» » Какие виды индикаторных диаграмм вы знаете. Принцип действия и индикаторная диаграмма двухтактного дизеля

Какие виды индикаторных диаграмм вы знаете. Принцип действия и индикаторная диаграмма двухтактного дизеля

Построение индикаторных диаграмм

Индикаторные диаграммы строятся в координатах p-V .

Построение индикаторной диаграммы двигателя внутреннего сгорания производится на основании теплового расчета.

В начале построения на оси абсцисс откладывают отрезок АВ, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе, который в зависимости от величины хода поршня проектируемого двигателя может быть принят 1:1, 1,5:1 или 2:1.

Отрезок ОА, соответствующий объему камеры сгорания,

определяется из соотношения:

Отрезок z"z для дизелей (рис. 3.4) определяется по уравнению

Z,Z=OA(p-1)=8(1,66-1)=5.28мм, (3.11)

давлений = 0,02; 0,025; 0,04; 0,05; 0,07; 0,10 МПа в мм так, чтобы

получить высоту диаграммы, равную 1,2…1,7 ее основания.

Затем по данным теплового расчета на диаграмме откладывают в

выбранном масштабе величины давлений в характерных точках а, с, z", z,

b, r. Точка z для бензинового двигателя соответствует pzT .

Индикаторная диаграмма четырехтактного дизельного двигателя

По наиболее распространенному графическому методу Брауэра политропы сжатия и расширения строят следующим образом.

Из начала координат проводят луч ОК под произвольным углом к оси абсцисс (рекомендуется приинмать = 15…20°). Далее из начала координат проводят лучи ОД и ОЕ под определенными углами и к оси ординат. Эти углы определяют из соотношений

0.46 = 25°, (3.13)

Политропу сжатия строят с помощью лучей ОК и ОД. Из точки С проводят горизонталь до пересечения с осью ординат; из точки пересечения - линию под углом 45° к вертикали до пересечения с лучом ОД, а из этой точки - вторую горизонтальную линию, параллельную оси абсцисс.

Затем из точки С проводят вертикальную линию до пересечения с лучом ОК. Из этой точки пересечения под углом 45?°к вертикали проводим линию до пересечения с осью абсцисс, а из этой точки??вторую вертикальную линию, параллельную оси ординат, до пересечения со второй горизонтальной линией. Точка пересечения этих линий будет промежуточной точкой 1 политропы сжатия. Точку 2 находят аналогично, принимая точку 1 за начало построения.

Политропу расширения строят с помощью лучей ОК и ОЕ, начиная от точки Z", аналогично построению политропы сжатия.

Критерием правильности построения политропы расширения является приход ее в ранее нанесенную точку b.

Следует иметь в виду, что построение кривой политропы расширения следует начинать с точки z , а не z..

После построения политропы сжатия и расширения производят

скругление индикаторной диаграммы с учетом предварения открытия выпускного клапана, опережения зажигания и скорости нарастания давления, а также наносят линии впуска и выпуска. Для этой цели под осью абсцисс проводят на длине хода поршня S как на диаметре полуокружность радиусом R=S/2. Из геометрического центра Оґ в сторону н.м.т. откладывается отрезок

где L - длина шатуна, выбирается из табл. 7 или по прототипу.

Луч О 1.С 1 проводят под углом Q о =, 30° соответствующим углу

опережения зажигания (= 20…30° до в.м.т.), а точку С 1 сносят на

политропу сжатия, получая точку c1.

Для построения линий очистки и наполнения цилиндра откладывают луч О 1?В 1 под углом g =66°. Этот угол соответствует углу предварения открытия выпускного клапана или выпускных окон. Затем проводят вертикальную линию до пересечения с политропой расширения (точка b 1?).

Из точки b 1. проводят линию, определяющую закон изменения

давления на участке индикаторной диаграммы (линия b 1.s ). Линия аs ,

характеризующая продолжение очистки и наполнения цилиндра, может

быть проведена прямой. Следует отметить, что точки s. b 1. можно также

найти по величине потерянной доли хода поршня y .

as =y .S . (3.16)

Индикаторная диаграмма двухтактных двигателей так же, как и двигателей с наддувом, всегда лежит выше линии атмосферного давления.

В индикаторной диаграмме двигателя с наддувом линия впуска может быть выше линии выпуска.

