и прототипа представлены в табл. 1 и 2. Как видно из таблиц, предлагаемая воздушно-алюминиевая батарея обеспечивает высокие удельные и стабильные во времени электроэнергетические характеристики при малом времени выхода на режим.

Формула изобретения

1. Воздушно-металлический гальванический элемент коробчатого типа, включающий электролитную емкость с заправочным отверстием в ее верхней части, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру, отличающийся тем, что в верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости V образована камера V шл для сбора шлама с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах 1 - 3 мм составляет 0,05 - 0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражением:
V = V эл + V ан;
V эл = q эл Q n k 1 ;
V ан = (q эх + q кор) Q n k 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию см 3 /Ач;
q кор - удельный расход алюминия на коррозию, см 3 /А ч;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
K 1 = (0,44 - 1,45) - конструктивный коэффициент;
K 2 = (1,97 - 1,49) - конструктивный коэффициент;
а соотношение длины а, ширины b и высоты с составляет 1: 0,38: 2,7; 1: 0,35: 3,1; 1: 0,33: 3,9. 2. Первичная воздушно-металлическая батарея, содержащая корпус, крышку, по крайней мере один воздушно-металлический гальванический элемент, отличающаяся тем, что в качестве такого элемента взят элемент по п.1. 3. Способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывка элемента, отличающийся тем, что аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2 - 5) моль/л с добавкой трехводного натрий метастанната с концентрацией (0,01 - 0,10) моль/л.