» » Как выглядит перпендикулярная прямая. Перпендикулярность прямых в пространстве

Как выглядит перпендикулярная прямая. Перпендикулярность прямых в пространстве























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель : знать, понимать и уметь применять признак перпендикулярности прямой и плоскости.

Задачи :

  • повторить определения перпендикулярности прямых, прямой и плоскости.
  • повторить утверждения о перпендикулярности параллельных прямых.
  • ознакомить с признаком перпендикулярности прямой и плоскости.
  • понимать необходимость применения признака перпендикулярности прямой и плоскости.
  • уметь находить данные позволяющие применять признак перпендикулярности прямой и плоскости.
  • тренировать внимательность, аккуратность, логическое мышление, пространственное воображение.
  • воспитывать чувство ответственности.

Оборудование: компьютер, проектор, экран.

План урока

1. Организационный момент. (сообщить тему, мотивация, сформулировать цель урока)

2. Повторение ранее изученного материала и теорем (актуализация прежних знаний учащихся: формулировки определений и теорем с последующим пояснением или применением на готовом чертеже).

3. Изучение нового материала как усвоение нового знания (формулировка, доказательство).

4. Первичное закрепление (фронтальная работа, самоконтроль).

5. Повторный контроль (работа с последующей взаимопроверкой).

6. Рефлексия.

7. Домашнее задание.

8. Подведение итогов.

Ход урока

1. Организационный момент

Cообщить тему урока (слайд 1): Признак перпендикулярности прямой и плоскости

Мотивация: на прошлом уроке мы дали определение прямой, перпендикулярной плоскости, но применять его не всегда удобно (слайд 2).

Формулирование цели: знать, понимать и уметь применять признак перпендикулярности прямой и плоскости (слайд 3)

2. Повторение раннее изученного материала

Учитель: Давайте вспомним, что мы уже знаем о перпендикулярности в пространстве.

Математический диктант с пошаговой самопроверкой.

Начертите в тетради куб ABCDA’B’C’D’.

Каждое задание предполагает устную формулировку и запись Вашего примера в тетради.

1. Сформулируйте определение перпендикулярных прямых.

Приведите пример на чертеже куба (слайд 4).

2. Сформулируйте лемму о перпендикулярности двух параллельных прямых к третьей.

Докажите, что АА’ перпендикулярна DС (слайд 5).

3. Cформулируйте определение прямой, перпендикулярной плоскости.

Назовите прямую, перпендикулярную плоскости основания куба. (слайд 6)

4. Сформулируйте теоремы устанавливающие связь между параллельностью прямых и их перпендикулярности к плоскости. (слайд 7)

5. Решите задачу №1. (слайд 8)

Найдите угол между прямыми FO и АВ, если ABCDA’B’C’D’ - куб, точка О - точка пересечения диагоналей основания, F - середина А’С.

6. Рассмотрение домашней задачи №119(слайд 9) (устно)

Рассмотреть разные варианты решения: через доказательство равенства прямоугольных треугольников и свойство равнобедренного треугольника.

Постановка проблемы

Рассмотреть истинность утверждения:

  • Прямая перпендикулярна плоскости, если она перпендикулярна какой-нибудь прямой, лежащей в этой плоскости.
  • Прямая перпендикулярна плоскости, если она перпендикулярна каким-нибудь параллельным прямым, лежащим в этой плоскости. (слайд 10-11)

3. Изучение нового материала

Ученики предлагают варианты признака.

Формулируется признак перпендикулярности прямой и плоскости (слайд 12).

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

Доказательство.

1 этап (слайд 13).

Пусть прямая а пересекает плоскость в точке пересечения прямых p и q. Проведем через точку О прямую, параллельную m и произвольную прямую, так чтобы она пересекала все три прямые в точках P, Q, L.

