» » Что такое белки, какой у них состав, зачем они нужны? Занимательная химия Что входит в состав белков.

Что такое белки, какой у них состав, зачем они нужны? Занимательная химия Что входит в состав белков.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ГЛАВА 1. ВВЕДЕНИЕ

Довольно банальными стали сейчас сообщения о революции в биологии. Бесспорным считается и то, что эти революционные изменения были связаны с формированием на стыке биологии и химии комплекса наук, среди которых центральное положение занимали и занимают молекулярная биология и биоорганическая химия.

“Молекулярная биология наука, ставящая своей целью познание природы явлений жизнедеятельности путем изучения биологических объектов и систем на уровне, приближающемся к молекулярному… характерные проявления жизни… обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь белков и нуклеиновых кислот

“Биоорганическая химия - наука, изучающая вещества, лежащие в основе процессов жизнедеятельности…основные объекты биоорганической химии биополимеры (белки и пептиды, нуклеиновые кислоты и нуклеотиды, липиды, полисахариды и т.д.).

Из этого сопоставления становится очевидным, сколь важно для развития современной биологии изучение белков.

биология белок биохимия

ГЛАВА 2. ИСТОРИЯ ИССЛЕДОВАНИЯ БЕЛКА

2.1 Начальные этапы в химии белка

Белок попал в число объектов химических исследований 250 лет тому назад. В 1728 году итальянский ученый Якопо Бартоломео Беккари получил из пшеничной муки первый препарат белкового вещества - клейковины. Он подверг клейковину сухой перегонке и убедился, что продукты такой перегонки были щелочными. Это было первое доказательство единства природы веществ растительного и животного царств. Он опубликовал результаты своей работы в 1745 году, и это была первая статья о белке.

В XVIII - начале XIX веков неоднократно описывали белковые вещества растительного и животного происхождения. Особенностью таких описаний было сближение этих веществ и сопоставление их с веществами неорганическими.

Важно отметить, что в это время, еще до появления элементного анализа, сложилось представление о том, что белки из различных источников - это группа близких по общим свойствам индивидуальных веществ.

В 1810 году Ж. Гей-Люссак и Л. Тенар впервые определили элементный состав белковых веществ. В 1833 году Ж. Гей-Люссак доказал, что в белках обязательно присутствует азот, а вскоре было показано, что содержание азота в различных белках приблизительно одинаково. В это же время английский химик Д. Дальтон попытался изобразить первые формулы белковых веществ. Он представлял их довольно просто устроенными веществами, но чтобы подчеркнуть их индивидуальное различие при одинаковом составе, он прибег к изображению молекул, которые бы сейчас назвали изомерными. Однако понятия изомерии во времена Дальтона еще не было.

Формулы белков Д. Дальтона

Были выведены первые эмпирические формулы белков и выдвинуты первые гипотезы относительно закономерностей их состава. Так, Н.Либеркюн считал, что альбумин описывается формулой C 72 H 112 N 18 SO 22 , а А.Данилевский полагал, что молекула этого белка по крайней мере на порядок больше: C 726 H 1171 N 194 S 3 O 214 .

Немецкий химик Ю. Либих в 1841 году предположил, что белки животного происхождения имеют аналоги среди растительных белков: усвоение белка легумина в организме животного, по Либиху, вело к накоплению аналогичного белка - казеина. Одной из самых распространенных теорий доструктурной органической химии была теория радикалов - неизменных компонентов родственных веществ. В 1836 году голландец Г. Мульдер высказал предположение о том, что все белки содержат один и тот же радикал, который он назвал протеином (от греческого слова “первенствую”, “занимаю первое место”). Протеин, по Мульдеру, имел состав Pr = C 40 H 62 N 10 O 12 . В 1838 году Г. Мульдер опубликовал формулы белков, построенные на основании теории протеина. Это были т.н. дуалистические формулы, где радикал протеина служил положительной группировкой, а атомы серы или фосфора - отрицательной. Вместе они образовывали электронейтральную молекулу: белок сыворотки крови Pr 10 S 2 P, фибрин Pr 10 SP. Однако аналитическая проверка данных Г. Мульдера, проведенная русским химиком Лясковским, а также Ю. Либихом, показала, что “белковых радикалов” не существует.

В 1833 году немецкий ученый Ф. Розе открыл биуретовую реакцию на белки - одну из основных цветных реакций на белковые вещества и их производные в настоящее время (подробнее о цветных реакциях на стр.53). Был сделан также вывод о том, что это самая чувствительная реакция на белок, поэтому она в то время привлекла наибольшее внимание химиков.

В середине XIX века были разработаны многочисленные методы экстракции белков, очистки и выделения их в растворах нейтральных солей. В 1847 году К. Рейхерт открыл способность белков образовывать кристаллы. В 1836 году Т. Шванн открыл пепсин - фермент, расщепляющий белки. В 1856 году Л. Корвизар открыл еще один подобный фермент - трипсин. Изучая действие этих ферментов на белки, биохимики пытались разгадать тайну пищеварения. Однако наибольшее внимание внимание привлекли вещества, получающиеся в результате действия на белки протелитических фермнтов (протеаз, к ним относятся вышеприведенные ферменты): одни из них были фрагментами исходных молекул белка (их назвали пептонами ), другие же не подвергались дальнейшему расщеплению протеазами и относились к известному еще с начала века классу соединений - аминокислот (первое аминокислотное производное - амид аспарагин был открыт в 1806 году, а первая аминокислота - цистин в 1810). Аминокислоты в составе белков впервые обнаружил в 1820 году французский химик А. Браконно. Он применил кислотный гидролиз белка и в гидролизате обнаружил сладковатое вещество, названное им глицином. В 1839 году было доказано существование в составе белков лейцина, а в 1849 году Ф. Бопп выделил из белка еще одну аминокислоту - тирозин (полный список дат открытий аминокислот в белках см. Приложение II).

К концу 80-х гг. XIX века из белковых гидролизатов было выделено уже 19 аминокислот и стало медленно укрепляться мнение, что сведения о продуктах гидролиза белков несут важную информацию о строении белковой молекулы. Тем не менее, аминокислоты считались обязательным, но неглавным компонентом белка.

В связи с открытиями аминокислот в составе белков французский ученый П. Шютценберже в 70-х гг. XIX века предложил т. н. уреидную теорию строения белка. Согласно ей молекула белка состояла из центрального ядра, роль которого выполняла молекула тирозина, и присоединенных к нему (с замещением 4 атомов водорода) слож ных группировок, названных Шютценберже лейцинами . Однако гипотеза было очень слабо подкреплена экспериментально, и дальнейшие исследования показали несостоятельность.