  • 2. Процессы газообмена 2-х и 4-х тактных дизельных двигателей. Понятие наддува. Импульсный газотурбинный и наддув при постоянном давлении. Коэффициент избытка воздуха.
  • 3. Генераторы судовой электростанции. Техническое обслуживание щеточного аппарата синхронного генератора.
  • 2. Принцип работы холодильной установки. Холодильные агенты и хладоносители.
  • 3. Техническое обслуживание кислотных аккумуляторных батарей (акб).
  • 4. Техническое обслуживание судовых помещений.
  • 1. Международная конвенция о грузовой марке 1966 года.
  • 3. Измерение сопротивления изоляции электрооборудования. Техническое обслуживание распределительных устройств.
  • 4.Техническое обслуживание судовых систем.
  • 1.Категории затопленных отсеков. Влияние свободной поверхности на остойчивость на больших углах крена.
  • 2.Судовые паровые котлы: классификация, устройство водотрубных, огнетрубных, комбинированных и утилизационных котлов, устройства для сжигания топлива в котлах.
  • Процесс сгорания топлива
  • Подача воздуха
  • Сгорание топлива
  • 3. Средства, обеспечивающие распределение нагрузки при параллельной работе генераторов.
  • 4.Осмотр судна в доке и на плаву.
  • 1. Конструктивные меры противопожарной безопасности.
  • 2.Основные термодинамические процессы для идеальных газов.
  • 3.Судовые силовые трансформаторы.
  • 4.Техническое обслуживание дизелей и их отдельных сборочных единиц и деталей.
  • 1. Конвенция солас.
  • 2. Цикл Карно.
  • 3. Техническое обслуживание взрывозащищенного электрооборудования и сетей. Осмотры электрооборудования
  • 4.Очистки, осмотры и испытания котлов.
  • 1. Международный кодекс по спасательным средствам. Индивидуальные и коллективные спасательные средства.
  • 3. Аварийные дизель - генераторы и система их автоматического запуска.
  • 4.Техническое обслуживание элементов котла.
  • 1. Международная конвенция марпол по предотвращению загрязнения с судов. Судовые документы по пзм, сроки их действия, возобновление документов.
  • 2.Основные понятия о машинах и механизмах. Кинематическая пара, кинематическая цепь. Виды передач.
  • 3. Классификация полупроводниковых преобразователей электроэнергии.
  • 4.Техническое обслуживание вспомогательных механизмов и оборудования.
  • 2. Сопротивление материалов: виды деформаций, напряжений, нагрузок.
  • 3. Частотные преобразователи для управления асинхронными электродвигателями.
  • 4.Смазывание вспомогательных механизмов и оборудования, техническое обслуживание подшипников.
  • 1. Судовые системы, предназначенные для предотвращения возникновения или распространения пожара. Средства пожаротушения на судах и их классификация. Противопожарное снабжение.
  • 2.Детали машин: детали и узлы общего и специального назначения, виды соединений.
  • 3. Щитовые электроизмерительные приборы (эп). Подключение электроизмерительных приборов. Погрешность результата измерения.
  • 4.Техническое обслуживание холодильных установок. Удаление хладона. Наполнение системы хладоном и дозарядка.
  • 1. Классификация судовых помещений по назначению. Размещение помещений в основном корпусе судна.
  • 2. Основные неподвижные и подвижные детали судовых дизелей.
  • 3. Электрическое освещение – основное и аварийное. Судовые электронагревательные и отопительные приборы и устройства. Обслуживание и предъявляемые к ним требования.
  • 4. Система технического обслуживания судна. Общие требования по то судна. План-графики по то стс и к.
  • 1. Судовые документы, требуемые ктм рф. Судовые документы, выдаваемые рмрс России в соответствии с требованиями мк солас 74/88 с поправками. Мппсс-72 и регламента радиосвязи 1997 г.
  • 2. Подготовка дизельной установки к действию после длительной стоянки, во время которой производились работы, связанные с разборкой. Подготовка дизельной установки к действию в зимнее время.
  • 3. Режимы работы судовых электроприводов. Факторы, обеспечивающие нормальную работу судовых электрических машин. Защита электродвигателей в электроприводах.
  • 4. Надзор за судами в эксплуатации. Использование результатов в процессе технического надзора за судами.