APQ = BPQ (слайд 14)

APL= BPL (слайд 15)

Медиана LO является высотой (слайд 16)

В силу произвольности выбора прямой m доказано, что прямая а перпендикулярна плоскости

2 этап (слайд 17)

Прямая а пересекает плоскости в точке отличной от точки О.

Проведем прямую a’, такую что a || a’, и проходящую через точку О,

а так как a’ a по ранее доказанному,

то и a a

Теорема доказана

4. Первичное закрепление.

Итак, для того, чтобы утверждать, что прямая перпендикулярна плоскости, достаточно какого условия?

Очевидно, что столб перпендикулярен и шпалам и рельсам. (слайд 18)

Решим задачу №128. (слайд 19) (работа по группам, если справляются сами, то доказательство проговаривается устно, для слабых учеников используется подсказка на экране)

5. Повторный контроль.

Установите истинность утверждений (ответ И (истина), Л (ложь).) (слайд 20)

Прямая а проходит через центр круга.

Можно ли утверждать, что прямая а перпендикулярна кругу, если

  • она перпендикулярна диаметру
  • двум радиусам
  • двум диаметрам

6. Рефлексия

Ученики рассказывают основные этапы урока: какая проблема возникла, какое решение (признак) был предложен.

Учитель делает замечание о проверке вертикальности при строительстве (слайд 21).

7. Домашнее задание

П.15-17 №124, 126 (слайд 23)

8. Подведение итогов

  • Какова тема нашего урока?
  • Какова была цель?
  • Цель достигнута?

Приложение

В презентации использованы чертежи, сделанные с помощью программы “Живая математика” представленные в приложении 1 .

Литература

  1. Геометрия. 10-11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.
  2. С.М. Саакян В.Ф. Бутузов Изучение геометрии в 10-11 классах: методические рекомендации к учеб.: кн. для учителя.
  3. Т.В. Валаханович, В.В. Шлыков Дидактические материалы по геометрии: 11 класс: пособие для учителей общеобразоват. учреждений с рус. яз. обучения с 12 летним сроком обучения (базовый и повышенный уровни) Мн.
  4. Поурочные разработки по геометрии: 10 класс/ Сост. В.А. Яровенко.

Закрепим понятие перпендикулярности прямой и плоскости конспектом урока. Предоставим общее определение, сформулируем и приведём доказательства теоремы и решим несколько задач на закрепление материала.

Из курса геометрии известно: две прямые считаются перпендикулярными, когда они пересекаются под углом 90 о.

Вконтакте

Одноклассники

Теоретическая часть

Переходя к исследованию характеристик пространственных фигур, будем применять новое понятие.

Определение:

прямая будет называться перпендикулярной плоскости, когда она перпендикулярна прямой на поверхности, произвольно проходящей через точку пересечения.

Иначе говоря, если отрезок «АВ» перпендикулярен плоскости α, тогда угол пересечения со всяким отрезком, проведённым по данной поверхности через «С» точку прохождения «АВ» через плоскость α, будет 90 о.

Из вышесказанного вытекает теорема о признаке перпендикулярности прямой и плоскости:

в случае если прямая, проведённая через плоскость, будет перпендикулярна двум прямым, проведённым на плоскости через точку пересечения, то она перпендикулярна целой плоскости.

Говоря другими словами, если на рисунке 1 углы ACD и ACE равны 90 о, то и угол ACF тоже будет 90 о. Смотреть рисунок 3.

Доказательство

По условиям теоремы линия «а» проведена перпендикулярно линиям d и e. Иначе говоря, углы ACD и ACE равны 90 о. Приводить доказательства будем, исходя из свойств равенства треугольников. Смотреть рисунок 3.

Через точку C прохождения линии a через плоскость α прочертим линию f в произвольном направлении. Приведём доказательства, что она будет перпендикулярна отрезку AB или угол ACF будет 90 о.

На прямой a отложим отрезки одинаковой длины AC и AB. На поверхности α проведём линию x в произвольном направлении и не проходящую через место пересечения в точке «С». Линия «х» должна пересекать линии e, d и f.

