» » Мехатронные системы автомобильного транспорта. Мехатронные системы автомобильного транспорта Основные виды транспортных мехатронных средств

Мехатронные системы автомобильного транспорта. Мехатронные системы автомобильного транспорта Основные виды транспортных мехатронных средств

Т ермин «мехатроника » введён Tetsuro Moria (Тецуро Мори) инженером японской компании Yaskawa Electric (Яскава электрик) в 1969. Термин состоит из двух частей - «меха», от слова механика, и «троника», от слова электроника. В России до возникновения термина «мехатроника» применялись приборы с названием «механотроны».

Мехатроника – это прогрессивное направление развития науки и техники, ориентированное на создание и эксплуатацию автоматических и автоматизированных машин и систем с компьютерным (микропроцессорным) управлением их движением. Основной задачей мехатроники является разработка и создание высокоточных, высоконадёжных и многофункциональных систем управления сложными динамическими объектами. Простейшими примерами мехатроники являются тормозная система автомобиля с АБС (антиблокировочной системой) и промышленные станки с ЧПУ.

Крупнейшим в мировой подшипниковой отрасли разработчиком и изготовителем мехатронных устройств является компания SNR . Компания известна как пионер в области “сенсорных” подшипников, c оздавшая “ноу-хау” технологию c использованием многополюсных магнитных колец и измерительных компонентов интегрированные в механические детали. Именно SNR впервые предложила использовать колесные подшипники с интегрированным датчиком скорости вращения на основе уникальной магнитной технологии – ASB ® (Active Sensor Bearing ), которые в настоящее время являются стандартом, признанным и используемым почти всеми крупнейшими автопроизводителями в Европе и Японии. Уже произведено более 82 миллионов подобных устройств, а к 2010 году почти 50% всех колесных подшипников в Мире выпускаемых различными производителями будут использовать технологию ASB ® . Такое массовое применение ASB ® лишний раз доказывает надежность этих решений, обеспечивающих высокую точность измерения и передачи цифровой информации в самых агрессивных окружающих условиях (вибрации, грязь, большие перепады температур и т.п.).

Иллюстрация : SNR

Структура подшипника ASB ®

Основными преимуществами технологий ASB ® , применяемых в автомобилестроении, являются:

    это компактное и экономичное решение, может использоваться и на транспортных средствах низшего ценового диапазона, а не только на дорогих автомобилях в отличие от многих других конкурентных технологий,

    это прогрессивная технология в исследовании автомобильного комфорта и безопасности,

    это главный элемент в концепции “полного контроля за шасси”,

    это открытый стандарт, обеспечивающий минимальные затраты при лицензировании производства изготовителями подшипников и электронных компонентов.

Технология ASB ® в 1997 году на выставке EquipAuto в Париже получила Первый Grand Prix в номинации "Новые технологии для оригинального (конвейерного) производства".

В 2005 году на EquipAuto SNR предложила к обозрению дальнейшее развитие ASB ® – специальную систему с датчиком угла поворота ASB ® Steering System , предназначенная для измерения угла поворота рулевого колеса, что позволит оптимизировать работу электронных систем автомобиля и увеличить уровень безопасности и комфорта. Разработка данной системы началась в 2003 году, усилиями CONTINENTAL TEVES и SNR Roulements . В 2004 году первые опытные образцы были готовы. Полевое испытание ASB ® Steering System прошли в марте 2005 года в Швеции на автомобилях Mercedes C -класса и показали великолепные результаты. В серийное производство ASB ® Steering System должна войти в 2008 году.

Иллюстрация : SNR

ASB ® Steering System

Основными преимуществами ASB ® Steering System станут:

    более простая конструкция,

    обеспечение малого уровня шума,

    меньшая себестоимость,

    оптимизация размеров …

Имея более чем 15 летний опыт разработки и изготовления мехатронных устройств, компания предлагает для клиентов не только из сферы автомобилестроения, но и промышленности и аэрокосмонавтики - “мехатронных” подшипники Sensor Line . Эти подшипники унаследовали непревзойденную надёжность ASB ® , полную интеграцию и соответствие международным стандартам ISO .

Расположенный в самом центре движения, датчик Sensor Line передаёт информацию об угловом смещении и скорости вращения в течение более 32 периодов за один оборот. Таким образом, объединяются функции подшипника и измерительного устройства, что положительно сказывается на компактности подшипника и оборудования в целом, обеспечивая при этом конкурентно способную цену по отношению к стандартным решениям (на базе оптических сенсоров).

Фото : SNR

включает:

    Запатентованное многодорожечное и многополюсное магнитное кольцо, генерирующее магнитное поле определённой формы;

    Специальный электронный компонент MPS 32 XF преобразует информацию об изменении магнитного поля в цифровой сигнал.

Фото: Torrington

Компонента MPS 32 XF

Sensor Line Encoder может достигать разрешения 4096 импульсов за один оборот с радиусом чтения всего 15 мм, обеспечивая точность позиционирования более, чем 0,1° ! Таким образом, Sensor Line Encoder во многих случаях может заменить стандартное оптическое кодирующее устройство, при этом придавая дополнительные функции.

Устройство Sensor Line Encoder может обеспечить получение следующих данных с высокой точностью и надёжностью:

    угловое положение,

    Скорость,

    направление вращения,

    Количество оборотов,

    Температуру.

Уникальные свойства нового устройства SNR были признаны в мире электроники ещё на стадии опытных образцов. Специальный сенсор MPS 32 XF выиграл главный приз Gold Award на выставке Sensor Expo 2001 в г.Чикаго (США).

В настоящее время Sensor Line Encoder находит свое применение:

    в механических трансмиссиях;

    в конвейерах;

    в робототехнике;

    в транспортных средствах;

    в грузоподъёмниках;

    в системах контроля, измерения и позиционирования.

Фото: SNR

Одним из дальнейших проектов, который должен финишировать в 2010-11 годах, является ASB ® 3 – подшипник с интегрированным датчиком моментов основанный на применении туннельного магнитосопротивления. Использование технологии туннельного магнитосопротивления позволяет обеспечить:

    высокую чувствительность датчика,

    низкие энергозатраты,

    лучший сигнал по отношению к уровню шума,

    более широкий температурный диапазон.

ASB ® 4 , выход которого запланирован на 2012-15 г.г., завершит открытие эры информационных технологий для подшипникостроения. Впервые будет интегрирована система самодиагностики, что позволит, например, по температуре смазки подшипника или его вибрации узнать состояние подшипника.

Мехатроника возникла как комплексная наука от слияния отдельных частей механики и микроэлектроники. Её можно определить как науку, занимающуюся анализом и синтезом сложных систем, в которых в одинаковой степени используются механические и электронные управляющие устройства.