  • 2. Работа дизеля в режимах и условиях, отличных от нормальных. Подготовка к манёврам и остановка дизельной установки.
  • 3. Приборы контроля и сигнализации. Датчики и индикаторы, применяемые в судовых системах. Аварийно-предупредительная сигнализация (апс).
  • 4. Виды и порядок прохождения инструктажа по технике безопасности.
  • 1. Мкуб - его цели и требования. Основные резолюции имо по внедрению мкуб.
  • International Management Code for the Safe Operation of Ships and for Pollution Prevention (International Safety Management (ism) Code) » - мкуб
  • 2. Ввод дизеля в режим эксплуатационной нагрузки. Работа гд и обслуживающих его систем в сложных условиях.
  • 3. Средства автоматики и дистанционного управления. Готовность к действию и ввод в действие электрических систем автоматики. Основные требования к системам дау.
  • 4. Техника безопасности при обслуживании дизельных установок.
  • 1. Система управления безопасностью судоходной компании. Назначенное лицо. Национальные нормативные документы по внедрению мкуб.
  • 2. Контроль и регулировка параметров рабочего процесса судовых дизелей.
  • 3. Техническая документация по судовому электрооборудованию, виды технической документации. Электрические схемы и чертежи, их отличие друг от друга.
  • 4. Работа главной дизельной установки в аварийных условиях и во время обкатки.
  • 1. Международная конвенция марпол-73/78: правила регистрации операций с нефтью и нефтепродуктами. Ответственность и контроль.
  • 2.Подготовка котла к действию, обслуживание котла в действии, вывод котла из действия.
  • 3. Проверки работы адг, сети аварийного освещения, авральной и пожарной сигнализации, водонепроницаемых дверей; периодичность проверок.
  • 1. Кодекс торгового мореплавания рф. Устав службы на судах ммф. Дисциплинарный устав.
  • 2. Обслуживание котла на режимах, отличных от нормальных. Водный режим котла. Меры предосторожности при упуске воды из котла. Хранение бездействующего котла.
  • 3. Электробезопасность. Защита от поражения электрическим током, защитное заземление. Диэлектрические средства защиты, периодичность проверок их на электрическую прочность.
  • 4. Контроль технического состояния корпусных конструкций. Виды и методы неразрушающего контроля и диагностики технического состояния корпуса и конструкций судна.
  • 2.Типы насосов, входящих в состав судовых систем. Птэ насосов по типам.
  • 3. Функции элементов сар и назначение. Система дистанционного автоматического управления гд.
  • 4. Требования птэ по технической эксплуатации и обслуживанию машинных и котельных помещений. Предремонтная дефектация элементов корпуса судна, организация и этапы выполнения.
  • 1. «Наставление по предотвращению загрязнения с судов». Пломбирование клапанов на судне. Бункеровочные операции.
  • 2. Работа гд с выключенными цилиндрами. Регулировка параметров рабочего процесса гд.
  • 4. Взаимодействие должностных лиц в процессе ремонта. Доковый ремонт. Доковый ремонт
  • 2. Работа гд с перегрузкой. Работа гд в режиме холостого хода. Подготовка гд к маневрам и остановке.
  • 3. Аварийный безбатарейный телефон для связи мостик-цпу- румпельная. Частоты судовой рабочей носимой укв.
  • 4. Написание ремонтной ведомости. Проведение тендера на ремонт судна. Распределение обязанностей на предстоящий ремонт судна.
  • 2. Указания по техническому обслуживанию вентиляторов и поршневых компрессоров.
  • 3. Общая характеристика рулевых электроприводов и требования к ним.
  • 4. Испытания судна после ремонта. Окончание ремонта на заводе. Гарантийный период после ремонта.
  • 1. Якорное устройство, назначение и состав. Общие сведения и классификация. Швартовное устройство. Общие сведения, назначение и классификация. Якорное устройство.
  • Якорная цепь.
  • 2. Указания по техническому обслуживанию теплообменных аппаратов, фильтров, сосудов под давлением и тормозных устройств.
  • 3. Подготовка грузовых устройств к работе. Электрическое торможение грузоподъемников переменного тока.
  • Среднее эффективное Ре давление это давление которое зависит от количества топлива впрыскиваемого в цилиндр.