Соединим прямыми точки F, D и E c точками A и B.

Рассмотрим два треугольника ACE и BCE. По условиям построения:

  1. Имеются две одинаковые стороны AC и BC.
  2. У них дна общая сторона CE.
  3. Два равных угла ACE и BCE — по 90 о.

Следовательно, по условиям равенства треугольников, если имеем две равные стороны и одинаковый угол между ними, то эти треугольники равны. Из равенства треугольников следует, что стороны AE и BE равны.

Соответственно доказывается равенство треугольников ACD и BCD, иначе говоря, равенство сторон AD и BD.

Теперь рассмотрим два треугольника AED и BED. Из ранее доказанного равенства треугольников следует, что у этих фигур есть одинаковые стороны AE с BE и AD с BD. Одна сторона ED общая. Из условия равенства треугольников, определённых по трём сторонам, следует, что углы ADE и BDE равны.

Сумма углов ADE и ADF составляет 180 о. Сумма углов BDE и BDF также будет 180 о. Так как углы ADE и BDE равны, то и углы ADF и BDF равны.

Рассмотрим два треугольника ADF и BDF. Они имеют по две равных стороны AD и BD (доказано ранее), DF общую сторону и по равному углу между ними ADF и BDF. Следовательно, эти треугольники имеют одинаковые по длине стороны. То есть сторона BF имеет ту же длину, что и сторона AF.

Если рассматривать треугольник AFB, то он будет равнобедренный (AF равняется BF), а прямая FC является медианой, так как по условиям построения сторона AC равняется стороне BC. Следовательно, угол ACF равняется 90 о. Что и следовало доказать.

Важным следствием из приведённой теоремы будет утверждение:

если две параллельные пересекают плоскость и одна из них составляет угол 90 о, то и вторая походит через плоскость под углом 90 о.

По условиям задачи a и b являются параллельными. Смотреть рисунок 4. Линия a перпендикулярна поверхности α. Отсюда следует, что линия b будет также перпендикулярна поверхности α.

Для доказательства через две точки пересечения параллельных прямых с плоскостью проведём на поверхности прямую c . По теореме о прямой, перпендикулярной плоскости, угол DAB будет 90 о. Из свойств параллельных прямых следует, что угол ABF тоже будет 90 о. Следовательно, по определению прямая b будет перпендикулярна поверхности α.

Использование теоремы для решения задач

Для закрепления материала, используя основополагающие условия перпендикулярности прямой и плоскости, решим несколько задач.

Задача № 1

Условия. Из точки A построить перпендикулярную линию плоскости α. Смотреть рисунок 5.

На поверхности α проведём произвольную прямую b. Через прямую b и точку A построим поверхность β. Из точки A на линию b проведём отрезок AB. Из точки B на поверхности α проведём перпендикулярную линию c .

Из точки A на линию с опустим перпендикуляр AC. Докажем, что эта линия будет перпендикулярна плоскости.

Для доказательства через точку C на поверхности α проведём линиюd, параллельную b, и через линию c и точку A построим плоскость. Линия AC перпендикулярна линии c по условию построения и перпендикулярна линии d, как следствие о двух параллельных линиях из теоремы о перпендикулярности, так как по условию линияb перпендикулярна поверхности γ.

Следовательно, по определению перпендикулярности линии и плоскости, построенный отрезок AC перпендикулярен поверхности α.

Задача № 2

Условия. Отрезок АВ перпендикулярен плоскости α. Треугольник BDF расположен на поверхности α и имеет следующие параметры:

  • угол DBF будет 90 о
  • сторона BD =12 см;
  • сторона BF =16 см;
  • BC - медиана.

Смотреть рисунок 6.

Найти длину отрезка АС, если АВ = 24 см.