2.2 Теория “углеазотных комплексов” А.Я. Данилевского

Оригинальную теорию о строении белка высказал в 80-х гг. XIX века русский биохимик А. Я. Данилевский. Первым из химиков он обратил внимание на возможный полимерный характер строения белковых молекул. В начале 70-х гг. он писал А.М. Бутлерову, что “частицы альбумина есть смешанный полимерид”, что для определения белка он не находит “термина более подходящего, чем слово полимер в широком смысле”. Изучая биуретовую реакцию он предположил, что эта реакция связана со структурой перемежающихся атомов углерода и азота - N - C - N - C - N - , которые входят в т.н. углеазо т ный комплекс R" - NH - CO - NH - CO - R”. На основе данной формулы Данилевский полагал, что в молекуле белка содержится 40 таких углеазотных комплексов. Отдельные углеазотноаминокислотные комплекс, по Данилевскому, выглядели так:

По Данилевскому углеазотные комплексы могли соединяться эфирной или амидной связью с образованием высокомолекулярной структуры.

2.3 Теория “киринов” А. Косселя

Немецкий физиолог и биохимик А. Коссель, изучая протамины и гистоны, относительно просто устроенные белки, он установил, что при их гидролизе образуется большое количество аргинина. Кроме того он открыл в составе гидролизата неизвестную тогда аминокислоту - гистидин. На основании этого Коссель предположил, что эти белковые вещества можно рассматривать как некие простейшие модели более сложных белков, построенных, по его мнению, согласно следующему принципу: аргинин и гистидин составляют центральное ядро (“протаминовое ядро”), которое окружено комплексами из других аминокислот.

Теория Косселя представляла собой наиболее совершенный пример развития гипотезы о фрагментарном строении белков (впервые предложенной, как было сказано выше, Г.Мульдером). Этой гипотезой воспользовался немецкий химик М. Зигфрид в начале XX века. Он полагал, что белки построены из комплексов аминокислот (аргинин+лизин+глутаминовая к-та), названных им киринами (от греческого “кириос” основной). Однако эта гипотеза была высказана в 1903 году, когда Э. Фишер активно разрабатывал свою пептидную теорию , давшую ключ к тайне строения белков.

2.4 Пептидная теория Э. Фишера

Немецкий химик Эмиль Фишер, уже прославившийся на весь мир исследованиями пуриновых соединений (алкалоидов группы кофеина) и расшифровкой структуры сахаров, создал пептидную теорию, во многом подтвердившуюся практически и получившую всеобщее признание еще при его жизни, за что он был удостоен второй в истории химии Нобелевской премии (первую получил Я.Г. Вант-Гофф).

Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:

Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной . Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью . Идея о полимерном характере строения белков как известно высказывалась еще Данилевским и Хертом, но они считали, что “мономеры” представляют собой очень сложные образования - пептоны или “углеазотные комплексы”.

Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).

Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям:

Качественное и количественное определение продуктов полного гидролиза белков.

Установление строения этих конечных продуктов.

Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.

Сравнение полученных таким образом соединений с природными белками.

Из этого плана видно, что Фишер применил впервые новый методологический подход - синтез модельных соединений, как способ доказательства по аналогии.

2.5 Разработка методов синтеза аминокислот

Для того чтобы перейти к синтезу производных аминокислот, соединенных пептидной связью, Фишер провел большую работу по изучению строения и синтезу аминокислот.

До Фишера общим методом синтеза аминокислот был циангидринный синтез А. Штреккера:

По реакции Штреккера удалось синтезировать аланин, серин и некоторые другие аминокислоты, а по ее модификации (реакции Зелинского-Стадникова) как -аминокислоты, так и их N-замещенные.

Однако сам Фишер стремился разработать методы синтеза всех известных тогда аминокислот. Он считал метод Штреккера недостаточно универсальным. Поэтому Э. Фишеру пришлось искать общий метод синтеза аминокислот в том числе аминокислот со сложными боковыми радикалами.

Он предложил аминировать бромзамещенные в -положении карбоновые кислоты. Для получения бромпроизводных он использовал, как например, в синтезе лейцина, арилированную или алкилированную малоновую кислоту:

Но создать абсолютно универсальный метод Э. Фишеру не удалось. Были разработаны и более надежные реакции. Например, ученик Фишера Г. Лейкс предложил следующую модификацию для получения серина:

Фишер также доказал, что белки состоят из остатков оптически активных аминокислот (см. стр.11). Это заставило его разработать новую номенклатуру оптически активных соединений, методы разделения и синтеза оптических изомеров аминокислот. Фишер также пришел к выводу, что в белках содержатся остатки L-форм оптически активных аминокислот, и он доказал это, впервые использовав принцип диастереоизомерии. Этот принцип заключался в следующем: к N-ацилпроизводному рацемической аминокислоты добавляли оптически активный алкалоид (бруцин, стрихнин, цинхонин, хинидин, хинин). В результате этого образовывались две стереоизомерные формы солей, обладающие различной растворимостью. После разделения этих диастереоизомеров алкалоид регенерировали и ацильную группу удаляли путем гидролиза.

Фишер сумел разработать метод полного определения аминокислот в продуктах гидролиза белков: он переводил хлоргидраты эфиров аминокислот обработкой концентрированной щелочью на холоду в свободные эфиры, которые заметно не омылялись. Затем смесь этих эфиров подвергал фракционной перегонке и из полученных фракций выделял отдельные аминокислоты путем дробной кристаллизации.

Новый метод анализа не только окончательно подтвердил, что белки состоят из аминокислотных остатков, но позволил уточнить и пополнить список встречающихся в белках аминокислот. Но все же количественные анализы не могли дать ответа на основной вопрос: каковы принципы строения молекулы белка. И Э.Фишер сформулировал одну из основных задач в изучении строения и свойств белка: разработка экспериментальные м е тоды синтеза соединений, основными компонентами которых были бы аминокисл о ты, соединенные пептидной связью.

Таким образом Фишер поставил нетривиальную задачу - синтезировать новый класс соединений с целью установления принципов их строения.