    Эффективная мощность Ре - мощность, снимаемая с соединительного фланца вала двигателя, т. е. отдаваемая валопроводу, генератору или любому потребителю энергии на данном режиме работы

    Индикаторная мощность Рz - мощность развиваемая газами внутри рабочих цилиндров двигателя, называют индикаторной.

    3. Основные электрические величины – электрический ток, напряжение, мощность

    электрического тока, единицы измерения.

    ЭЛЕКТРИ́ЧЕСКИЙ ТОК - УПОРЯДОЧЕННОЕ НЕКОМПЕНСИРОВАННОЕ ДВИЖЕНИЕ СВОБОДНЫХ ЭЛЕКТРИЧЕСКИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

    НАПРЯЖЕНИЕ – КОЛЛИЧЕСТВО ЭНЕРГИИ ЗАТРАЧИВАЕМОЕ НА ПЕРЕМЕЩЕНИЕ ИЗ ОДНОЙ ТОЧКИ В ДРУГУЮ.

    МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА – СКОРОСТЬ ИЗМЕНЕНИЯ ЭНЕРГИИ. МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА РАВНА РАБОТЕ ЭЛЕКТРИЧЕСКОГО ТОКА, ПРОИЗВОДИМОЙ В ТЕЧЕНИЕ ОДНОЙ СЕКУНДЫ.

    4. Общие требования к техническому обслуживанию стс и к.

    ПОД СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ ПОНИМАЮТСЯ УСТАНОВКИ, АГРЕГАТЫ, МЕХАНИЗМЫ И ДРУГОЕ ОБОРУДОВАНИЕ СУДНА, ОБЕСПЕЧИВАЮЩИЕ ЕГО РАБОТОСПОБНОСТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ.

    1. Общие положения 1.1. Техническая эксплуатация судовых технических средств и конструкций (СТС и К) должна производиться в соответствии с инструкциями заводов-изготовителей и требованиями настоя­щих Правил.

    1.2. Все операции связанные с вводом в действие, изменени­ем режимов работы, выводом из действия, проворачиванием и разборкой технических средств, должны производиться с разре­шения, по указанию или с извещением должностных лиц (капитана, вахтенного помощника капитана, старшего механи­ка, вахтенного механика, ответственного по заведованию), если это предусмотрено соответствующими пунктами Правил или другими документами, регламентирующими действия судового экипажа. 1.3. Бездействия, связанные с техническим использованием, обслуживанием и ремонтом СТСиК должны регистрироваться вахтенным механиком в машинном журнале. 1.4. На судне должен быть организован учет технического со­стояния СТСиК а также учет наличия и движения сменно-запасных частей и предметов, материально-технического снабжения по заведованиям.

    1.5. При в воде в действие оборудования, убедиться что оборудование исправно, КИП исправны и так далее.

    БИЛЕТ 2.

    1. Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.

    ОСТО́ЙЧИВОСТЬ - способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия.

    Судно плавает на поверхности воды под действием двух основных сил: силы тяжести и Архимедовой силы. Сила тяжести -“тянет судно вниз”, равна его весу и приложена к центру тяжести судна ЦТ. Сила плавучести или Архимедова сила –“выталкивает судно из воды”, равна его водоизмещению и приложена в центре подводного объема ЦВ судна.

    В “прямом” положении судна эти силы уравновешивают друг друга и лежат на одной вертикальной линии. При крене форма подводной части корпуса изменится, ЦВ сместится в сторону накрененного борта, и возникнет так называемыйвосстанавливающий момент, который противодействует крену. При наклонении судна ЦВ как бы поворачивается вокруг точки, называемой метацентром m.

    Расстояние от метацентра m до центра тяжести ЦТ (метацентрическая высота) является характеристикой остойчивости судна. Чем меньше судно, тем больше должна быть метацентрическая высота. Чем ниже расположен центр тяжести, тем судно остойчивее. Существует простое правило: КАЖДЫЙ КИЛОГРАММ ПОД ВАТЕРЛИНИЕЙ ПОВЫШАЕТ ОСТОЙЧИВОСТЬ, А КАЖДЫЙ КИЛОГРАММ НАД ВАТЕРЛИНИЕЙ УХУДШАЕТ ЕЕ.

  • Рабочий цикл двухтактного двигателя осуществляется за два такта (за один оборот коленчатого вала). Процессы выпуска и наполнения ци­линдра воздухом происходят только на части хода поршня (130-150° пово­рота коленчатого вала), а потому они значительно отличаются от таких же процессов в четырехтактных двигателях.

    Процессы очистки цилиндра (выпу­ска) и продувки (наполнения) весьма сложны и зависят и от типа двигателя, и от самого устройства органов продувки и выпуска. В судовых двухтактных дизелях нашли применение различные устройства органов продувки и вы­пуска, т. е. различные системы продувок.

    На рис. 8 изображена схема устройства двухтактного дизеля тронкового типа с прямоточно-клапанной продувкой.

    В нижней части боковой поверхности рабочего цилиндра расположены продувочные окна, а в крышке цилиндра - выпускные клапаны. Продувоч­ный воздух нагнетается в цилиндр продувочным насосом (в рассматриваемой схеме - продувочный насос роторного типа, или объемный насос). Он рас­положен сбоку и приводится в действие от распределительного вала. Вы­пускные клапаны приводятся в действие от распределительного вала, число оборотов которого равно числу оборотов коленчатого вала.