Решение. По теореме Пифагора, гипотенуза или сторона DF равна квадратному корню из суммы квадратов катетов. Длина BD в квадрате равна 144 и, соответственно, BC в квадрате будет 256. В сумме 400; извлекая квадратный корень, получаем 20.

Медиана BC в прямоугольном треугольнике делит гипотенузу на две равные части и по длине равна этим отрезкам, то есть ВС = DC = CF = 10.

Снова используется теорема Пифагора, и получаем: гипотенуза C = 26, что является квадратным корнем из 675, суммы квадратов катетов 576 (АВ = 24 в квадрате) и 100 (ВС = 10 в квадрате).

Ответ: Длина отрезка АС равняется 26 см.

Определение перпендикулярных прямых

Перпендикулярные прямые.

Пусть а и b - прямые, пересекающиеся в точке А (рис. 1). Каждая из этих прямых точкой А делится на две полупрямые. Полупрямые одной прямой образуют с полупрямыми другой прямой четыре угла. Пусть альфа - один из этих углов. Тогда любой из остальных трех углов будет либо смежным с углом альфа, либо вертикальным с углом альфа.

Отсюда следует, что если один из углов прямой, то остальные углы тоже будут прямые, В этом случае мы говорим, что прямые пересекаются под прямым углом.
Определение.
Две прямые называются перпендикулярными, если они пересекаются под прямым углом (рис. 2).


Перпендикулярность прямых обозначается знаком ⊥ Запись а ⊥ b читается: Прямая а перпендикулярна прямой b.
Теорема.

Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну.

Доказательство.
Пусть а - данная прямая и А - данная точка на ней. Обозначим через ах одну из полупрямых прямой а с начальной точкой А (рис. 3). Отложим от полупрямой а1 угол (a1b1), равный 90°.
Тогда прямая, содержащая луч b1, будет перпендикулярна прямой а.


Допустим, что существует другая прямая, проходящая через точку А и перпендикулярная прямой а. Обозначим через с1 полупрямую этой прямой, лежащую в одной полуплоскости с лучом b2. Углы (a1b1) и (a1c1), равные каждый 90°, отложены в одну полуплоскость от полупрямой а1. Но от полупрямой а1 в данную полуплоскость можно отложить только один угол, равный 90°. Поэтому не может быть другой прямой, проходящей через точку А и перпендикулярной прямой а. Теорема доказана.

Определение.

Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра.
На рисунке 4 перпендикуляр АВ проведен из точки А к прямой а. Точка В - основание перпендикуляра.

Для построения перпендикуляра пользуются чертежным угольником (рис. 5).


Две пересекающиеся прямые называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла. Перпендикулярность прямых АС и ВD обозначается так: АС ⊥ ВD (читается: «Прямая АС перпендикулярна к прямой ВD»).
Отметим, что две прямые, перпендикулярные к третьей, не пересекаются (рис. 6,а). В самом деле, рассмотрим прямые АА1 и ВВ1, перпендикулярные к прямой РQ (рис. 6,б). Мысленно перегнем рисунок по прямой РQ так, чтобы верхняя часть рисунка наложилась на нижнюю. Так как прямые углы 1 и 2 равны, то луч РА наложится на луч РА1. Аналогично, луч QВ наложится на луч QB1. Поэтому, если предположить, что прямые АА1 и ВВ1 пересекаются в точке М, то эта точка наложится на некоторую точку М1 также лежащую на этих прямых (рис. 6,в), и мы получим, что через точки М и М1 проходят две прямые: АА1 и ВВ1. Но это невозможно. Следовательно, наше предположение неверно и, значит, прямые АА1 и ВВ1 не пересекаются.