Задачу эту Фишер решил, и химики получили убедительные доказательства, что белки представляют собой полимеры аминокислот, соединенных пептидной связью:

CO - CHR" - NH - CO - CHR"" - NH - CO CHR""" - NH -

Это положение подтверждалось биохимическими доказательствами. Попутно выяснилось, что протеазы гидролизуют не все связи между аминокислотами с одинаковой скоростью. На их способность расщеплять пептидную связь влияли оптическая конфигурация аминокислот, заместители по азоту аминогруппы, длина цепи пептида, а также набор входящих в него остатков.

Главным доказательством пептидной теории стал синтез модельных пептидов и сопоставление их с пептонами гидролизата белков. Результаты показали, что из белковых гидролизатов выделяются пептиды, идентичные синтезированным.

В процессе выполнения этих исследований Э.Фишер и его ученик Э.Абдергальд- ен впервые разработали метод определения аминокислотной последовательности в белка. Сущность его заключалась в установлении природы аминокислотного остатка полипептида, имеющего свободную аминогруппу (N-концевую аминокислоту). Для этого они предложили блокировать в пептиде аминоконец -нафталин-сулфониловой группой, которая не отщепляется при гидролизе. Выделяя затем из гидролизата аминокислоту, меченую такой группой, можно было определить, какая из аминокислот была N-концевой.

После исследований Э.Фишера стало ясно, что белки представляют собой полипептиды. Это было важное достижение, в том числе и для задач синтеза белков: стало ясно, что именно нужно синтезировать. Только после этих работ проблема синтеза белка приобрела определенную направленность и необходимую строгость.

Говоря о работе Фишера в целом, следует отметить, что сам подход к исследованию был типичен скорее для наступающего XX века - он оперировал широким набором теоретических положений и методических приемов; его синтезы все менее и менее походили на искусство, основанное на интуиции, чем на точном знании, и приближались к созданию серий точных, почти технологических приемов.

2. 6 Кризис пептидной теории

В связи с применением новых физических и физико-химических методов исследований в начале 20-х гг. XX в. появились сомнения в том, что молекула белка представляет длинную полипептидную цепь. К гипотезе о возможности компактной укладки пептидных цепочек относились со скептицизмом. Все это потребовало пересмотра пептидной теории Э.Фишера.

В 20-30-е гг. распространение получила дикетопиперазиновая теория. Согласно ей, центральная роль в построении структуры белка играют дикетопиперазивные кольца, образующиеся при циклизации двух аминокислотных остатков. Также предполагалось, что эти структуры составляют центральное ядро молекулы, к которому присоединены короткие пептиды или аминокислоты (“наполнители” циклического скелета основной структуры). Наиболее убедительные схемы участия дикетопиперазинов в построении структуры белка были представлены Н.Д.Зелинским и учениками Э.Фишера.

Однако попытки синтеза модельных соединений, содержащих дикетопиперазины мало, что дали для химии белка впоследствии восторжествовала пептидная теория, однако эти работы оказали стимулирующее влияние на химию пиперазинов в целом.

После пептидной и дикетопиперазивной теорий продолжались попытки доказать существование только пептидных структур в молекуле белка. При этом стремились представить себе не только тип молекулы, но и общие ее очертания.

Оригинальную гипотезу высказал советский химик Д.Л.Талмуд. Он предположил, что пептидные цепи в составе белковых молекул свернуты в большие кольца, что в свою очередь стало шагом к созданию им представления о белковой глобуле.

Одновременно появились данные, свидетельствующие о различном наборе аминокислот в различных белка. Но закономерности, которым подчиняется последовательность аминокислот в структуре белка, были не ясны.

Первыми ответ на этот вопрос пытались дать М.Бергман и К.Ниман в разработанной ими гипотезе “перемежающихся частот”. Согласно ей последовательность аминокислотных остатков в белковой молекуле подчинялась числовым закономерностям, основы которых были выведены из принципов строения белковой молекулы фиброина шелка. Но этот выбор был неудачным, т.к. этот белок фибриллярный, строение же глобулярных белков подчиняется совсем другим закономерностям.

По М.Бергману и К.Ниману, каждая аминокислота встречается в полипептидной цепи через определенной интервал или, как говорил М.Бергман, обладает определенной “периодичностью”.эта периодичность определяется природой аминокислотных остатков.

Молекулу фиброина шелка они представляли себе следующим образом:

GlyAlaGlyTyr GlyAlaGlyArg GlyAlaGlyx GlyAlaGlyx

(GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 12

GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyArg

(GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 13

Гипотеза Бергмана-Нимана оказала значительное влияние на развитие химии аминокислот большое количество работ было посвящено ее проверке.

В заключение этой главы следует отметить, что к середине XX в. было накоплено достаточно доказательств справедливости пептидной теории, основные ее положения были дополнены и уточнены. Поэтому центр исследований белков в XX в. лежал уже области исследования и поиска методов синтеза белка искусственным путем. Эта задача была успешно решена, были разработаны надежные методы определения первичной структуры белка - последовательности аминокислот в пептидной цепи, разработаны методы химического (абиогенного) синтеза нерегулярных полипептидов (подробнее эти методы рассматриваются в гл.8, стр.36), в том числе методы автоматического синтеза полипептидов. Это позволило уже в 1962 г. крупнейшему английскому химику Ф.Сенгеру расшифровать структуру и синтезировать искусственным путем гормон инсулин, что ознаменовало новую эру в синтезе полипептидов функциональных белков.

ГЛАВА 3. ХИМИЧЕСКИЙ СОСТАВ БЕЛКОВ

3.1 Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO - . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

3.2 Элементный состав белков

Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза - длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110 С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего - хроматографию (подробнее - глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

3.3. Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты - это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу - NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: - CH 2 , - NH 2 , - COOH. Боковые же цепи (радикалы - R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO) имеют хиральный атом C и могут существовать в виде двух энантиомеров (оптических изомеров):

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна - из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани - коллагена .

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным - это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока - казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (- SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина - предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

ГЛАВА 4. СТРУКТУРА

При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

4.1 Первичная структура

Представляет собой линейную цепь аминокислот, расположенных в определенной последовательности и соединенных между собой пептидными связями. Пептидная связь образуется за счет -карбоксильной группы одной аминокислоты и -аминной группы другой:

Пептидная связь вследствие p, -сопряжения -связи карбонильной группы и р-орбитали атома N, на котором находится не поделенная пара электронов, не может рассматриваться как одинарная и вращение вокруг нее практически отсутствует. По этой же причине хиральный атом C и карбонильный атом C k любого i-го аминокислотного остатка пептидной цепи и атомы N и С (i+1)-го остатка находятся в одной плоскости. В этой же плоскости находятся карбонильный атом О и амидный атом Н (однако накопленный при изучении структуры белков материал показывает, что это утверждение не совсем строго: атомы, связанные с пептидным атомом азота, находятся не в одной плоскости с ним, а образуют трехгранную пирамиду с углами между связями, очень близкими к 120. Поэтому между плоскостями, образованными атомами C i , C i k , O i и N i +1 , H i +1 , C i +1 , существует некоторый угол, отличающийся от 0. Но, как правило, он не превышает 1 и не играет особой роли). Поэтому геометрически полипептидную цепочку можно рассматривать как образованную такими плоскими фрагментами, содержащими каждый по шесть атомов. Взаимное расположение этих фрагментов, как и всякое взаимное расположение двух плоскостей, должно определятся двумя углами. В качестве таковых принято брать торсионные углы, характеризующие вращения вокруг -связей N C и C C k .

Геометрия любой молекулы определяется тремя группами геометрических характеристик ее химических связей - длинами связей, валентными углами и торсионными углами между связями, примыкающими к соседним атомам. Первые две группы в решающей мере определяются природой участвующих атомов и образующихся связей. Поэтому пространственная структура полимеров в основном определяется торсионными углами между звеньями полимерного остова молекул, т.е. конформацией полимерной цепи. То р сионный угол , т.е. угол поворота связи А-В вокруг связи В-С относительно связи С- D , определяется как угол между плоскостями, содержащими атомы А, В, С и атомы B , C , D .

В такой системе возможен случай, когда связи А-В и С-D расположены параллельно и находятся по одну сторону от связи В-С. Если рассматривать эту систему вдоль св я зи В-С, то связь А-В как бы заслоняет связь C - D , поэтому такая конформация наз ы вается заслоненной. Согласно рекомендациям международных союзов химии IUPAC (International Union of Pure and Applied Chemistry) и IUB (International Union of Biochemistry), угол между плоскостями ABC и BCD считается положительным, если для приведения конформации в заслоненное состояние путем поворота на угол не выше 180 ближнюю к наблюдателю связь нужно поворачивать по часовой стрелке. Если эту связь для получения заслоненной конформации нужно поворачивать против часовой стрелки, то угол считается отрицательным. Можно заметить, что это определение не зависит от того, какая из связей находится ближе к наблюдателю.

При этом, как видно из рисунка, ориентация фрагмента, содержащего атомы C i -1 и C i [(i-1)-й фрагмент], и фрагмента, содержащего атомы C i и C i +1 (i-й фрагмент), определяется торсионными углами, соответствующими вращению вокруг связи N i C i и связи C i C i k . Эти углы принято обозначать как и, в приведенном случае соответственно i и i . Их значениями для всех мономерных звеньев полипептидной цепи в основном определяется геометрия этой цепи. Никаких однозначных величин ни для значения каждого из этих углов, ни для их комбинаций не существует, хотя на те и на другие накладываются ограничения, определяемые как свойствами самих пептидных фрагментов, так и природой боковых радикалов, т.е. природой аминокислотных остатков.

К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется сокращенная форма записи - трехбуквенная или однобуквенная (молекула вазопрессина):

При записи аминокислотной последовательности в полипептидных или олигопептидных цепях с помощью сокращенной символики предполагается, если это особо не оговорено, что -аминогруппа находится слева, а -карбоксильная группа - справа. Соответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки - соответственно N-концевым и С-концевым остатками.

4.2 Вторичная структура

Фрагменты пространственной структуры биополимер, имеющие периодическое строение полимерного остова, рассматривают как элементы вторичной структуры.

Если на протяжении некоторого участка цепи однотипные углы, о которых говорилось на стр.15, приблизительно одинаковы, то структура полипептидной цепи приобретает периодический характер. Существует два класса таких структур - спиральные и растянутые (плоские или складчатые).

Спиральной считается структура, у которой все однотипные атомы лежат на одной винтовой линии. При этом спираль считается правой, если при наблюдении вдоль оси спирали она удаляется от наблюдателя по часовой стрелке, и левой - если удаляется против часовой стрелки. Полипептидная цепь имеет спиральную конформацию, если все атомы C находятся на одной винтовой линии, все карбонильные атомы C k - на другой, все атомы N - на третьей, причем шаг спирали для всех трех групп атомов должен быть одинаков. Одинаковым должно быть и число атомов, приходящихся на один виток спирали, независимо от того, идет ли речь об атомах C k , C или N. Расстояние же до общей винтовой линии для каждого из этих трех типов атомов свое.

Главными элементами вторичной структуры белков являются -спирали и -складки.

Спиральные структуры белка. Для полипептидных цепей известно несколько различных типов спиралей. Среди них наиболее распространена правая -спираль. Идеальная -спираль имеет шаг 0,54 нм и число однотипных атомов на один виток спирали 3,6, что означает полную периодичность на пяти витках спирали через каждые 18 аминокислотных остатков. Значения торсионных углов для идеальной -спирали = - 57 = - 47 , а расстояния от атомов, образующих полипептидную цепь, до оси спирали составляет для N 0,15 нм, для C 0,23 нм, для C k 0,17 нм. Любая конформация существует при условии, что имеются факторы, стабилизирующие ее. В случае -спирали такими факторами являются водородные связи, образуемые каждым карбонильным атомом (i+4)-го фрагмента. Важным фактором стабилизации -спирали также является параллельная ориентация дипольных моментов пептидных связей.

Складчатые структуры белка. Одним из распространенных примеров складчатой периодической структуры белка являются т.н. -складки , состоящие из двух фрагментов, каждый из которых представлен полипептидом.

Складки также стабилизируются водородными связями между атомом водорода аминной группы одного фрагмента и атомом кислорода карбоксильной группы другого фрагмента. При этом фрагменты могут иметь как параллельную, так и антипараллельную ориентацию относительно друг друга.

Структура, образующаяся в результате таких взаимодействий, представляет собой гофрированную структуру. Это сказывается на значениях торсионных углов и. Если в плоской, полностью растянутой структуре они должны были бы составить 180, то в реальных -слоях они имеют значения = - 119 и = + 113. Для того чтобы два участка полипептидной цепи располагались в ориентации, благоприятствующей образованию -складок, между ними должен существовать участок, имеющий структуру, резко отличающийся от периодической.

4.2.1 Факторы, влияющие на образование вторичной структуры

Структура определенного участка полипептидной цепи существенно зависит от структуры молекулы в целом. Факторы, влияющие на формирование участков с определенной вторичной структурой, весьма многообразны и далеко не во всех случаях полностью выявлены. Известно, что ряд аминокислотных остатков предпочтительно встречается в -спиральных фрагментах, ряд других - в -складках, некоторые аминокислоты - преимущественно в участках, лишенных периодической структуры. Вторичная структура в значительной степени определяется первичной структурой. В некоторых случаях физический смысл такой зависимости может быть понят из стереохимического анализа пространственной структуры. Например, как видно из рисунка в -спирали сближены не только боковые радикалы соседних вдоль цепи аминокислотных остатков, но и некоторые пары остатков, находящихся на соседних витках спирали, в первую очередь каждый (i+1)-й остаток с (i+4)-м и с (i+5)-м. Поэтому в положениях (i+1) и (i+2), (i+1) и (i+4), (i+1) и (i+5) -спиралей редко одновременно встречается два объемных радикала, таких, например, как боковые радикалы тирозина, триптофана, изолейцина. Еще менее совместимо со структурой спирали одновременное наличие трех объемных остатков в положениях (i+1), (i+2) и (i+5) или (i+1), (i+4) и (i+5). Поэтому такие комбинации аминокислот в -спиральных фрагментах являются редким исключением.

4.3 Третичная структура

Под этим термином понимают полную укладку в простанстве всей полипептидной цепи, включая укладку боковых радикалов. Полное представление о третичной структуре дают координаты всех атомов белка. Благодаря огромным успехом рентгеноструктурного анализа такие данные, за исключением координат атомов водорода получены для значительного числа белков. Это огромные массивы информации, хранящиеся в специальных банках данных на машиночитаемых носителях, и их обработка немыслима без применения быстродействующих компьютеров. Полученные на компьютерах координаты атомов дают полную информацию о геометрии полипептидной цепи, в том числе значения торсионных углов, что позволяет выявить спиральную структуру, -складки или нерегулярные фрагменты. Примером такого исследовательского подхода может служить следующая пространственная модель структуры фермента фосфоглицераткиназы:

Общая схема строения фосфоглицераткиназы. Для наглядности -спиральные участки представлены в виде цилиндров, а -складки - в виде лент со стрелкой, указывающей направление цепи от N-конца к С-концу. Линии - нерегулярные участки, соединяющие структурированные фрагменты.

Изображение полной структуры даже небольшой белковой молекулы на плоскости, будь то страница книги или экран дисплея мало информативно из-за чрезвычайно сложного строения объекта. Чтобы исследователь мог наглядно представлять простанственное строение молекул сложных веществ, используют методы трехмерной компьютерной графики, позволяющей выводить на дисплей отдельные части молекул и манипулировать с ними, в частности поворачивать их в нужных ракурсах.

Третичная структура формируется в результате нековалентных взаимодействий (электростатические, ионные, силы Ван-дер-Ваальса и др.) боковых радикалов, обрамляющих -спирали и -складки, и непериодических фрагментов полипептидной цепи. Среди связей, удерживающих третичную структуру следует отметить:

а) дисульфидный мостик (- S - S -)

б) сложноэфирный мостик (между карбоксильной группой и гидроксильной группой)

в) солевой мостик (между карбоксильной группой и аминогруппой)

г) водородные связи.

В соответствии с формой белковой молекулы, обусловленной третичной структурой, выделяют следующие группы белков:

Глобулярные белки. Пространственная структура этих белков в грубом приближении может быть представлена в виде шара или не слишком вытянутого эллипсоида - глоб у лы . Как правило, значительная часть полипептидной цепи таких белков формирует -спирали и -складки. Соотношение между ними может быть самым различным. Например, у миоглобина (подробнее о нем на стр.28) имеется 5 -спиральных сегментов и нет ни одной -складки. У иммуноглобулинов (подробнее на стр.42), наоборот, основными элементами вторичной структуры являются -складки, а -спирали вообще отсутствуют. В вышеприведенной структуре фосфоглицераткиназы и те и другие типы структур представлены примерно одинаково. В некоторых случаях, как это видно на примере фосфоглицераткиназы, отчетливо просматриваются две или более четко разделеннные в пространстве (но тем не менее, конечно, связанные пептидными мостиками) части - домены. Зачастую различные функциональные зоны белка разнесены по разным доменам.

Фибриллярные белки. Эти белки имеют вытянутую нитевидную форму, они выполняют в организме структурную функцию. В первичной структуре они имеют повторяющиеся участки и формируют достаточно однотипную для всей полипептидной цепи вторичнкю структуру. Так, белок -креатин (основной белковый компонент ногтей, волос, кожи) построен из протяженных -спиралей. Фиброин шелка состоит из периодически повторяющихся фрагментов Gly - Ala - Gly - Ser , образующими -складки. Существуют менее распростаненные элементы вторичной структуры, пример - полипептидные цепи коллагена, образующие левые спирали с параметрами, резко отличающимися от параметров -спиралей. В коллагеновых волокнах три спиральные полипептидные цепи скручены в единую правую суперспираль:

4.4 Четвертичная структура

В большинстве случаев для функционирования белков необходимо, чтобы несколько полимерных цепей были объединены в единый комплекс. Такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц . Субъединичная структура часто фигурирует в научной литературе как четвертичная структура.

Белки, состоящие из нескольких субъединиц, широко распространены в природе. Классический пример - четвертичная структура гемоглобина (подробнее - стр.26). субъединицы принято обозначать греческими буквами. У гемоглобина имеется по две и субъединицы. Наличие нескольких субъединиц важно в функциональном отношении - это увеличивает степень насыщения кислородом. Четвертичную структуру гемоглобина обозначают как 2 2 .

Субъединичное строение свойственно многим ферментам, в первую очередь тем, которые выполняют сложные функции. Например, РНК-полимераза из E . coli имеет субъединичную структуру 2 ", т.е. построен из четырех разнотипных субъединиц, причем -субъединица продублирована. Этот белок выполняет сложные и разнообразные функции - инициирует ДНК, связывает субстраты - рибонуклеозидтрифосфаты, а также переносит нуклеотидные остатки на растущую полирибонуклеотидную цепь и некоторые другие функции.

Работа многих белков подвержена т.н. аллостерической регуляции - специальные соединения (эффекторы) “выключают” или “включают” работу активного центра фермента. Такие ферменты имеют специальные участки опознавания эффектора. И даже существуют специальные регуляторные субъединицы , в состав которых в том числе входят указанные участки. Классический пример - ферменты протеинкиназы, катализирующие перенос остатка фосфорной к-ты от молекулы АТФ на белки-субстраты.

ГЛАВА 5. СВОЙСТВА

Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а следовательно и белков, могут присоединяться различные соединения и ионы, что обеспечивает их транспорт по крови.

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков - мономеров. Соответственно и молекулярная масса белков находится в пределах 10 000 - 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин - 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.

Определение молекулярной массы проводится различными методами: осмометрическим, гельфильтрационным, оптическим и др. однако наиболее точным является метод седиментации, предложенный Т. Сведбергом. Он основан на том, что при ультрацентрифугировании ускорением до 900 000 g скорость осаждения белков зависит от их молекулярной массы.

Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные - радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 - 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 - 7) подавляется диссоциация кислотных групп и белок становится катионом.

Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8 - 5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36 - 7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах - следовательно существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма. К таким системам относится рассматриваемая в гл. “ Классификация” гемоглобиновая буферная система (стр.28). Изменение рН крови более чем на 0,07 свидетельствует о развитии патологического процесса. Сдвиг рН в кислую сторону называется ацидозом, а в щелочную - алкалозом.

Важное значение для организма имеет способность белков адсорбироватьь на своей поверхности некоторые вещества и ионы (гормоны, витамины, железо, медь), которые либо плохо растворимы в воде, либо являются токсичными (билирубин, свободные жирные кислоты). Белки транспортируют их по крови к местам дальнейших превращений или обезвреживания.

Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

...

Подобные документы

    Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат , добавлен 15.05.2007

    Основные особенности метаболических процессов. Обмен веществ и энергии. Общая характеристика, классификация, функции, химический состав и свойства белков, их биологическая роль в построении живой материи. Структурные и сложные белки. Способы их осаждения.

    презентация , добавлен 24.04.2013

    Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

    реферат , добавлен 18.06.2010

    Физические, биологические и химические свойства белков. Синтез и анализ белков. Определение первичной, вторичной, третичной и четвертичной структуры белков. Денатурация, выделение и очистка белков. Использование белков в промышленности и медицине.

    реферат , добавлен 10.06.2015

    Белки - высокомолекулярные органические соединения, их аминокислотный состав. Определение свойств белков их составом и структурой белковой молекулы. Характеристика основных функций белков. Органоиды клетки и их функции. Клеточное дыхание и его строение.

    контрольная работа , добавлен 24.06.2012

    Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация , добавлен 14.04.2014

    Биологическая роль воды. Функции минеральных солей. Простые и сложные липиды. Уровни организации белков. Строительная, энергетическая, запасающая и регуляторная функции липидов. Структурная, каталитическая, двигательная, транспортная функции белков.

    презентация , добавлен 21.05.2015

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.

    презентация , добавлен 14.12.2014

    Белки как источники питания, их основные функции. Аминокислоты, участвующие в создании белков. Строение полипептидной цепи. Превращения белков в организме. Полноценные и неполноценные белки. Структура белка, химические свойства, качественные реакции.

Белки являются сложными органическими соединениями, состоящими из аминокислот. Химический анализ показал, что белки состоят из следующих элементов:

    Углерод 50-55 %

    Водород 6-7 %

    Кислород 21-23 %

    Азот 15-17 %

    Сера 0,3-2,5 %.

В составе отдельных белков обнаружены также фосфор, йод, железо, медь и др. макро- и микровещества.

Содержание основных химических элементов может различаться в отдельных белках, исключение составляет азот, среднее количество которого характеризуется наибольшим постоянством и составляет 16 %. В связи с этим существует способ определения количества белка по входящему в его состав азоту. Зная, что 6,25 грамм белка содержит 1 грамм азота, можно найти количество белка, умножив найденное количество азота на коэффициент 6,25.

2. 4. Аминокислоты.

Аминокислоты – карбоновые кислоты альфа-углеродный атом водорода которых замещен на аминогруппу. Белки состоят из аминокислот. В настоящее время известно более 200 различных аминокислот. В организме человека их около 60, а в состав белков входят только 20 аминокислот, которые называют природными или протеиногенными. 19 из них являются альфа-аминокислотами, это означает, что аминогруппа присоединена к альфа-углеродному атому карбоновой кислоты. Общая формула этих аминокислот выглядит следующим образом.

Только аминокислота пролин не соответствует этой формуле, её относят к иминокислотам.

Химические названия аминокислот, для краткости сокращают, например, глутаминовая кислота ГЛУ, серин СЕР и т.д. для записи первичной структуры белков в последнее время стали пользоваться только однобуквенными символами.

Во всех аминокислотах есть общие группировки: -СН2, -NН2, -СООН, они придают общие химические свойства белкам, и радикалы, химическая природа которых разнообразна. Именно они определяют структурные и функциональные особенности аминокислот.

Классификации аминокислот основана на их физико-химических свойствах.

По строению радикалов:

    Циклические - гомоциклические ФЕН, ТИР, гетероциклические ТРИ, ГИС.

    Ациклические – моноаминомонокарбоновые ГЛИ, АЛА, СЕР, ЦИС, ТРЕ, МЕТ, ВАЛ, ЛЕЙ, ИЛЕЙ,НЛЕЙ, моноаминодикарбоновые АСП, ГЛУ, диаминомонокарбоновые ЛИЗ, АРГ.

По образованию в организме:

    Заменимые – могут синтезироваться в организме из веществ белковой и небелковой природы.

    Незаменимые – не могут синтезироваться в организме, поэтому должны поступать только с пищей – все циклические аминокислоты, ТРЕ, ВАЛ, ЛЕЙ, ИЛЕЙ.

Биологическое значение аминокислот:

    Входят в состав белков организма человека.

    Входят в состав пептидов организма человека.

    Из аминокислот образованы в организме многие низкомолекулярные биологически активные вещества: ГАМК, биогенные амины и т.д.

    Часть гормонов в организме – производные аминокислот (гормоны щитовидной железы, адреналин).

    Предшественники азотистых оснований, входящих в состав нуклеиновых кислот.

    Предшественники порфиринов, идущих на биосинтез гема для гемоглобина и миоглобина.

    Предшественники азотистых оснований, входящих в состав сложных липидов (холина, этаноламина).

    Участвуют в биосинтезе медиаторов в нервной системе (ацетилхолин, дофамин, серотонин, норадреналин и др.).

Свойства аминокислот:

    Хорошо растворимы в воде.

    В водном растворе существуют в виде равновесной смеси биполярного иона, катионной и анионной форм молекулы. Равновесие зависит от рН среды.

NH3-CH-COOH NH3-CH-COO NH2-CH-COO

R + ОН R R + Н

Катионная форма Биполярный ион Анионная форма

Щелочная среда рН Кислая среда

    Способны двигаться в электрическом поле, что используется для разделения аминокислот с помощью электрофореза.

    Проявляют амфотерные свойства.

    Могут играть роль буферной системы, т.к. могут реагировать как слабое основание и слабая кислота.

Cодержание:

Что такое белок и какие функции в организме он берет на себя. Какие элементы входят в его состав и в чем особенность этого вещества.

Белки – главный строительный материал в человеческом организме. Если рассматривать в целом, то эти вещества составляют пятую часть нашего тела. В природе известна группа подвидов – только в теле человека содержится пять миллионов разных вариантов. С его участием формируются клетки, считающиеся главной составляющей частью живых тканей организма. Какие элементы входят в состав белков и в чем особенность вещества?

Тонкости состава

Молекулы белка в теле человека отличаются строением и берут на себя определенные функции. Так, главным сократительным белком считается миозин, который формирует мускулатуру и гарантирует передвижение тела. Он обеспечивает работу кишечника и движение крови по сосудам человека. Не менее важное вещество в организме – креатин. Функция вещества состоит в защите кожи от негативных действий – лучевых, температурных, механических и прочих. Также креатин защищает от поступления микробов извне.

В состав белков входят аминокислоты. При этом первая из них открыта в начале XIX века, а весь аминокислотный состав известен ученым с 30-х годов прошлого века. Интересно, что из двух сотен аминокислот, которые открыты сегодня, только два десятка формируют миллионы различных по структуре белков.

Главное отличие структуры – в наличии радикалов, имеющих различную природу. Кроме того, аминокислоты часто классифицируются с учетом электрического заряда. Каждая из рассматриваемых составляющих имеет общие характеристики – способность вступать в реакцию со щелочами и кислотами, растворимость в воде и так далее. Почти все представители аминокислотной группы участвуют в метаболических процессах.

Рассматривая состав белков, стоит выделить две категории аминокислот – заменимые и незаменимые. Они отличаются между собой способностью синтезироваться в организме. Первые вырабатываются в органах, что гарантирует хотя бы частичное покрытие текущего дефицита, а вторые – поступают только с едой. Если количество любой из аминокислот снижается, то это приводит к нарушениям, а иногда и к гибели.

Белок, в котором присутствует полный аминокислотный набор, носит название «биологически полноценный». Такие вещества входят в состав животной пищи. Полезными исключениями считаются и некоторые представители растений – например, фасоль, горох и соя. Главный параметр, по которому судят о пользе продукта – биологическая ценность. Если в роли основы рассматривать молоко (100% ), то для рыбы или мяса этот параметр будет равен 95 , для риса – 58 , хлеба (только ржаного) – 74 и так далее.

Незаменимые аминокислоты, входящие в состав белка, участвуют в синтезе новых клеток и ферментов, то есть они покрывают пластические нужды и применяются в роли главных источников энергии. В состав белков входят элементы, которые способны к превращениям, то есть процессам декарбоксилирования и переаминирования. В упомянутых выше реакциях участвуют две группы аминокислот (карбоксильная и аминная).

Наиболее ценным и полезным для организма считается яичный белок, структура и свойства которого идеально сбалансированы. Вот почему процентное содержание аминокислот в этом продукте почти всегда берется за основу при сравнении.

Выше упоминалось, что белки состоят из аминокислот, и главную роль играют независимые представители. Вот некоторые из них:

  • Гистидин – элемент, который получен в 1911 году. Его функция направлена на нормализацию условно-рефректорной работы. Гистидин играет роль источника для образования гистамина – ключевого медиатора ЦНС, участвующего в передаче сигналов к разным участкам организма. Если остаток этой аминокислоты снижается ниже нормы, то подавляется выработка гемоглобина в костном мозге человека.
  • Валин – вещество, открытое в 1879 году, но окончательно расшифрованное только через 27 лет. В случае его нехватки нарушается координация, кожные покровы становятся чувствительными к внешним раздражителям.
  • Тирозин (1846 год). Белки состоят из многих аминокислот, но этот играет одну из ключевых функций. Именно тирозин считается главным предшественником следующих соединений – фенол, тирамин, щитовидная железа и прочих.
  • Метионин синтезирован только к концу 20-х годов прошлого века. Вещество помогает в синтезе холина, защищает печень от чрезмерного образования жира, имеет липотропное действие. Доказано, что такие элементы играют ключевую роль в борьбе с атеросклерозом и в регулировании уровня холестерина. Химическая особенность метионина и в том, что он участвует в выработке адреналина, входит во взаимодействие с витамином В.
  • Цистин – вещество, строение которого установлено только к 1903 году. Его функции направлены на участие в химических реакциях, обменных процессах метионина. Также цистин вступает в реакцию с серосодержащими веществами (ферментами).
  • Триптофан – незаменимая аминокислота, что входит в состав белков. Ее удалось синтезировать к 1907 году. Вещество участвует в обмене белка, гарантирует оптимальный азотистый баланс в организме человека. Триптофан участвует в выработке сывороточных белков крови и гемоглобина.
  • Лейцин – одна из наиболее «ранних» аминокислот, известная с начала XIX века. Ее действие направлено на помощь организму в росте. Нехватка элемента приводит к нарушению работы почек и щитовидки.
  • Изолейцин – ключевой элемент, участвующий в азотистом балансе. Ученые открыли аминокислоту только в 1890 году.
  • Фенилаланин синтезирован в начале 90-х годов XIX века. Вещество считается основой при формировании гормонов надпочечников и щитовидки. Дефицит элемента – главная причина гормональных сбоев.
  • Лизин получен только в начале XX века. Нехватка вещества приводит к накоплению кальция в костных тканях, уменьшению объема мускулатуры в организме, развитию анемии и так далее.

Стоит выделить и химический состав белков. Это не удивительно, ведь рассматриваемые вещества относятся к химическим соединениям.

  • углерод – 50-55%;
  • кислород – 22-23%;
  • азот – 16-17%;
  • водород – 6-7%;
  • сера – 0,4-2,5%.

Кроме перечисленных выше, в состав белков входят следующие элементы (в зависимости от типа):

  • медь;
  • железо;
  • фосфор;
  • микро- и макровещества.