Все мехатронные системы автомобилей по функциональному назначению делят на три основные группы:

  • - системы управления двигателем;
  • - системы управления трансмиссией и ходовой частью;
  • - системы управления оборудованием салона.

Система управления двигателем подразделяется на системы управления бензиновым и дизельным двигателем. По назначению они бывают монофункциональные и комплексные.

В монофункциональных системах ЭБУ подает сигналы только системе впрыска. Впрыск может осуществляться постоянно и импульсами. При постоянной подаче топлива его количество меняется за счет изменения давления в топливопроводе, а при импульсном - за счет продолжительности импульса и его частоты. На сегодня одним из наиболее перспективных направлений приложения систем мехатроники являются автомобили. Если рассматривать автомобилестроение, то внедрение подобных систем позволит прийти к достаточной гибкости производства, лучше улавливать веяния моды, быстрее внедрять передовые наработки ученых, конструкторов, и тем самым получать новое качество для покупателей машин. Сам автомобиль, тем более, современный автомобиль, является объектом пристального рассмотрения с конструкторской точки зрения. Современное использование автомобиля требует от него повышенных требований к безопасности управления, в силу все увеличивающейся автомобилизации стран и ужесточения нормативов по экологической чистоте. Особо это актуально для мегаполисов. Ответом на сегодняшние вызовы урбанизма и призваны конструкции мобильных следящих систем, контролирующих и корректирующих характеристики работы узлов и агрегатов, достигая оптимальных показателей по экологичности, безопасности, эксплуатационной комфортности автомобиля. Насущная необходимость комплектовать двигатели автомобилей более сложными и дорогими топливными системами во многом объясняется введением все более жестких требований по содержанию вредных веществ в отработавших газах, что, к сожалению, только начинает отрабатываться.

В комплексных системах один электронный блок управляет несколькими подсистемами: впрыска топлива, зажигания, фазами газораспределения, самодиагностики и др. Система электронного управления дизельным двигателем контролирует количество впрыскиваемого топлива, момент начала впрыска, ток факельной свечи и т.п. В электронной системе управления трансмиссией объектом регулирования является главным образом автоматическая трансмиссия. На основании сигналов датчиков угла открытия дроссельной заслонки и скорости автомобиля ЭБУ выбирает оптимальное передаточное число трансмиссии, что повышает топливную экономичность и управляемость. Управление ходовой частью включает в себя управление процессами движения, изменения траектории и торможения автомобиля. Они воздействуют на подвеску, рулевое управление и тормозную систему, обеспечивают поддержание заданной скорости движения. Управление оборудованием салона призвано повысить комфортабельность и потребительскую ценность автомобиля. С этой целью используются кондиционер воздуха, электронная панель приборов, мультифункцио-нальная информационная система, компас, фары, стеклоочиститель с прерывистым режимом работы, индикатор перегоревших ламп, устройство обнаружения препятствий при движении задним ходом, противоугонные устройства, аппаратура связи, центральная блокировка замков дверей, стекло- подъёмники, сиденья с изменяемым положением, режим безопасности и т. д.

Мехатронные модули находят все более широкое применение в различных транспортных системах.

Жесткая конкуренция на автомобильном рынке вынуждает специалистов в этой области к поиску новых передовых технологий. На сегодняшний день, одной из главных проблем для разработчиков заключается в создании «умных» электронных устройств, способных сократить число дорожно-транспортных происшествий (ДТП). Итогом работы в этой области стало создание системы комплексной безопасности автомобиля (СКБА), которая способна автоматически поддерживать заданную дистанцию, останавливать машину при красном сигнале светофора, предупреждать водителя о том, что он преодолевает поворот на скорости, более высокой, чем это допустимо законами физики. Были разработаны даже датчики удара с радиосигнализатором, который при наезде автомобиля на препятствие или столкновении вызывает машину скорой помощи.

Все эти электронные устройства предотвращения ДТП делятся на две категории. Первая включает приборы в автомобиле, действующие независимо от каких-либо сигналов внешних источников информации (других автомобилей, инфраструктуры). Они обрабатывают информацию, поступающую от бортового радиолокатора (радара). Вторая категория — системы, действие которых основано на данных, полученных от источников информации, расположенных вблизи дороги, в частности от маяков, которые собирают сведения о дорожной обстановке и передают их посредством инфракрасных лучей в проезжающие автомобили.

СКБА объединила новое поколение перечисленных выше устройств. Она принимает как сигналы радара, так и инфракрасные лучи «думающих» маяков, а в дополнение к основным функциям обеспечивает безостановочное и спокойное для водителя движение на нерегулируемых пересечениях дорог и улиц, ограничивает скорость движения на поворотах и в жилых районах пределами установленных скоростных лимитов. Как все автономные системы, СКБА требует, чтобы автомобиль был оборудован антиблокировочной системой тормозов (АБС) и автоматической коробкой передач.

СКБА включает лазерный дальномер, постоянно измеряющий расстояние между автомобилем и любым препятствием по ходу — движущимся или неподвижным. Если наезд вероятен, а водитель не замедляет скорость, микропроцессор дает команду сбросить давление на педаль акселератора, включить тормоза. Небольшой экран на панели приборов вспыхивает предупреждением об опасности. По желанию водителя бортовой компьютер может устанавливать безопасную дистанцию в зависимости от дорожного покрытия — влажного или сухого.

СКБА способна управлять автомобилем, ориентируясь на белые линии разметки дорожного покрытия. Но для этого необходимо, чтобы они были четкими, поскольку постоянно «считываются» находящейся на борту видеокамерой. Обработка изображения затем определяет положение машины относительно линий, а электронная система в соответствии с этим воздействует на рулевое управление.

Бортовые приемники инфракрасных лучей СКБА действуют при наличии передатчиков, размещенных через определенные интервалы вдоль проезжей дороги. Лучи распространяются прямолинейно и на небольшое расстояние (примерно до 120 м), а данные, передаваемые закодированными сигналами, невозможно ни заглушить, ни исказить.

Рис. 3.1 Система комплексной безопасности автомобиля: 1 — приемник инфракрасных лучей; 2 — датчик погоды (дождь, влажность); 3 — привод дроссельной заслонки системы питания; 4 — компьютер; 5 — вспомогательный электроклапан в приводе тормозов; 6 — АБС; 7 — дальномер; 8 — автоматическая коробка передач; 9 — датчик скорости автомобиля; 10 — вспомогательным электроклапан рулевого управления; 11 — датчик акселератора; 12 — датчик рулевого управления; 13 — стол-сигнал; 14 — компьютер электронного видения; 15 — телевизионная камера; 16 — экран.