Построение прямых углов на местности

Для построения прямых углов на местности применяют специальные приборы, простейшим из которых является экер. Экер представляет собой два бруска, расположенных под прямым углом и укрепленных на треножнике (рис. 7). На концах брусков вбиты гвозди так, что прямые, проходящие через них, взаимно перпендикулярны. Чтобы построить на местности прямой угол с заданной стороной ОА, устанавливают треножник с экером так, чтобы отвес находился точно над точкой О, а направление одного бруска совпало с направлением луча ОА. Совмещение этих направлений можно осуществить с помощью вехи, поставленной на луче. Затем провешивают прямую линию по направлению другого бруска (прямая ОВ на рисунке 7). Получается прямой угол АОВ.
В геодезии для построения прямых углов используются более совершенные приборы, например теодолит.


По горизонтали:
3 . Отрезок прямой, соединяющий точку окружности с ее центром. 6 . Утверждение, не требующее доказательства. 9 . Конструкция, система мысли. 10 . Вид четырехугольника. 15 . Отрезок прямой, соединяющий две точки кривой. 16 . Мера длины. 17 18 . Точка пересечения диаметров окружности. 19 . Тригонометрическая функция. 20 . Часть окружности. 21 . Старинная мера длины.
По вертикали:
1 . Символ какого-либо алфавита. 2 . Вид параллелограмма. 4 . Хорда, проходящая через центр окружности. 5 . Геометрический элемент. 7 . Луч, делящий угол пополам. 8 . Символ греческого алфавита. 10 . Сумма длин сторон треугольника. 11 . Вспомогательное предложение, используемое для доказательства. 12 . Элемент прямоугольного треугольника. 13 . Одна из замечательных линий треугольника. 14 . Тригонометрическая функция.

Есть такая задача:

В Заколдованном Лесу било 10 заколдованных источников - номер 1, 2, 3,... 10. Вода каждого источника была неотличима на цвет, вкус и запах от обычной воды, но являлась сильнейшим ядом. Выпивший её был обречён - если только в течение часа после этого не пил воды источника с бОльшим номером (например, от яда источника 3 спасали источники 4-10; яд 10-го источника не оставлял шансов на спсасение). Первые 9 источников были общедоступны, но источник 10 был в пещере Кащея Бессмертного, и доступ к нему имел только Кащей.
И вот однажды Иван-Дурак вызвал Кащея на поединок. Условия были простыми: каждый приносит с собой по стакану некоторой жидкости, соперники обмениваются стаканами и выпивают их содержимое. А дальше - справляются, как могут.
Кащей был доволен. Ещё бы: он даст Ивану яд номер 10, и Ивана ничто не сможет спасти. А сам он яд, данный Иваном, запьёт водой 10-го источника - и будет спасён.
Попробуйте разработать план дуэли для Ивана. Задача - остаться жить самому и прикончить Кащея.

Ответ 1. Угробить Кащея. Ему нужно дать не яд, а чистую воду. Он запьёт её своим ядом - и он обречён.
Ответ 2. Не угробиться самому. Любой яд, кроме номера 1, может являться и противоядием. Перед тем, как придти на дуэль, нужно выпить яд малого номера. И тогда яд номер 10, полученный от Кащея на дуэли, не убьёт, а спасёт.

Вообще, идея-то тривиальная. Не всегда можно взвесить поступок изолированно. Одно и то же действие может оказаться и ядом, и противоядием. Многое зависит от фона. Не буду говорить, что всё - но, несомненно, многое.
И когда вы слышите, что кто-то из ваших знакомых совершил Такую-То и Такую-То Гадости, не спешите вешать ярлыки. Уверены ли вы, что это именно гадости? Не может ли быть, что они просто выглядят так? Уверены ли вы, что фон этих действий вам известен?

Построение перпендикулярной прямой

Сейчас мы с вами с помощью циркуля попробуем построить перпендикулярную прямую. Для этого у нас есть точка О и прямая а.



На первом рисунке изображена прямая на которой лежит точка О, а на втором данная точка не лежит на прямой а.

Теперь давайте по отдельности рассмотрим эти оба варианта.