Химическое содержание различных белков отличается. Единственное исключение – азот, содержание которого всегда 16-17%. По этой причине уровень содержания вещества определяется именно по процентному содержанию азота. Процесс вычисления следующий. Ученые знают, что в 6,25 граммах белка содержится один грамм азота. Чтобы определить белковый объем, достаточно умножить текущее количество азота на 6,25.

Тонкости строения

При рассмотрении вопроса, из чего состоят белки, стоит изучить и структуру этого вещества. Выделяют:

  • Первичную структуру. За основу берется чередование аминокислот в составе. Если включается или «выпадает» хотя бы один элемент, то формируется новая молекула. Благодаря такой особенности, общее число последних достигает астрономической цифры.
  • Вторичную структуру. Особенность молекул в составе белка такова, что они находятся не в растянутом состоянии, а имеют различные (иногда сложные) конфигурации. Благодаря этому, жизнедеятельность клетки упрощается. Вторичная структура имеет вид спирали, сформированной из равномерных витков. При этом соседние витки отличаются тесной водородной связью. В случае многократного повторения устойчивость возрастает.
  • Третичная структура формируется, благодаря способности упомянутой спирали укладываться в клубок. Стоит знать, что состав и строение белков во многом зависит от первичной структуры. Третичная база, в свою очередь, гарантирует удержание качественных связей между аминокислотами с различными зарядами.
  • Четвертичная структура характерна для некоторых белков (гемоглобина). Последний формирует не одну, а несколько цепей, которые отличаются по первичной структуре.

Секрет молекул белка – в общей закономерности. Чем больше структурный уровень, тем хуже удерживаются между собой образующиеся химические связи. Так, вторичная, третичная и четвертичная структуры подвержены действию радиации, высоких температур и прочих условий окружающей среды. Итогом часто становится нарушение строения (денатурация). При этом простой белок в случае изменения структуры способен к быстрому восстановлению. Если же вещество подверглось негативному температурному действию или влиянию других факторов, то процесс денатурации необратим, а само вещество не подлежит восстановлению.

Свойства

Выше рассмотрено, что такое белки, определение этих элементов, структура и прочие важные вопросы. Но информация будет неполной, если не выделить главные свойства вещества (физические и химические).

Молекулярная масса белка – от 10 тысяч до одного миллиона (здесь многое зависит от типа). Кроме того, они растворимы в воде.

Отдельно стоит выделить общие черты белка с каллоидными растворами:

  • Способность к набуханию. Чем больше вязкость состава, тем выше молекулярная масса.
  • Медленная диффузия.
  • Способность к диализу, то есть делению аминокислотных групп на другие элементы при помощи мембран полупроницаемого типа. Главное отличие рассматриваемых веществ – их неспособность проходить через мембраны.
  • Двухфакторная устойчивость. Это значит, что белок по структуре гидрофилен. Заряд вещества напрямую зависит, из чего состоит белок, числа аминокислот и их свойств.
  • Размер каждой из частиц составляет 1-100 нм.

Также белки имеют определенные сходства с истинными растворами. Главное – в способности образования гомогенных систем. При этом процесс формирования самопроизвольный и не нуждается в дополнительном стабилизаторе. Кроме того, белковые растворы обладают термодинамической устойчивостью.

Ученые выделяют особые аморфные свойства рассматриваемых веществ. Объясняется это наличием аминогруппы. Если белок представлен в виде водного раствора, то в нем существуют в равной степени различные смеси – катионная, биполяного иона, а также анионная форма.

Также к свойствам белка стоит отнести:

  • Способность играть роль буфера, то есть реагировать аналогично слабой кислоте или основанию. Так, в организме человека присутствует два типа буферных систем – белковая и гемоглобиновая, участвующие в нормализации уровня гомеостаза.
  • Перемещение в электрическом поле. В зависимости от количества аминокислот в белке, их массы и заряда меняется и скорость движения молекул. Такая функция применяется для разделения с помощью электрофореза.
  • Высаливание (обратное осаждение). Если добавить к белковому раствору ионы аммония, щелочноземельные металлы и щелочные соли, эти молекулы и ионы конкурируют между собой за воду. На этом фоне гидратная оболочка удаляется, а белки перестают быть устойчивыми. В итоге они выпадают в осадок. Если же добавить определенный объем воды, то возможно восстановление гидратной оболочки.
  • Чувствительность к внешнему воздействию. Стоит отметить, что в случае негативного внешнего влияния белки разрушаются, что приводит к потере многих химических и физических свойств. Кроме того, денатурация становится причиной разрыва главных связей, стабилизирующих все уровни структуры белка (кроме первичного).

Причин денатурации множество – негативное влияние органических кислот, действие щелочей или ионов тяжелых металлов, негативное влияние мочевины и различных восстановителей, приводящих к разрушению мостиков дисульфидного типа.

  • Наличие цветных реакций с разными химическими элементами (зависит от аминокислотного состава). Такое свойство применяется в лабораторных условиях, когда требуется определить общее количество белка.

Итоги

Белок – ключевой элемента клетки, обеспечивающий нормальное развитие и рост живого организма. Но, несмотря на изученность вещества учеными, впереди предстоит еще много открытий, позволяющих глубже узнать тайну человеческого организма и его строения. Пока же каждый из нас должен знать, где образуются белки, в чем их особенности и для каких целей они необходимы.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Химический состав белков.

3.1. Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO – . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

3.2. Элементный состав белков

Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза – длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110  С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего – хроматографию (подробнее – глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

3.3. Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты – это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу – NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

H – C  – NH 2

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: – CH 2 , – NH 2 , – COOH. Боковые же цепи (радикалы – R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO ) имеют хиральный атом C  и могут существовать в виде двух энантиомеров (оптических изомеров):

COO – COO –

NH 3 + R R NH 3 +

L -изомер D -изомер

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO  и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна – из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

GIVEQCCA SVCSLY QLENYCN

FVNQHLC GSHLVEALYLVC GERGFFYTPKA

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

N – CH – CO – N – CH – CO –

CH 2 CH 2 CH 2 CH 2

CH 2 CHOH

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани – коллагена .

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

– NH – CH – CO – – NH – CH – CO –

CH 2 OH CH 2 OPO 3 2 –

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

    Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

    Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

    Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (– SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

    Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины,креатина.

Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так

фенил-аланин служит основным источником синтеза тирозина – предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Свойства

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков – мономеров.

Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а Соответственно и молекулярная масса белков находится в пределах 10 000 – 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин – 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.