На рис. 3.2 представлен датчик погоды фирмы « Boch ». В зависимости от модели внутрь помещают инфракрасный светодиод и один - три фотоприемника. Светодиод испускает невидимый луч под острым углом к поверхности ветрового стекла. Если на улице сухо, весь свет отражается обратно и попадает на фотоприемник (так рассчитана оптическая система). Поскольку луч модулирован импульсами, то на посторонний свет датчик не среагирует. Но если на стекле есть капли или слой воды, условия преломления изменяются, и часть света уходит в пространство. Это фиксируется сенсором, и контроллер рассчитывает подходящий режим работы стеклоочистителя. Попутно данный прибор может закрыть электролюк в крыше, поднять стекла. Датчик имеет еще 2 фотоприемника, которые интегрированы в общий корпус с датчиком погоды. Первый предназначен для автоматического включения фар, когда смеркается или автомобиль въезжает в тоннель. Второй, переключает «дальний» и «ближний» свет. Задействованы ли эти функции, зависит, от конкретной модели автомобиля.

Рис.3.2 Принцип работы датчика погоды

Антиблокировочные тормозные системы (АБС), ее необходимые компоненты — датчики скорости колеса, электронный процессор (блок управления), сервоклапаны, гидравлический насос с электрическим приводом и аккумулятор давления. Некоторые ранние АБС были “трехканальные”, т.е. управляли передними тормозными механизмами индивидуально, но растормаживали полностью все задние тормозные механизмы при начале блокирования любого из задних колес. Это экономило некоторое количество стоимости и усложнения конструкции, но дало более низкую эффективность по сравнению с полной четырехканальной системой, в которой каждый тормозной механизм управляется индивидуально.

АБС имеет много общего с противобуксовочной системой (ПБС), чье действие могло бы рассматриваться как “АБС наоборот”, так как ПБС работает по принципу обнаружения момента начала быстрого вращения одного из колес по сравнению с другим (момента начала пробуксовывания) и подачи сигнала на притормаживание этого колеса. Датчики скорости колеса могут быть общими, и поэтому наиболее эффективный способ предотвращать пробуксовку ведущего колеса уменьшением его скорости состоит в том, чтобы применить мгновенное (и если необходимо, повторное) действие тормоза, тормозные импульсы могут быть получены от блока клапанов АБС. В действительности, если присутствует АБС, это все, что требуется, чтобы обеспечить и ПБС — плюс некоторое дополнительное программное обеспечение и дополнительный блок управления, чтобы уменьшить при необходимости крутящий момент двигателя или сократить количество подводимого топлива, или осуществить прямое вмешательство в систему управления педалью газа.

На рис. 3.3 представлена схема электронной системы питания автомобиля: 1 - реле зажигания; 2 - центральный переключатель; 3 - аккумуляторная батарея; 4 - нейтрализатор отработавших газов; 5 - датчик кислорода; 6 - воздушный фильтр; 7 - датчик массового расхода воздуха; 8 - колодка диагностики; 9 - регулятор холостого хода; 10 - датчик положения дроссельной заслонки; 11 - дроссельный патрубок; 12 - модуль зажигания; 13 - датчик фаз; 14 - форсунка; 15 - регулятор давления топлива; 16 - датчик температуры ОЖ; 17 - свеча; 18 - датчик положения коленвала; 19 - датчик детонации; 20 - топливный фильтр; 21 - контроллер; 22 - датчик скорости; 23 - топливный насос; 24 - реле включения топливного насоса; 25 - бензобак.

Рис. 3.3 Упрощенная схема системы впрыска

Одной из составных частей СКБА является подушка безопасности ( airbag ) (см. рис. 3.4), элементы которой размещены в разных частях автомобиля. Инерционные датчики, находящиеся в бампере, у моторного щита, в стойках или в районе подлокотника (в зависимости от модели автомобиля), в случае аварии посылают сигнал на электронный блок управления. В большинстве современных СКБА фронтальные датчики рассчитаны на силу удара на скорости от 50 км/ч. Боковые срабатывают при более слабых ударах. От электронного блока управления сигнал следует на основной модуль, который состоит из компактно уложенной подушки, соединенной с газогенератором. Последний представляет собой таблетку диаметром около 10 см и толщиной около 1 см с кристаллическим азотгенерирующим веществом. Электрический импульс поджигает в «таблетке» пиропатрон или плавит проволоку, и кристаллы со скоростью взрыва превращаются в газ. Весь описанный процесс происходит очень быстро. «Средняя» подушка наполняется за 25 мс. Поверхность подушки европейского стандарта мчится навстречу грудной клетке и лицу со скоростью около 200 км/ч, а американского — около 300. Поэтому в машинах, оборудованных подушкой безопасности, производители настоятельно советуют пристегиваться и не сидеть вплотную к рулю или торпедо. В наиболее «продвинутых» системах есть устройства, идентифицирующие наличие пассажира или детского кресла и, соответственно, либо отключающие, либо корректирующие степень надувания.

Рис. 3.4. Автомобильная подушка безопасности:

1 - натяжное устройство ремня безопасности; 2 - надувная подушка безопасности; 3 - надувная подушка безопасности; для водителя; 4 – блок управления и центральный датчик; 5 – исполнительный модуль; 6 – инерционные датчики

Помимо обычных автомобилей большое внимание уделяется созданию легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными). К этой группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания. Разработку таких мехатронных систем ведет Научно-инженерный центр "Мехатроника" в кооперации с рядом организаций.

Масса двигателя 4.7 кг,

Аккумуляторная батарея 36В, 6 А*ч,

Основой для создания ЛТС являются мехатронные модули типа "мотор-колесо" на базе, как правило, высокомоментных электродвигателей. В табл.3.1 приведены технические характеристики мехатронных модулей движения для легких транспортных средств. Мировой рынок ЛТС имеет тенденцию к расширению и по прогнозам его емкость к 2000 году составляла 20 млн. единиц или в стоимостном выражении 10 млрд. долларов.

Таблица 3 .1

ЛТС

с электроприводом

Технические показатели

Максимальная

скорость,

км / ч

Рабочее напряжение, В

Мощность,

кВт

Номинальный момент,

Нм

Номинальный ток,

Масса,

кг

Кресла –

коляски

0,15

Электро-

велосипеды

Роллеры

Миниэлектро-

мобили

Морской транспорт. МС находят все более широкое применение для интенсификации труда экипажей морских и речных судов, связанных с автоматизацией и механизацией основных технических средств, к которым относятся главная энергетическая установка с обслуживающими системами и вспомогательными механизмами, электроэнергетическая система, общесудовые системы, рулевые устройства и двигатели.