1-й вариант

Вначале мы берем циркуль, ставим его в центр точки О и чертим окружность с произвольным радиусом. Теперь мы видим, что данная окружность пересекает прямую а в двух точках. Пускай это будут точки А и В.


Далее, мы берем и проводим окружности из точек А и В. Радиус этих окружностей будет АВ, а вот точка С будет точкой пересечения этих окружностей. Если вы помните, то в самом начале мы с вами получили точки А и В, когда чертили окружность и брали произвольный радиус.



В итоге мы видим, что искомая перпендикулярная прямая проходит через точки С и О.

Доказательство

Для данного доказательства нас нужно провести отрезки AC и CB. И мы видим, что образовавшиеся треугольники равны: Δ ACO = Δ BCO, это следует из третьего признака равенства треугольников, то есть у нас выходит, что AO = OB, AC = CB, а СО общая по построению. Образовавшиеся углы ∠ COA и ∠ COB равны и оба имеют величину, равную 90 °. Из этого следует, что прямая CO перпендикулярна AB.



Отсюда мы можем сделать вывод, что углы, образованные при пересечении двух прямых являются перпендикулярными в том случае, если хотя бы один из них перпендикулярен, а это значит, что такой угол равен 90 градусам и является прямым.

2-й вариант

А сейчас давайте рассмотрим вариант построения перпендикулярной прямой, где данная точка не лежит на прямой а.

В этом случае мы с помощью циркуля из точки О проводим окружность с таким радиусом, чтобы эта окружность пересекала прямую а. А точки А и В пускай будут точками пересечения этой окружности с данной прямой а.


Далее, мы берем такой же радиус, но проводим окружности, центром которых будут точки A и B. Смотрим на рисунок и видим, что у нас появилась точка О1, которая также является точкой пересечения окружностей и лежит в полуплоскости, но отличной от той, в которой находится точка О.



Следующее, что мы сделаем, так это через точки O и O1проведем прямую. Это и будет та перпендикулярная прямая, которую мы искали.

Доказательство

Припустим, что точкой пересечения прямых OO1 и AB является точка С. Тогда треугольники AOB и BO1A равны по третьему признаку равенства треугольников и AO = OB = AO1 = O1B, а АВ является общей по построению. Из этого следует, что углы OAС и O1AC равны. Треугольники OAC и O1AC, следуя из первого признака равенства треугольников AO равняется AO1, а по построению, углы OAС и O1AC равны при общей AС. Следовательно, что угол OСA равен углу O1CA, но а так как они смежные, то значит прямые. Поэтому, делаем вывод, что OC является перпендикуляром, который опущенный из точки O на прямую a.

Вот так, только с помощью циркуля и линейки, можно легко построить перпендикулярные прямые. И не важно, где находится точка, через которую должен проходит перпендикуляр, на отрезке или вне этого отрезка, главное в этих случаях верно найти и обозначить первоначальные точки А и В.

Вопросы:

  1. Какие прямые называются перпендикулярными?
  2. Какой угол между перпендикулярными прямыми?
  3. Чем пользуються для построения перпендикулярных прямых?
Предмети > Математика > Математика 7 класс

Перпендикулярность в пространстве могут иметь:

1. Две прямые

3. Две плоскости

Давай по очереди рассмотрим эти три случая: все относящиеся к ним определения и формулировки теорем. А потом обсудим очень важную теорему о трёх перпендикулярах.

Перпендикулярность двух прямых.

Определение:

Ты можешь сказать: тоже мне, открыли Америку! Но вспомни, что в пространстве всё не совсем так, как на плоскости.

На плоскости перпендикулярными могут оказаться только такие прямые (пересекающиеся):

А вот перпендикулярность в пространстве двух прямых может быть даже в случае если они не пересекаются. Смотри:

прямая перпендикулярна прямой, хотя и не пересекается с нею. Как так? Вспоминаем определение угла между прямыми: чтобы найти угол между скрещивающимися прямыми и, нужно через произвольную точку на прямой a провести прямую. И тогда угол между и (по определению!) будет равен углу между и.