    Индикаторная диаграмма данного двигателя показана на рис. 9.

    Первый такт - сжатие воздуха в цилиндре начинается с момента пере­крытия поршнем продувочных окон (точка 7, рис. 8 и 9). Выпускные кла­паны закрыты. Давление воздуха в конце сжатия (точка 2) достигает 35- 50 кГ/см 2 и температура 700-750° С.

    Второй такт включает горение топлива, расширение продуктов сго­рания, выпуск и продувку. Процесс подачи топлива в цилиндр и его сго­рание заканчиваются так же, как и в четырехтактном дизеле, и осуще­ствляются в период расширения (точка 3). Начало подачи топлива - точка 2" (рис. 9), а точка 2 - конец сжатия.

    Максимальное давление цикла достигает 55-80 кГ/см 2 , а температу­ра 1700-1800° С.

    При дальнейшем движении поршня от ВМТ к НМТ происходит расши­рение продуктов сгорания и в момент открытия выпускных клапанов (точка 4), которые открываются раньше открытия кромкой поршня продувоч­ных окон, начинается выпуск.

    Открытие выпускных клапанов раньше открытия продувочных окон необходимо для снижения давления в цилиндре до давления продувочного воздуха к моменту открытия продувочных окон.

    Следовательно, с момента начала открытия порш­нем продувочных окон (точка 5) до полного их открытия (точка 6) и вновь до момента закры­тия окон (точка 1, при обратном движении поршня от НМТ к ВМТ) происходит процесс продувки цилиндра.

    Продувочный воздух, заполняя цилиндр, поднимается вверх, вытесняя отработавшие газы из цилиндра через клапаны в выпускной тракт.

    Таким образом происходит одновременная очи­стка цилиндра от отработавших газов и на­полнение цилиндра свежим зарядом воз­духа.

    Закрытие выпускных клапанов (конец вы­пуска) производится несколько позже закрытия поршнем продувочных окон (точка 6), что спо­собствует лучшей очистке верхней части цилин­дра от отработавших газов.

    После закрытия выпускных клапанов рабочий цикл повторяется в той же последовательности.

    На рис. 10 приведена развернутая индикаторная диаграмма рассма­триваемого двухтактного дизеля, а на рис. 11-его круговая диаграмма рас­пределения. Обозначения фаз распределения такие же, как и на рис. 9.

    Как видно на индикаторной диаграмме, давление в цилиндре всегда выше атмосферного. Величина минимального давления в цилиндре зависит от величины давления продувочного воздуха. Давление продувочного воз­духа составляет 1,2-1,5 ата и при работе двигателя с наддувом повы­шается до 2,5 ата.

    На круговой диаграмме (см. рис. 11) углы обозначают следующие фазы распределения.

    Так же, как и диаграмму термодинамического цикла, можно изобразить в координатах р-V и действительный цикл двигателя внутреннего сгорания. Полученная при этом диаграмма называется индикаторной.

    Диаграмма четырехтактного дизеля. Вначале рассмотрим рабочий цикл четырехтактного дизеля, не имеющего наддува.

    Первый такт - наполнение. Когда поршень дизеля двигается слева направо, открывается впускной клапан 3 (рис. 19) и воздух из атмосферы поступает в цилиндр. В двигателях без наддува процесс наполнения цилиндра происходит вследствие разрежения

    Рис. 19. Диаграмма рабочего цикла четырехтактного дизеля и схема его устройства:

    1 - поршень; 2 - цилиндр; 3 - впускной клапан; 4 - форсунка; 5 - выпускной клапан в нем, а давление воздуха в цилиндре достигает 0,085-0,09 МПа, поэтому линия наполнения цилиндра располагается ниже атмосферной (0,1 МПа). В действительности линия наполнения не прямая, так как на нее оказывают влияние неравномерность скорости движения поршня, фазы открытия и закрытия клапанов, конструкция входного патрубка и другие факторы. Для более полной зарядки цилиндра воздухом принимаются меры к снижению сопротивления проходу воздуха в цилиндр. Качество зарядки цилиндра оценивается коэффициентом наполнения ц„, который обычно равен0,8-0,88. Это значит, что цилиндр дизеля наполняется воздухом только на 80-88 % по сравнению с тем количеством воздуха, которое поместилось бы в рабочем объеме цилиндра при нормальных условиях окружающей среды. Коэффициент наполнения зависит главным образом от температуры и давления воздуха в точке а (см. рис. 19). Чем выше давление и чем ниже температура воздуха в точке а, тем больше коэффициент наполнения (рис. 20).

    Второй такт - сжатие. Поршень движется справа налево, впускной клапан закрывается, воздух в цилиндре сжимается. При этом температура его в точке с повышается до 500-750 °С, а давление может возрастать до 5- 7 МПа. Процесс сжатия на диаграмме изображен линией ас (см. рис. 19). Когда поршень еще не дошел до верхней мертвой точки (в.м.т.) на 18-30° угла поворота коленчатого вала, через форсунку 4 в цилиндр впрыскивается жидкое топливо, которое в точке с воспламеняется и начинает гореть. Подача топлива прекращается после того, как поршень уже пройдет в.м.т. на 10-15° и снова начнет двигаться слева направо. Поступившее в цилиндр топливо перемешивается с воздухом и начинает гореть. На диаграмме процесс горения изображен ломаной линией сг"г.

    Третий такт - расширение газа. В начале третьего хода поршня происходит сгорание топлива, которое теоретически заканчивается в точке г. Давление в точке г возрастает до 8-13 МПа, а температура до 1750- 2100 К. После точки г происходит расширение газов, которое продолжается до тех пор, пока не откроется выпускной клапан. Последний открывается в точке е" на 40-55° до нижнего положения поршня, когда давление в цилиндре достигает 0,5-0,8 МПа, а температура 1000-1100 К- Предварение открытия выпускного клапана способствует уменьшению сопротивления выходу отработавших газов через выпускную систему и, следовательно, лучшей очистке цилиндра от отработавших


    Рис. 20. Изменение коэффициента наполнения цилиндров г), в зависимости от давления и температуры воздуха в цилиндре в начале сжатия

    Рис. 21. Индикаторная диаграмма четырехтактного дизеля с газотурбинным наддувом:

    ря - давление в период наполнения; рг давление в цилиндре в период выпуска; рк - давление воздуха в наддувочном коллекторе; V, объем камеры сжатия: объем, описываемый поршнем, V* - полный объем цилиндра газов. Ход расширения является полезным рабочим ходом, так как в этот период газы с большим давлением действуют на поршень дизеля в направлении его движения и совершают полезную работу, отдавая ее нагрузочному агрегату.

    Четвертый такт - выпуск газов. Поршень движется справа налево, вы-


    Рис. 22. Диаграмма рабочего цикла двухтактного дизеля и схема его устройства:

    А - продувочное окно; В - выпускное окно. 1 - цилиндр; } - поршень; ,3 - форсунка пускной клапан 5 открыт и газы выталкиваются из цилиндра. Процесс выпуска газов на диаграмме изображен линией e"er. Удаление газов происходит при давлении 0,11-0,12 МПа, поэтому линия выпуска газов располагается выше атмосферной линии. Температура газов за выпускным клапаном равна 700-900 К-

    Для более совершенной продувки и зарядки цилиндра воздухом впускной и выпускной клапаны на протяжении 50-100° поворота кривошипа коленчатого вала открыты одновременно. Это так называемое «перекрытие» клапанов обеспечивает хорошую очистку цилиндров от продуктов сгорания топлива и более полное заполнение рабочего объема воздухом, а также охлаждение днища поршня и выпускных клапанов потоком холодного воздуха. Качество очистки цилиндра от отработавших газов оценивается коэффициентом остаточных газов у, который представляет собой отношение количества оставшихся в цилиндре от предыдущего цикла газов к величине поступившего в цилиндр свежего воздушного заряда. Обычно у - = 0,024-0,1.

    Особенности рабочего цикла четырехтактного дизеля с газотурбинным наддувом. В дизелях с наддувом процесс зарядки цилиндра происходит иначе, чем у двигателей без наддува. Турбокомпрессор засасывает воздух из атмосферы при давлении р0 (рис. 21) и сжимает до давления рк- Сжатый в турбокомпрессоре воздух прежде, чем попасть в цилиндр, проходит через охладитель, впускной коллектор и выпускные клапаны; на пути от турбокомпрессора до цилиндра его давление снижается от рк до р„. Поэтому линия давления впуска расположена ниже линии рк и выше атмосферной линии (Ро).

    После заполнения цилиндра воздухом поршень, двигаясь от точки а налево, сжимает воздух. Процесс сжатия изображен кривой ас. В конце сжатия в цилиндр впрыскивается топливо, которое воспламеняется в точке с. Процесс сгорания показан линиями cz" и г"г. Расширение газов происходит по кривой ге. В точке е открываются выпускные клапаны, и отработавшие газы выталкиваются в газовую турбину (при давлении рт), а затем выбрасываются в атмосферу. Таким образом, линия выпуска газа из цилиндра расположена выше атмосферной и ниже линии наполнения. В четырехтактных двигателях энергии отработавших газов вполне достаточно, чтобы нагнетатель сжимал воздух до давления рк, более высокого, чем рг. В результате наддува площадь индикаторной диаграммы, а следовательно, и мощность дизеля значительно возрастают.

    Следует отметить, что в действительности процесс сгорания происходит не по прямым линиям с г" и г"г, а по штриховой линии (см. рис. 21).

    Диаграмма двухтактного дизеля. Сжатие воздуха в цилиндре при движении поршня справа налево начинается в точке а и продолжается до точки с (рис. 22). За 16-25° угла поворота коленчатого вала до крайнего левого положения поршня через форсунку 3 в цилиндр при высоком давлении подается жидкое топливо (в мелкораспыленном виде), которое, соприкасаясь с нагретым до высокой температуры сжатым воздухом, воспламеняется. Образовавшиеся газы, стремясь расшириться, перемещают поршень вправо. Движущийся поршень через шатун вращает коленчатый вал. Не доходя до крайнего правого положения, поршень 2 своей кромкой открывает выпускное окно Б, давая выход отработавшим газам через глушитель наружу. Двигаясь дальше вправо, поршень открывает продувочное окно Л, через которое в цилиндр \стремляется свежий воздух, имеющий повышенное давление. Воздух вытесняет отработавшие газы и заполняет цилиндр. Когда поршень изменит направление и начнет двигаться справа налево, он вначале закроет продувочное окно А, а затем выпускное Б, после чего начнется сжатие оставшегося в цилиндре воздуха. Таким образом, полный рабочий процесс (цикл) в двухтактном дизеле совершается за два кода поршня (такта), при этом коленчатый вал совершает один оборот.

    В двухтактных дизелях продувочный воздух подается в цилиндры нагнетателем, приводимым в движение от вала дизеля, или турбокомпрессором. От качества продувки цилиндров зависит мощность и к.п.д. дизеля. Чтобы обеспечить хорошую продувку цилиндров воздухом и снизить тепловое напряжение деталей дизеля, соприкасающихся с горячими газами, в цилиндры подается значительно больше воздуха, чем требуется для горения топлива; во время продувки часть воздуха уходит через выпускные окна. Учитывая это, подача продувочного воздушного нагнетателя должна быть на 30-40 % больше, чем это необходимо для обеспечения полного сгорания топлива. При проектировании двухтактных двигателей конструкторы стремятся к тому, чтобы при наименьшей потере сжатого воздуха получалась бы наилучшая продувка и зарядка цилиндров. В двухтактных дизелях обычно энергии отработавших газов недостаточно для сжатия наддувочного воздуха до требуемого давления, так как давление это должно быть больше, чем давление в выпускном трубопроводе для качественной очистки цилиндров, а энергия выпускных газов (при прочих равных условиях) ниже, чем в четырехтактных двигателях, из-за разбавления газов холодным продувочным воздухом. Поэтому в двухтактных дизелях используется комбинированный наддув, при котором часть энергии, необходимой для сжатия наддувочного воздуха, отбирается от коленчатого вала двигателя (см. выше).

    Схемы продувки двухтактных дизелей. Наиболее простая, но вместе с тем и наиболее несовершенная схема- так называемая поперечно-щелевая продувка, при которой в цилиндре может оставаться 15-20% отработавших газов (рис. 23,а). Такая продувка применяется в маломощных дизелях, для которых простота конструкции, а не экономичность, имеет решающее значение. Схема продувки, показанная на рис. 23,6, более совершенна. Благодаря обратному клапану 3 эта конструкция обеспечивает некоторый наддув цилиндров. Такая схема продувки применяется на тихоходных судовых двигателях.

    Более совершенна прямоточная кла-панно-щелевая продувка (рис. 23,в). Сжатый воздух из нагнетателя поступает в цилиндр через нижние окна, а отработавшие газы удаляются через выпускные клапаны 3, размещенные в крышке цилиндра. При такой продувке на дизеле устанавливают распределительный вал. Клапанно-щелевая продувка применяется в тепловозных дизелях 11Д45 и 14Д40.

    Наиболее совершенна прямоточно-щелевая продувка (рис. 23,г), которую можно осуществить в двигателях со встречно движущимися поршнями. Сжатый воздух от нагнетателя поступает через верхние окна (продувочные), а отработавшие газы удаляются из цилиндра через нижние (выпускные) окна. Чтобы можно было полнее зарядить цилиндр, нижний поршень, перекрывающий выпускные окна, несколько опережает (на 10-12° угла поворота коленчатого вала) верхний поршень, перекрывающий впускные окна.

    При таком способе продувки в цилиндре почти не остается отработавших газов. Прямоточно-щелевая продувка применяется в тепловозных дизелях 2Д100 и 1 ОД 100.

    Основное отличие 2-тактного двигателя от 4-тактного заключается в способе газообмена – очистки цилиндра от продуктов сгорания и зарядки его свежим воздухом или горячей смесью.

    Устройства газораспределения 2-тактных двигателей – щели во втулке цилиндра, перекрываемые поршнем, и клапаны или золотники.

    Рабочий цикл:

    После сгорания топлива начинается процесс расширения газов (рабочий ход). Поршень движется к нижней мертвой точке (НМТ). В конце процесса расширения поршень 1 открывает впускные щели (окна) 3 (точка b) или открываются выпускные клапана, сообщая полость цилиндра через выхлопную трубу с атмосферой. При этом часть продуктов сгорания выходит из цилиндра и давление в нем падает до давления продувочного воздуха Pd. В точке d поршень открывает продувочные окна 2, через которые в цилиндр подается смесь топлива с воздухом под давлением 1,23-1,42 бар. Дальнейшее падение замедляется, т.к. в цилиндр поступает воздух. От точки d до НМТ одновременно открыты выпускные и продувочные окна. Период, в течении которого одновременно открыты продувочные и выпускные окна, называется продувкой. В этот период цилиндр наполняется смесью воздуха, а продукты сгорания вытесняются из него.

    Второй такт соответствует ходу поршня от нижней к верхней мертвой точке. В начале хода продолжается процесс продувки. Точка f – конец продувки – закрытие впускных окон. В точке а закрываются выпускные окна и начинается процесс сжатия. Давление в цилиндре к концу зарядки несколько выше атмосферного. Оно зависит от давления продувочного воздуха. С момента окончания продувки и полного перекрытия выпускных окон начинается процесс сжатия. Когда поршень не доходит на 10-30град по углу поволрота колен.вала до ВМТ (точка с /), в цилиндр через форсунку подается топливо или производится зажигание смеси и цикл повторяется.

    При одинаковых размерах цилиндра и частоте вращения мощность 2-тактного значительно больше, в 1,5-1,7 раза.

    Среднее давление теоретической диаграммы ДВС.

    Среднее индикаторное давление ДВС.

    Это такое условно постоянное давление, которое, действуя на поршень, совершает работу, равную внутренней работе газа в течение всего рабочего цикла.

    Графически p i в определенном масштабе равно высоте прямоугольника mm / hh / , по площади равного площади диаграммы и имеющего ту же длину.

    f- площадь индикаторной диаграммы (мм 2)

    l- длина инд.диаграммы - mh

    k p - масштаб давления (Па/мм)

    Среднее эффективное давление ДВС.



    Это произведение механического кпд на среднее индикаторное давление.

    Где η мех =N e /N i . При нормальном режиме работы η мех =0,7-0,85.

    Механический КПД ДВС.

    η мех =N e /N i

    Отношение эффективной мощности к индикаторной.

    При нормальном режиме работы η мех =0,7-0,85.

    Индикаторная мощность ДВС.

    Инд. мощность двигателя, получаемая внутри уилиндра, может быть определена с помощью индикаторной диаграммы, снимаемой специальным прибором – индикатором.

    Инд.мощность – работа, совершаемая рабочим телом в цилиндре двигателя в ед.времени.

    Инд.мощность одного цилиндра -

    k- кратность двигателя

    V-рабочий объем цилиндра

    n-число рабочих ходов.

    Эффективная мощность ДВС.

    Полезно используемая мощность, снимаемая с колен.вала

    N e =N i -N тр

    N тр – сумма потерь мощности на трение между движущимися деталями двигателя и на приведение в действие вспомогательных механизмов (насосов, генератора, вентилятора и др.)

    Определение эф.мощности двигателя в лабораторных условиях или при стендовых испытаниях производят с помощью спец.тормозных устройств – механических, гидравлических или электрических.