Комплексные автоматические системы удержания судна на заданной траектории (СУЗТ) или судна, предназначенного для исследования Мирового океана, на заданной линии профиля (СУЗП) относятся к системам, обеспечивающим третий уровень автоматизации управления. Применение таких систем позволяет:

Повысить экономическую эффективность морских транспортных перевозок за счет реализации наилучшей траектории, движения судна с учетом навигационных и гидрометеорологических условий плавания;

Повысить экономическую эффективность океанографических, гидрографических и морских геологоразведочных работ за счет увеличения точности удержания судна на заданной линии профиля, расширения диапазона ветроволновых возмущений, при которых обеспечивается требуемое качество управления, и увеличения рабочей скорости судна;

Решать задачи реализации оптимальной траектории движения судна при расхождении с опасными объектами; повысить безопасность мореплавания вблизи навигационных опасностей за счет более точного управления движением судна.
Комплексные автоматические системы управления движением по заданной программе геофизических исследований (АСУД) предназначены для автоматического выведения судна на заданную линию профиля, автоматического удержания геолого-геофизического судна на исследуемой линии профиля, маневрирования при переходах с одной линии профиля на другую. Рассматриваемая система позволяет повысить эффективность и качество морских геофизических исследований.

В морских условиях невозможно применение обычных методов предварительной разведки (поисковая партия или детальная аэрофотосъемка), поэтому наиболее широкое распространение получил сейсмический метод геофизических исследований (рис. 3.5). Геофизическое судно 1 буксирует на кабель-тросе 2 пневматическую пушку 3, являющуюся источником сейсмических колебаний, сейсмографную косу 4, на которой размещены приемники отраженных сейсмических колебаний, и концевой буй 5. Профили дна определяют посредством регистрации интенсивности сейсмических колебаний, отраженных от пограничных слоев 6 различных-пород.

Рис. 3.5. Схема проведения геофизических исследований.

Для получения достоверной геофизической информации судно должно удерживаться на заданном положении относительно дна (линии профиля) с высокой точностью, несмотря на малую скорость движения (3—5 уз) и наличие буксируемых устройств значительной длины (до 3 км) с ограниченной механической прочностью.

Фирмой «Анжутц» разработана комплексированная МС, обеспечивающая удержание судна на заданной траектории. На рис. 3.6 представлена структурная схема этой системы, в которую входят: гирокомпас 1; лаг 2; приборы навигационных комплексов, определяющих положение судна (два и более) 3; авторулевой 4; мини-ЭВМ 5 (5 а — интерфейс, 5 б — центральное запоминающее устройство, 5 в — центральный процессорный блок); считыватель перфоленты 6; графопостроитель 7; дисплей 8; клавиатура 9; рулевая машина 10.

С помощью рассматриваемой системы можно автоматически вывести судно на запрограммированную траекторию, которая задается оператором с помощью клавиатуры, определяющей географические координаты точек поворота. В этой системе независимо от информации, поступающей от какой-либо одной группы приборов традиционного радионавигационного комплекса или устройств спутниковой связи, определяющей положение судна, вычисляются координаты вероятного положения судна по данным, выдаваемым гирокомпасом и лагом.

Рис. 3.6. Структурная схема комплексированной МС удержания судна на заданной траектории

Управление курсом с помощью рассматриваемой системы осуществляется авторулевым, на вход которого поступает информация о величине заданного курса ψ зад , формируемая мини-ЭВМ с учетом ошибки по положению судна. Система собрана в пульте управления. В верхней его части размещен дисплей с органами настройки оптимального изображения. Ниже, на наклонном поле пульта, расположен авторулевой с рукоятками управления. На горизонтальном поле пульта находится клавиатура, при помощи которой осуществляется ввод программ в мини-ЭВМ. Здесь же размещен переключатель, с помощью которого производится выбор режима управления. В цокольной части пульта расположены мини-ЭВМ и интерфейс. Вся периферийная аппаратура размещается на специальных подставках или других пультах. Рассматриваемая система может работать в трех режимах: «Курс», «Монитор» и «Программа». В режиме «Курс» осуществляется удержание заданного курса с помощью авторулевого по показаниям гирокомпаса. Режим «Монитор» выбирается тогда, когда готовится переход на режим «Программа», когда этот режим прерывается или когда переход по данному режиму закончен. На режим «Курс» переходят, когда обнаруживаются неисправности мини-ЭВМ, источников питания или радионавигационного комплекса. В этом режиме авторулевой работает независимо от мини-ЭВМ. В режиме «Программа» происходит управление курсом по данным радионавигационных приборов (датчиков положения) или гирокомпаса.

Обслуживание системы удержания судна на ЗТ осуществляется оператором с пульта. Выбор группы датчиков для определения положения судна производится оператором по рекомендациям, представленным на экране дисплея. В нижней части экрана приводится список всех разрешенных для данного режима команд, которые могут вводиться с помощью клавиатуры. Случайное нажатие какой-либо запрещенной клавиши блокируется ЭВМ.

Авиационная техника. Успехи, достигнутые в развитии авиационной и космической техники с одной стороны и необходимость снижения стоимости целевых операций с другой, стимулировали разработки нового вида техники – дистанционно пилотируемых летательных аппаратов (ДПЛА).

На рис. 3.6 представлена структурная схема системы дистанционного управления полетом ДПЛА - HIMAT . Основной компонентой системы дистанционного пилотирования HIMAT является наземный пункт дистанционного управления. Параметры полета ДПЛА поступают в наземный пункт по линии радиосвязи от летательного аппарата, принимаются и декодируются станцией обработки телеметрии и передаются в наземную часть вычислительной системы, а также на приборы индикации информации в наземном пункте управления. Кроме этого, с борта ДПЛА поступает отображаемая с помощью телевизионной камеры картина внешнего обзора. Телевизионное изображение, высвечиваемое на экране наземного рабочего места человека-оператора, используется для управления летательным аппаратом при воздушных маневрах, заходе на посадку и при самой посадке. Кабина наземного пункта дистанционного управления (рабочее место оператора) оборудована приборами, обеспечивающими индикацию информации о полете и состоянии аппаратуры комплекса ДПЛА, а также средствами для управления летательным аппаратом. В частности, в распоряжении человека-оператора имеются ручки и педали управления летательным аппаратом по крену и тангажу, а также ручка управления двигателем. При выходе из строя основной системы управления подача команд системы управления происходит посредством специального пульта дискретных команд оператора ДПЛА.

Рис. 3.6 Система дистанционного пилоторования ДПЛА HIMAT :

  1. носитель В-52; 2 – резервная система управления на самолете TF -104 G ; 3 – линия телеметрической связи с землей; 4 - ДПЛА HIMAT ; 5 – линии телеметрической связи с ДПЛА; 5 – наземный пункт дистационного пилотирования

В качестве автономной навигационной системы, обеспечивающей счисление пути, используются доплеровские измерители путевой скорости и угла сноса (ДПСС). Такая навигационная система используется совместно с курсовой системой, измеряющей курс датчиком вертикали, формирующим сигналы крена и тангажа, и бортовой ЭВМ, реализующей алгоритм счисления пути. В совокупности эти устройства образуют доплеровскую навигационную систему (см. рис. 3.7). Что бы повысить надежность и точность измерения текущих координат летательного аппарата, ДИСС может объединяться с измерителями скорости.

Рис. 3.7 Схема доплеровской навигационной системы

5. Транспортные мехатронные средства

Мехатронные модули находят все более широкое применение в различных транспортных системах. В данном пособии ограничимся кратким анализом только легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными). К этой новой для отечественной промышленности группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания.

ЛТС являются альтернативой транспорту с двигателями внутреннего сгорания и используются в настоящее время в экологически чистых зонах (лечебно-оздоровительных, туристических, выставочных, парковых комплексах), а также в торговых и складских помещениях. Рассмотрим технические характеристики опытного образца электровелосипеда:

Максимальная скорость 20 км/час,

Номинальная мощность привода 160 Вт,

Номинальная частота вращения 160 об/мин,

Максимальный крутящий момент 18 Нм,

Масса двигателя 4.7 кг,

Аккумуляторная батарея 36В, 6 А«ч,

Движение в автономном режиме 20 км.

Основой для создания ЛТС являются мехатронные модули типа "мотор-колесо" на базе, как правило, высокомоментных электродвигателей. В табл.3 приведены технические характеристики мехатронных модулей движения для легких транспортных средств.

ЛТС с электроприводом

Технические показатели

Максим алъная скорость,км/ч

Рабочее напряж ение, В

Мощност ь, Квт

Номиналь ный Момент, Нм

Номинальный ток, А

Масса, кг

Кресла-коляски

0.15

Электро -велосипеды

Роллеры

Миниэлектромобили

ПО

Мировой рынок ЛТС имеет тенденцию к расширению и по прогнозам его емкость к 2000 году составит 20 млн. единиц или в стоимостном выражении 10 млрд. долларов.

Автомобильный транспорт играет важную роль в обществе транспортной системе страны, хозяйстве. Автомобиль широко используется для подвоза грузов к железным дорогам, речным и морским причалам, обслуживания промышленных торговых предприятий, работников сельского хозяйства, обеспечивает перевозки пассажиров. На долю автомобильного транспорта приходится около половины пассажирских и грузоперевозок (рис. 12.1)

Рисунок 12.1 – Распределение транспортных перевозок

Прошло буквально сто с небольшим лет с момента появления первого автомобиля, а уже нет практически сферы деятельности, в которой бы он не использовался. Поэтому автомобильная промышленность в экономике развитых стран является сейчас ведущей отраслью машиностроения. На это есть причины:

Во-первых, людям с каждым днём требуется все больше и больше автомобилей для решения различных хозяйственных задач;

Во-вторых, эта промышленность является наукоемкой и высокотехнологичной. Она «тянет» за собой многие другие отрасли, предприятия которых выполняют ее многочисленные заказы. Инновации, внедряемые в автомобильной промышленности, неминуемо заставляют эти отрасли совершенствовать и свои производства. В силу того, что таких отраслей достаточно много, то в итоге наблюдается подъем всей промышленности, а, следовательно, и экономики в целом;

В-третьих, автомобильная промышленность во всех развитых странах относится к числу наиболее прибыльных отраслей народного хозяйства, так как она способствует повышению товарооборота и приносит в казну государства немалые доходы за счет продажи на внутреннем, так и на мировом рынке;

В-четвертых, автомобильная промышленность является стратегически важной отраслью. Развитие этой отрасли делает страну экономически сильной и потому более независимой. Широкое использование лучших образцов автомобильной техники в армии, бесспорно, повышает оборонную мощь страны.

Сейчас в автомобильной промышленности существует ряд тенденций, которые свидетельствуют о её важности и значении, а также смежных с ней отраслей в экономике промышленно развитых стран. Наблюдается совершенно новый подход к техническому развитию автомобиля, организации и технологии его производства. Научно-технические тенденции заключаются в уменьшении расхода топлива и снижении вредных выбросов, разработке сверхлегкого автомобиля, повышении безопасности, качества, надежности и долговечности, а также в развитии интеллектуальных автомобильно-дорожных систем.

Развитие мехатроники в автомобилях (рис. 12.2) и на производственных машинах имеет свои особенности. В автомобилях экспансия автоматики, а следовательно, и мехатроники, преимущественно началась в сфере устройств комфорта. Первым из мехатронных агрегатов, как это исторически повелось, там стал двигатель с системой топливоподачи и автоматикой её регулирования. Вторым – система силового управления навесным устройством (EHR), мировым лидером в производстве которой является фирма Bosch. Третьим – трансмиссия. Тут процесс начался с появления механических трансмиссий с переключением ступеней под нагрузкой. На них появились гидравлические, затем электрогидравлические устройства переключения, а затем и электронная автоматика управления переключениями. Западные фирмы (Германская ZF и другие) начали поставлять автомобильным заводам и производить на продажу трансмиссии в таком именно полном комплекте

Сила и выгода мехатронного исполнения агрегатов особенно ярко видна на примере трансмиссий, которые при наличии и отсутствии автоматики управления при одинаковых других компонентах комплекса являют разительный контраст в характеристиках как их самих, так и оборудованных ими автомобилей. В мехатронном виде они обеспечивают на порядок более выгодные характеристики практически по всем показателям работы машин: техническим, экономическим и эргономическим.

Сравнивая мехатронные комплексы с их не мехатронными прообразами по техническому совершенству легко увидеть, что первые значительно превосходят последних, не только по общим показателям, но и по уровню и качеству проектирования. Это не удивительно: синергический эффект проявляется не только в конечном продукте, но и в процессе проектирования вследствие и нового подхода к проектированию.

Рисунок 12.2 – Классификация мехатронных систем автомобиля

При управлении работой двигателя автомобиля применяют различные системы:

- AVCS (Active Valve Control System) - система регулировки фаз газораспределения на автомобилях Subaru изменяет высоту подъема клапанов в зависимости от мгновенной нагрузки двигателя. Common Rail (Nissan) - система впрыска, подающая топливо в цилиндры через общую магистраль под высоким давлением. Отличается рядом преимуществ, благодаря которым вождение приносит водителю больше удовольствия: для дизелей с Common Rail характерны одновременно отличная приемистость и низкий расход топлива, избавляющий от необходимости часто останавливаться на заправках.

- GDI - Gasoline Direct Injection, что можно перевести как "двигатель с непосредственным впрыском топлива", то есть, топливо на таком двигателе впрыскивается не во впускной коллектор, а прямо в цилиндры двигателя. M-Fire - система управления процессом сгорания - существенно снижается дымность отработавших газов и содержание в них окислов азота при одновременном увеличении мощности и снижении уровня шума.

- MIVEC (Mitsubishi) - оптимально управляет моментом открытия впускных клапанов в соответствии с условиями работы двигателя, что улучшает стабильность работы двигателя на холостом ходу, мощностные и моментные характеристики для всего рабочего диапазона.

- VTEC (Honda) - Система изменяемых фаз газораспределения. Применяются для улучшения характеристик крутящего момента в широком диапазоне оборотов, а также для улучшения экономичности и экологических характеристик двигателя. Также применяется на автомобилях Mazda.

- DPS - Dual Pump System - два маслянных насоса, соедиенные последовательно (т.е. друг за другом). При равной частоте вращения обоих масляных насосов имеет место "равномерная" циркуляция масла, т.е. отсутствуют области с повышенным и пониженным давлением (рис. 12.3).

Рисунок 12.3 – Dual Pump Sysytem

- Common rail (англ. общая магистраль ) - современная технология систем подачи топлива в дизельных двигателях с прямым впрыском. В системе common rail насос нагнетает топливо под высоким давлением (250 - 1800 бар, в зависимости от режима работы двигателя) в общую топливную магистраль. Управляемые электроникой форсунки с электромагнитными или пьезоэлектрическими клапанами впрыскивают топливо в цилиндры. В зависимости от конструкции, форсунки производят от 2 до 5 впрысков за 1 такт. Точный расчет угла начала впрыска и количества впрыскиваемого топлива позволяют дизельным двигателям выполнить возросшие экологические и экономические требования. Кроме того дизельные двигатели с системой common rail по своим мощностным и динамическим характеристикам вплотную приблизились, а в некоторых случаях превзошли бензиновые двигатели.

Выделяют различные типы мехатронного устройства трансмиссий:

- CVT - автоматическая трансмиссия с вариатором. Представляет собой механизм с диапазоном перемены передаточного числа большим, чем у 5-ступенчатой механической КПП.

- DAC - Downhill Assist Control - система контролирует поведение машины на крутых спусках. На колесах установлены датчики, которые замеряют скорость вращения колес и постоянно сопоставляют ее со скоростью автомобиля. Анализируя полученные данные, электроника вовремя подтормаживает передние колеса до скорости порядка 5 км/ч.

- DDS - Downhill Drive Support – система контроля движения в автомобилях марки Nissan на крутых спусках. DDS автоматически поддерживает скорость 7 км/ч при спуске, не позволяя колесам заблокироваться.

- Drive Select 4x4 - привод на все колеса можно включить и выключить на ходу на скорости до 100 км/ч.

- TSA (Trailer Stability Assist) - система стабилизации автомобиля во время движения с прицепом. При потере устойчивости автомобиль, как правило, начинает болтать по дороге. В этом случае TSA подтормаживает колеса "по диагонали" (переднее левое - заднее правое или переднее правое - заднее левое) в противофазу колебаниям, одновременно снижая скорость машины путем уменьшения подачи топлива в двигатель. Используется на автомобилях марки Honda.

- Easy Select 4WD - система полного привода, широко применяемая в автомобилях Mitsubishi, позволяет менять 2WD на 4WD, и наоборот, во время движения машины.

- Grade Logic Control - система «умного» выбора передач, обеспечивает равномерную тягу, что особенно важно при подъеме в гору.

- Hypertronic CVТ-M6 (Nissan) - обеспечивают плавное, бесступенчатое ускорение без рывков, характерных для традиционных автоматов. К тому же они более экономичны, чем традиционные автоматические коробки передач. CVT -М6 предназначен для водителей, которые хотят совместить преимущества автоматической и механической коробок передач водной. Переведя рычаг переключения передач в дальнюю от водителя прорезь, Вы получаете возможность переключать шесть передач с фиксированными передаточными числами.

- INVECS-II - адаптивный автомат (Mitsubishi) - автоматическая трансмиссия со спортивным режимом и возможностью механического управления.

- EBA - электронная система управления давлением в гидравлической системе тормозов, которая в случае необходимости экстренного торможения и недостаточного при этом усилия на педали тормоза самостоятельно повышает давление в тормозной магистрали, делая это во много раз быстрее человека. А система EBD равномерно распределяет тормозные усилия и работает в комплекте с ABS - антиблокировочной системой.

- ESP+ - противозаносная система стабилизации ESP - наиболее сложная система с задействованием возможностей антиблокировочной, антипробуксовочной с контролем тяги и электронной систем управления дроссельной заслонкой. Контрольный блок получает информацию с датчиков углового ускорения автомобиля, угла поворота рулевого колеса, информацию о скорости автомобиля и вращении каждого из колес. Система анализирует эти данные и рассчитывает траекторию движения, а в случае, если в поворотах или маневрах реальная скорость не совпадает с расчетной и автомобиль "выносит" наружу или внутрь поворота, корректирует траекторию движения, подтормаживая колеса и снижая тягу двигателя.

- HAC - Hill-start Assist Control - система контролирует поведение машины на крутых подъемах. HAC не только предотвращает пробуксовку колес при начале движения вверх по скользкому склону, но и способна предотвратить скатывание назад, если скорость автомобиля слишком мала и он скользит вниз под тяжестью кузова.

- Нill Holder - с помощью этого устройства автомобиль удерживается на тормозах даже после того, как педаль тормоза отпущена, отключается Нill Holder только после того, как отпускается педаль сцепления. Предназначен для начала движения в горку.

- AIRMATIC Dual Control – активная воздушная подвеска с электронной регулировкой и адаптивной системой демпфирования ADS II работает полностью в автоматическом режиме (рис. 12.4). По сравнению с традиционной стальной подвеской она значительно улучшает комфорт и безопасность движения. AIRMATIC DC работает с воздушными подушками, которые электроника в зависимости от дорожной ситуации делает жестче или мягче. Если датчики, например, определили спортивный стиль движения, комфортная в нормальном режиме воздушная подвеска автоматически становится жестче. Подвеску и характер демпфирования можно настроить на спортивный или комфортный режим также и вручную с помощью переключателя.

Электроника работает с четырьмя разными режимами демпфирования (ADS II), которые адаптируются автоматически на каждом колесе под состояние дороги. Таким образом, автомобиль даже на плохой дороге катится мягко без ущерба для стабильности.

Рисунок 12.4 – AIRMATIC Dual Control

Система оснащена также функцией регулировки уровня автомобиля. Она обеспечивает даже на загруженном автомобиле почти постоянный дорожный просвет, что придает автомобилю стабильность. При движении на высокой скорости автомобиль может автоматически опускаться, чтобы уменьшить наклоны кузова. При скорости свыше 140 км/час автомобиль автоматически опускается на 15 мм, а при скорости ниже 70 км/час нормальный уровень снова восстанавливается. Кроме того, для плохой дороги имеется возможность вручную поднять автомобиль на 25 мм. При продолжительном движении со скоростью около 80 км/час или при превышении скорости 120 км/час автоматически снова восстанавливается нормальный уровень.

Также в автомобилях используются различные тормозные системы, используемые для значительного сокращения тормозного пути, грамотной интерпретации поведения водителя во время торможения, активации максимального тормозного усилия в случае распознавания экстренного торможения.

- Тормозной ассистент (BAS) , устанавливаемый серийно на всех легковых автомобилях Mercedes-Benz, интерпретирует поведение водителя во время торможения и в случае распознавания экстренного торможения создает максимальное тормозное усилие, если водитель сам недостаточно нажимает на педаль тормоза. Разработка тормозного ассистента основывается на данных, которые получил отдел Mercedes-Benz по изучению аварий: в критичной ситуации водители нажимают на педаль тормоза быстро, но недостаточно сильно. В этом случае тормозной ассистент сможет эффективно поддержать водителя.

Для лучшего понимания сделаем краткий обзор техники современных тормозных систем: тормозной усилитель, который усиливает давление создаваемое ногой водителя, состоит из двух камер, которые разделены между собой с помощью подвижной мембраны. Если торможение не производится, то в обеих камерах находится вакуум. Благодаря нажатию на педаль тормоза в тормозном усилителе открывается механический управляющий клапан, который перепускает воздух в заднюю камеру и изменяет соотношение давление в двух камерах. Максимум усилия создается, когда во второй камере царит атмосферное давление. В тормозном ассистенте (BAS)так называемый датчик движения мембраны определяет, является ли торможение экстремальным. Он определяет движение мембраны между камерами и передает значение в блок управления BAS. Сравнивая постоянно значения микрокомпьютер распознает момент, когда скорость нажатия на педаль тормоза (ровна скорости передвижения мембраны в тормозном усилителе) превышает стандартное значение - это и является экстренным торможением. В этом случае система активирует магнитный клапан, через который мгновенно наполняется воздухом задняя камера и создается максимальное тормозное усилие. Несмотря на такое автоматическое полное торможение колеса не блокируются, потому что известная антиблокировочная система ABS дозирует тормозное усилие, оптимально удерживая его на грани блокировки, сохраняя благодаря этому управляемость автомобиля. Если водитель убирает ногу с педали тормоза, то специальный датчик срабатывания закрывает магнитный клапан и автоматическое усиление тормоза отключается.

Рисунок 12.6 – Тормозной ассистент (BAS) Мерседес

- Антиблокировочная система (АБС) (нем. antiblockiersystem англ. Anti-lock Brake System (ABS)) - система, предотвращающая блокировку колёс транспортного средства при торможении. Основное предназначение системы состоит в том, чтобы уменьшить тормозной путь и обеспечить управляемость транспортного средства в процессе резкого торможения, и исключить вероятность его неконтролируемого скольжения.

АБС состоит из следующих основных компонентов:

Датчики скорости либо ускорения (замедления) установленные на ступицах колёс транспортного средства.

Управляющие клапаны, которые являются элементами модулятора давления, установленные в магистрали основной тормозной системы.

Блок управления, получающий сигналы от датчиков, и управляющий работой клапанов.

После начала торможения АБС начинает постоянное и достаточно точное определение скорости вращения каждого колеса. В том случае, если какое-то колесо начинает вращаться существенно медленнее остальных (что означает, что колесо близко к блокировке), клапан в тормозной магистрали ограничивает тормозное усилие на этом колесе. Как только колесо начинает вращаться быстрее остальных, тормозное усилие восстанавливается.

Этот процесс повторяется несколько раз (или несколько десятков раз) в секунду, и как правило приводит к заметной пульсации тормозной педали. Тормозное усилие может ограничиваться как во всей тормозной системе одновременно (одноканальная АБС), так и в тормозной системе борта (двухканальная АБС) или даже отдельного колеса (многоканальная АБС). Одноканальные системы обеспечивают довольно эффективное замедление, но только в том случае если условия сцепления всех колёс более или менее одинаковы. Многоканальные системы дороже и сложнее одноканальных, но имеют большую эффективность при торможении на неоднородных покрытиях, если, например, при торможении одно или несколько колёс попали на лёд, мокрый участок дороги, или обочину.

Широкое распространение в современных автомобилях получают системы управления и навигации.

- Ситема DISTRONIC – осуществялет электронное регулирование расстояние до впереди идущего автомобиля с помощью радара, простое управление с помощью рычажка TEMPOMAT, обеспечивает дополнительный комфорт на автобанах и аналогичных дорогах, поддерживается рабочее состояние водителя.

Регулятор расстояния DISTRONIC поддерживает необходимо расстояние до впереди идущего автомобиля. Если расстояние уменьшается, то активируется тормозная система. Если впереди не едет ни один автомобиль, то DISTRONIC поддерживает установленную водителем скорость. DISTRONIC предоставляет для движения по автобану и аналогичным дорогам дополнительный комфорт. Микрокомпьютер обрабатывает на скорости от 30 до 180 км/час сигналы радара, который установлен за решеткой радиатора. Импульсы радара отражаются от впереди идущего автомобиля, обрабатываются и на основании этой информации рассчитывается расстояние до переднего автомобиля и его скорость. Если автомобиль Mercedes-Benz с системой DISTRONIC приближается слишком сильно к переднему автомобилю, то DISTRONIC автоматически уменьшает газ и активирует тормоз, чтобы поддержать заданное расстояние. Если тормозить необходимо сильно, то водитель информируется об этом с помощью акустического сигнала и предостерегающей лампочки - это значит, что водитель должен нажать на педаль тормоза сам. Если расстояние увеличивается, то DISTRONIC снова обеспечивает необходимое расстояние и ускоряет автомобиль до заданной скорости. DISTRONIC является дальнейшим развитием серийной функции TEMPOMAT с переменным ограничением скорости движения SPEEDTRONIC

Рисунок 12.7 – Система управления и навигации

Компания Mercedes-Benz представила первую мехатронную пневматическую подвеску AIR-matic с системой регулирования амортизаторов ADS в стандартной комплектации седанов S-класса.

В системе AIR-matic стойка седана S-класса содержит в себе пневматический упругий элемент: роль привычных нам пружин здесь выполняет сжатый воздух, заключенный под резинокордной оболочкой. Еще в стойке имеется амортизатор с необычной «пристройкой» сбоку. Естественно, в автомобиле предусмотрена полноценная пневмосистема (компрессор, ресивер, магистрали, клапанные устройства). А еще – сеть датчиков и, конечно же, процессор. Как система работает. По команде процессора клапаны открывают доступ воздуха из пневмосистемы в упругие элементы (либо стравливают воздух оттуда). Таким образом меняется уровень пола кузова: в систему заложена его зависимость от скорости движения автомобиля. Водитель также может «проявить волю» – приподнять автомобиль, скажем, для переезда значительных неровностей.

ADS выполняет более «тонкую» работу – управляет амортизаторами. При ходе штока амортизатора часть жидкости перетекает не только через клапаны в поршне, но и через ту самую «пристройку», внутри которой исполнительное устройсво – система клапанов, обеспечивающая четыре возможных режима работы амортизатора. На основании поступающей от датчиков информации и в соответствии с выбранным водителем алгоритмом («спортивный» либо «комфортный») процессор выбирает для каждого амортизатора режим, наиболее соответствующий «текущему моменту», и посылает команды на исполнительные устройства.

Современные автомобили оснащаются системой климат-контроля . Данная система предназначена для создания и автоматического поддержания микроклимата в салоне автомобиля. Система обеспечивает совместную работу систем отопления, вентиляции и кондиционирования за счет электронного управления.

Применение электроники позволило добиться зонального регулирования климата в салоне автомобиля. В зависимости от числа температурных зон различают следующие системы климат-контроля:

· однозонный климат-контроль;

· двухзонный климат-контроль;

· трехзонный климат-контроль;

· четырехзонный климат-контроль.

Система климат-контроля имеет следующее общее устройство :

· климатическая установка;

· система управления.

Климатическая установка включает конструктивные элементы систем отопления, вентиляции и кондиционирования, в том числе:

· радиатор отопителя;

· вентилятор приточного воздуха;

· кондиционер, состоящий из испарителя, компрессора, конденсатора и ресивера.

Основными элементами системы управления климатом являются:

· входные датчики;

· блок управления;

· исполнительные устройства.

Входные датчики измеряют соответствующие физические параметры и преобразуют их в электрические сигналы. К входным датчикам системы управления относятся:

· датчик температуры наружного воздуха;

· датчик уровня солнечного излучения (фотодиод);

· датчики выходной температуры;

· потенциометры заслонок;

· датчик температуры испарителя;

· датчик давления в системе кондиционирования.

Количество датчиков выходной температуры определяется конструкцией системы климат-контроля. К датчику выходной температуры может быть добавлен датчик выходной температуры в ножное пространство. В двухзонной системе климат-контроля число датчиков выходной температуры удваивается (датчики слева и справа), а в трехзонной – утраивается (слева, справа и сзади).

Потенциометры заслонок фиксируют текущее положение воздушных заслонок. Датчики температуры испарителя и давления обеспечивают работу системы кондиционирования. Электронный блок управления принимает сигналы от датчиков и в соответствии с заложенной программой формирует управляющие воздействия на исполнительные устройства.

К исполнительным устройствам относятся приводы заслонок и электродвигатель вентилятора приточного воздуха, с помощью которых создается и поддерживается заданный температурный режим. Заслонки могут иметь механический или электрический привод. В конструкции климатической установки могут применяться следующие заслонки:

· заслонка приточного воздуха;

· центральная заслонка;

· заслонки температурного регулирования (в системах с 2-мя и более зонами регулирования);

· заслонка рециркуляции;

· заслонки для оттаивания стекол.

Система климат-контроля обеспечивает автоматическое регулирование температуры в салоне автомобиля в пределах 16-30 °С.

Желаемое значение температуры устанавливается с помощью регуляторов на панели приборов автомобиля. Сигнал от регулятора поступает в электронный блок управления, где активируется соответствующая программа. В соответствии с установленным алгоритмом блок управления обрабатывает сигналы входных датчиков и задействует необходимее исполнительные устройства. При необходимости включается кондиционер.

Современный автомобиль является источником повышенной опасности. Неуклонный рост мощности и скорости автомобиля, плотности движения автомобильных потоков значительно увеличивают вероятность аварийной ситуации.

Для защиты пассажиров при аварии активно разрабатываются и внедряются технические устройства безопасности. В конце 50-х годов прошлого века появились ремни безопасности , предназначенные для удержания пассажиров на своих местах при столкновении. В начале 80-х годов были применены подушки безопасности .

Совокупность конструктивных элементов, применяемых для защиты пассажиров от травм при аварии, составляет систему пассивной безопасности автомобиля. Система должна обеспечивать защиту не только пассажиров и конкретного автомобиля, но и других участников дорожного движения.

Важнейшими компонентами системы пассивной безопасности автомобиля являются:

· ремни безопасности;

· натяжители ремней безопасности;

· активные подголовники;

· подушки безопасности;

· кузов автомобиля, устойчивый к деформации;

· аварийный размыкатель аккумуляторной батареи;

· ряд других устройств (система защиты при опрокидывании на кабриолете; детские системы безопасности - крепления, кресла, ремни безопасности).

Современная система пассивной безопасности автомобиля имеет электронное управление, обеспечивающее эффективное взаимодействие большинства компонентов.

Система управления включает:

· входные датчики;

· блок управления;

· исполнительные устройства компонентов системы.

Входные датчики фиксируют параметры, при которых возникает аварийная ситуация, и преобразуют их в электрические сигналы. К входным датчикам оносятся:

· датчик удара;

· выключатель замка ремня безопасности;

· датчик занятости сидения переднего пассажира;

· датчик положения сидения водителя и переднего пассажира.

На каждую из сторон автомобиля устанавливается, как правило, по два датчика удара . Они обеспечивают работу соответствующих подушек безопасности. В задней части датчики удара применяются при оборудовании автомобиля активными подголовниками с электрическим приводом. Выключатель замка ремня безопасности фиксирует использование ремня безопасности.

Датчик занятости сидения переднего пассажира позволяет в случае аварийной ситуации и отсутствии на переднем сидении пассажира сохранить соответствующую подушку безопасности.

В зависимости от положениясидения водителя и переднего пассажира, которое фиксируется соответствующими датчиками, изменяется порядок и интенсивность применения компонентов системы.

На основании сравнения сигналов датчиков с контрольными параметрами блок управления распознает наступление аварийной ситуации и активизирует необходимые исполнительные устройства элементов системы.

Исполнительным устройствами элементов системы пассивной безопасности являются:

· пиропатрон подушки безопасности;

· пиропатрон натяжителя ремня безопасности;

· пиропатрон (реле) аварийного размыкателя аккумуляторной батареи;

· пиропатрон механизма привода активных подголовников (при использовании подголовников с электрическим приводом);

· контрольная лампа, сигнализирующая о непристегнутых ремнях безопасности.

Активизация исполнительных устройств производится в определенном сочетании в соответствии с заложенным программным обеспечением.

ISOFIX - Изофикс- cистема крепления детских кресел. Внешне детские кресла с этой системой отличаются двумя компактными замками, расположенными на задней части салазок. Замки захватывают шестимиллиметровый пруток, спрятанный за заглушками в основании спинки сиденья.