Вспомнили? Ну вот, а в нашем случае - если окажутся перпендикулярны прямые и, то нужно считать перпендикулярными прямые и.

Для полной ясности давай рассмотрим пример. Пусть есть куб. И тебя просят найти угол между прямыми и. Эти прямые не пересекаются - они скрещиваются. Чтобы найти угол между и, проведём.

Из-за того, что - параллелограмм (и даже прямоугольник!), получается, что. А из-за того, что - квадрат, выходит, что. Ну, и значит.

Перпендикулярность прямой и плоскости.

Определение:

Вот картинка:

прямая перпендикулярна плоскости, если она перпендикулярна всем-всем прямым в этой плоскости: и, и, и, и даже! И ещё миллиарду других прямых!

Да, но как же тогда вообще можно проверить перпендикулярность в прямой и плоскости? Так и жизни не хватит! Но на наше счастье математики избавили нас от кошмара бесконечности, придумав признак перпендикулярности прямой и плоскости .

Формулируем:

Оцени, как здорово:

если найдутся всего лишь две прямые (и) в плоскости, которым перпендикулярна прямая, то эта прямая сразу окажется перпендикулярна плоскости, то есть всем прямым в этой плоскости (в том числе и какой-то стоящей сбоку прямой). Это очень важная теорема, поэтому нарисуем её смысл ещё и в виде схемы.

И опять рассмотрим пример .

Пусть нам дан правильный тетраэдр.

Задача: доказать, что. Ты скажешь: это же две прямые! При чём же здесь перпендикулярность прямой и плоскости?!

А вот смотри:

давай отметим середину ребра и проведём и. Это медианы в и. Треугольники - правильные и.

Вот оно, чудо: получается, что, так как и. И далее, всем прямым в плоскости, а значит, и. Доказали. И самым главным моментом оказалось именно применение признака перпендикулярности прямой и плоскости.

Когда плоскости перпендикулярны

Определение:

То есть (подробнее смотри в теме «двугранный угол») две плоскости (и) перпендикулярны, если окажется, что угол между двумя перпендикулярами (и) к линии пересечения этих плоскостей равен. И есть теорема, которая связывает понятие перпендикулярных плоскостей с понятием перпендикулярность в пространстве прямой и плоскости.

Теорема эта называется

Критерий перпендикулярности плоскостей.

Давай сформулируем:

Как всегда, расшифровка слов «тогда и только тогда» выглядит так:

  • Если, то проходит через перпендикуляр к.
  • Если проходит через перпендикуляр к, то.

(естественно, здесь и - плоскости).

Эта теорема - одна из самых важных в стереометрии, но, к сожалению, и одна из самых непростых в применении.

Так что нужно быть очень внимательным!

Итак, формулировка:

И снова расшифровка слов «тогда и только тогда». Теорема утверждает сразу две вещи (смотри на картинку):

давай попробуем применить эту теорему для решения задачи.

Задача : дана правильная шестиугольная пирамида. Найти угол между прямыми и.

Решение:

Из-за того, что в правильной пирамиде вершина при проекции попадает в центр основания, оказывается, что прямая - проекция прямой.

Но мы знаем, что в правильном шестиугольнике. Применяем теорему о трёх перпендикулярах:

И пишем ответ: .

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ В ПРОСТРАНСТВЕ. КОРОТКО О ГЛАВНОМ

Перпендикулярность двух прямых.

Две прямые в пространстве перпендикулярны, если угол между ними.

Перпендикулярность прямой и плоскости.

Прямая перпендикулярна плоскости, если она перпендикулярна всем прямым в этой плоскости.

Перпендикулярность плоскостей.

Плоскости перпендикулярны, если двугранный угол между ними равен.

Критерий перпендикулярности плоскостей.

Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.

Теорема о трех перпендикулярах:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .