» » Тягово скоростные свойства транспортных средств. Влияние различных факторов на тягово-скоростные свойства автомобиля

Тягово скоростные свойства транспортных средств. Влияние различных факторов на тягово-скоростные свойства автомобиля

Технические характеристики Hundai Solaris, Лада Гранта, KIA Rio, КамАЗ 65117.

ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА АВТОМОБИЛЯ

Эксплуатационные свойства автомобиля это группа свойств, определяющих возможность его эффективного использования, а также степень его приспособленности к эксплуатации в качестве транспортного средства.
Они включают следующие групповые свойства, обеспечивающие движение:

  • информативность
  • тягово-скоростные
  • тормозные
  • топливную экономичность
  • проходимость
  • маневренность
  • устойчивость
  • надежность и безопасность

Эти свойства закладываются и формируются на этапе конструирования и изготовления автомобиля. Водитель может, исходя из этих свойств, подобрать себе тот автомобиль, который более всего удовлетворяет его запросам и нуждам.

ИНФОРМАТИВНОСТЬ

Информативность автомобиля - это его свойство обеспечивать необходимой информацией водителя и других участников движения. В любых условиях объем и качество воспринимаемой информации имеют решающее значение для безопасного управления автомобилей. Информация об особенностях транспортного средства, характере поведения и намерениях его водителя во многом предопределяет безопасность в действиях других участников движения и уверенность в реализации их намерений. В условиях недостаточной видимости, особенно ночью, информативность в сравнении с другими эксплуатационными свойствами автомобиля оказывает главное влияние на безопасность движения.

Различают внутреннюю, внешнюю и дополнительную информативность автомобиля.

Свойства автомобиля, обеспечивающие возможность воспринимать водителем информацию, необходимую для управления автомобилем в любой момент времени, называются внутренней информативностью . Она зависит от конструкции и обустройства кабины водителя. Важнейшими для внутренней информативности являются обзорность, панель приборов, система внутренней звуковой сигнализации, рукоятки и кнопки управления автомобилем.

Обзорность должна позволять водителю своевременно и без помех воспринимать фактически всю необходимую информацию о любых изменениях дорожной обстановки. Она зависит, прежде всего, от размера окон и стеклоочистителей; ширины и расположения стоек кабины; конструкции омывателей, системы обдува и обогрева стекол; расположения, размеров и конструкции зеркал заднего вида. Обзорность также зависит от удобства сиденья.

Панель приборов должна располагаться в кабине таким образом, чтобы водитель для наблюдения за ними и восприятия их показаний расходовал минимальное время, не отвлекаясь от наблюдения за дорогой. Расположение и конструкция рукояток, кнопок и клавишей управления должны позволять легко их находить, особенно ночью, и обеспечивать водителя посредством тактильных и кинетостатических ощущений обратной связью, необходимой для контроля точности управляющих действий. Наибольшая точность сигналов обратной связи требуется от рулевого колеса, педалей тормоза и газа, а также рычага переключения передач.



Конструкция и обустройство кабины должны отвечать требованиям не только внутренней информативности, но и эргономичности рабочего места водителя - свойства, характеризующего приспособленность кабины психофизиологическим и антропологическим особенностям человека. Эргономичность рабочего места зависит, прежде всего, от удобства сидения, расположения и конструкции органов управления, а также от отдельных физико-химических параметров среды в кабине.

Неудобные поза водителя и расположение органов управления, равно как и чрезмерный шум, тряска и вибрация, чрезмерно высокая или низкая температура, плохая вентиляция воздуха ухудшают условия для водителя, снижают его работоспособность, точность восприятия и управляющих действий.

Внешняя информативность - свойство, от которого зависит возможность других участников движения получать информацию от автомобиля, необходимую для правильного взаимодействия с ним в любое время. Она определяется размерами, формой и окраской кузова, характеристиками и расположением световозвращателей, системы внешней световой сигнализации, а также звуковым сигналом.

Информативность транспортных средств с небольшими габаритами зависит от их контрастности относительно дорожного покрытия. Автомобили, окрашенные в черный, серый, зеленый, синий цвета, в 2 раза чаще попадают в ДТП, чем окрашенные в светлый и яркий цвет, из-за трудности их различения. Наиболее опасными такие автомобили становятся в условиях недостаточной видимости и ночью.

ТЯГОВО-СКОРОСТНЫЕ СВОЙСТВА АВТОМОБИЛЯ

Тягово-скоростные свойства автомобиля - эти свойства определяют динамику разгона автомобиля, возможность развивать им максимальную скорость, и характеризуются временем (в сек.), необходимым для разгона автомобиля до скорости 100 км/ч, мощностью двигателя и максимальной скоростью, которую может развить автомобиль.

Введение

Функциональные свойства определяют способность автомобиля эффективно выполнять свою основную функцию -- перевозку людей, грузов, оборудования, т. е. характеризуют автомобиль как транспортное средство. К этой группе свойств, в частности, относятся: тягово-скоростные свойства -- способность двигаться с высокой средней скоростью, интенсивно разгоняться, преодолевать подъемы; управляемость и устойчивость -- способность автомобиля изменять (управляемость) или поддерживать постоянными (устойчивость) параметры движения (скорость, ускорение, замедление, направление движения) в соответствии с действиями водителя; топливная экономичность -- путевой расход топлива в заданных условиях эксплуатации; маневренность -- способность движения на ограниченных площадях (например, на узких улицах, во дворах, паркингах);проходимость -- возможность движения в тяжелых дорожных условиях (снег, распутица, преодоление водных преград и т. п.) и по бездорожью; плавность хода -- способность движения по неровным дорогам при допустимом уровне вибровоздействия на водителя, пассажиров и на сам автомобиль; надежность -- безотказная эксплуатация, длительный срок службы, приспособленность к проведению технического обслуживания и ремонта автомобиля. Тягово-скоростные свойства автомобиля определяют динамичность движения, т. е. возможность перевозить грузы (пассажиров) с наибольшей средней скоростью. Они зависят от тяговых, тормозных свойств автомобиля и его проходимости -- способности автомобиля преодолевать бездорожье и сложные участки дорог.

Скоростные свойства автомобиля

Возможности автомобиля в достижении высокой скорости сообщения характеризуются скоростными свойствами. Показателем скоростных свойств является максимальная скорость. В соответствии с уравнением максимальной скорости на горизонтальном участке дороги соответствует равенство тяговой силы Р т сумме сил сопротивления качению Р к и сопротивления воздуха Р в. Для определения максимальной скорости автомобиля необходимо решить уравнение силового баланса. Графический способ его решения показан на рис. 1. На графике в координатах скорость V a -- тяговая сила Р т нанесены четыре кривые Р т для разных передач четырехступенчатой трансмиссии и кривая суммы сил сопротивления качению Р к и воздуха Р в.

Точка пересечения кривой изменения тяговой силы Р т на 4-й передаче с суммарной кривой сил сопротивления Р к + Р в определяет максимальную скорость автомобиля V max на горизонтальном участке.

При движении на подъем добавляется сила сопротивления подъему Р п, поэтому кривая Р к + Р в смещается вверх на величину силы сопротивления подъему Р пг. Максимальная скорость на подъеме V Пmах в нашем случае определяется точкой пересечения кривой изменения тяговой силы Р т на 3-й передаче с суммарной кривой сил сопротивления Р к + Р в + Р п.

Резерв тяговой силы res P T может быть использован на преодоление силы инерции Р и при разгоне: rеsР т = Р и = Р т - Р к - Р в.

Рис. 1.

Величина ускорения j x , м/с 2 , пропорциональна resP T и обратно пропорциональна массе автомобиля М а, умноженной на коэффициент k j учета вращающихся масс:

j x = res Р т /М а,k j

Изменение скорости автомобиля при разгоне показано на рис. 2. Продолжительность разгона характеризует инерционность автомобиля, которая пропорциональна постоянной времени разгона Т р. Величина Т р связана с максимальной скоростью V max . За время t = Т р автомобиль разгоняется до скорости V T , равной 0,63 V max .

Оказалось, что средняя скорость движения автомобилей в свободных условиях совпадает или близка к V T . Это можно объяснить следующим. Разница между максимальной скоростью V mах и текущей скоростью V a является резервом скорости, который водитель может использовать при выполнении обгонов. Когда скорость автомобиля превышает 0,63 V max , водитель начинает ощущать, что в случае необходимости он не может увеличить скорость с нужной интенсивностью. Поэтому резерв скорости res V без = V max -- V T является наименьшим безопасным резервом, a V T -- наибольшей безопасной скоростью в свободных условиях.

Рис. 2.

Максимальная скорость V mах, безопасная скорость V T и постоянная времени разгона Т р являются показателями скоростных свойств автомобиля. Безопасная скорость V T может служить ориентиром при выборе скорости автомобиля в условиях свободного движения. Значения V max , V T и Т р для разных моделей автомобилей приведены в табл. 1. Постоянная времени разгона Т р изменяется пропорционально изменению массы автомобиля. Поэтому интенсивность разгона грузового автомобиля и автобуса без нагрузки намного выше, чем с нагрузкой.

Таблица 1.

Показатели скоростных свойств транспортных средств (тс) различных категорий с полной массой

Модель ТС

Среднее Т р для ТС одной категории

Учебный 1

Учебный 2

«С 3 » + «Е»

Учебный 3

«С 3 » + «Е»

Учебный 4

«С 3 » + «Е»

«С 3 » + «Е»

«С 3 » + «Е»

«С 3 » + «Е»

* Разрешенная максимальная масса 3,5...12 т.

* * Разрешенная максимальная масса более 12 т.

Выбег автомобиля происходит при переводе рычага переключения передач в нейтральное положение. Такое движение называют накатом. В этом случае сила инерции Р и является движущей силой уравнение принимает вид:

P и = M а j x = - Р К ± Р п - Р в

Разделив левую и правую части уравнения на М а, получим выражение для определения величины замедления при накате J н:

J н = (- Р К ± Р п - Р в) / M а

Из выражения видно, что чем больше масса автомобиля М а, тем меньше замедление и тем больше время движения накатом до остановки. Зависимость скорости V a от времени t при накате показана на рис. 3.

Рис.3.

Как можно видеть из графика, инерционность автомобиля при накате характеризуется постоянной времени наката Т н. Постоянные времени разгона Т р и наката Т н связаны между собой, так как зависят от массы автомобиля М а. Постоянная времени наката Т н примерно в 1,5 -- 2 раза превышает постоянную времени разгона Т р. Чем больше Т н, тем большую часть пути можно проезжать накатом, что имеет большое значение для снижения расхода топлива.

Тягово-скоростные свойства имеют важное значение при экс­плуатации автомобиля, так как от них во многом зависят его средняя скорость движения и производительность. При благоприятных тягово-скоростных свойствах возрастает средняя скорость, уменьшаются затраты времени на перевозку грузов и пассажиров, а также повышается производительность автомобиля.

3.1. Показатели тягово-скоростных свойств

Основными показателями, позволяющими оценить тягово-скоростные свойства автомобиля, являются:

Максимальная скорость , км/ч;

Минимальная устойчивая скорость (на высшей передаче)
, км/ч;

Время разгона (с места) до максимальной скорости t р, с;

Путь разгона (с места) до максимальной скорости S р, м;

Максимальные и средние ускорения при разгоне (на каждой передаче) j max и j ср, м/с 2 ;

Максимальный преодолеваемый подъем на низшей передаче и при постоянной скорости i m ах, %;

Длина динамически преодолеваемого подъема (с разгона) S j ,м;

Максимальная сила тяги на крюке (на низшей передаче) Р с , Н.

В
качестве обобщенного оценочного показателя тягово-скорост­ных свойств автомобиля можно использовать среднюю скорость непрерывного движенияср , км/ч. Она зависит от условий движе­ния и определяется с учетом всех его режимов, каждый из кото­рых характеризуется соответ-ствующими показателями тягово-ско­ростных свойств автомобиля.

3.2. Силы, действующие на автомобиль при движении

При движении на автомобиль действует целый ряд сил, кото­рые называются внешними. К ним относятся (рис. 3.1) сила тяже­сти G , силы взаимодействия между колесами автомобиля и доро­гой (реакции дороги) R Х1 , R х2 , R z 1 , R z 2 и сила взаимодействия ав­томобиля с воздухом (реакция воздушной среды) Р в.

Рис. 3.1. Силы, действующие на автомобиль с прицепом при движении: а - на горизонтальной дороге; б - на подъеме; в - на спуске

Одни из указанных сил действуют в направлении движения и являются движущими, другие - против движения и относятся к силам сопротивления движению. Так, сила R Х2 на тяговом режи­ме, когда к ведущим колесам подводятся мощность и крутящий момент, направлена в сторону движения, а силы R Х1 и Р в - про­тив движения. Сила Р п - составляющая силы тяжести - может быть направлена как в сторону движения, так и против в зависи­мости от условий движения автомобиля - на подъеме или на спуске (под уклон).

Основной движущей силой автомобиля является касательная реакция дороги R Х2 на ведущих колесах. Она возникает в результа­те подвода мощности и крутящего момента от двигателя через трансмиссию к ведущим колесам.

3.3. Мощность и момент, подводимые к ведущим колесам автомобиля

В условиях эксплуатации автомобиль может двигаться на раз­личных режимах. К этим режимам относятся установившееся движение (равномерное), разгон (ускоренное), торможение(замедленное)

и
накат (по инерции). При этом в условиях города про­должительность движения составляет приблизительно 20 % для ус­тановившегося режима, 40 % - для разгона и 40 % - для тормо­жения и наката.

При всех режимах движения, кроме наката и торможения с отсоединенным двигателем, к ведущим колесам подводятся мощ­ность и крутящий момент. Для определения этих величин рассмот­рим схему,

Рис. 3.2. Схема для определения мощ­ ности и крутящего момента, подво­ димых от двигателя к ведущим ко­ лесам автомобиля:

Д - двигатель; М - маховик; Т - транс­ миссия; К - ведущие колеса

представленную на рис. 3.2. Здесь N e - эффективная мощность двигателя; N тр - мощность, подводимая к трансмис­сии;N кол - мощность, подводимая к ведущим колесам; J м - мо­мент инерции маховика (под этой величиной условно понимают момент инерции всех вращающихся частей двигателя и трансмис­сии: маховика, деталей сцепления, коробки передач, карданной передачи, главной передачи и др.).

При разгоне автомобиля определенная доля мощности, пере­даваемой от двигателя к трансмиссии, затрачивается на раскру­чивание вращающихся частей двигателя и трансмиссии. Эти зат­раты мощности

(3.1)

где А - кинетическая энергия вращающихся частей.

Учтем, что выражение для кинетической энергии имеет вид

Тогда затраты мощности

(3.2)

Исходя из уравнений (3.1) и (3.2) мощность, подводимую к трансмиссии, можно представить в виде

Часть этой мощности теряется на преодоление различных со­противлений (трения) в трансмиссии. Указанные потери мощности оцениваются коэффициентом полезного действия трансмис­сии тр.

С учетом потерь мощности в трансмиссии подводимая к веду­щим колесам мощность

(3.4)

Угловая скорость коленчатого вала двигателя

(3.5)

где ω к -угловая скорость ведущих колес; u т -передаточное число трансмиссии

Передаточное число трансмиссии

Где u k - передаточное число коробки передач; u д - передаточное число дополнительной коробки передач (раздаточная коробка, делитель, демультипликатор); и Г - передаточное число главной передачи.

В результате подстановки e из соотношения (3.5) в формулу (3.4) мощность, подводимая к ведущим колесам:

(3.6)

При постоянной угловой скорости коленчатого вала второй член в правой части выражения (3.6) равен нулю. В этом случае мощ­ность, подводимая к ведущим колесам, называется тяговой. Ее величина

(3.7)

С учетом соотношения (3.7) формула (3.6) преобразуется к виду

(3.8)

Для определения крутящего момента М к , подводимого от двигателя к ведущим колесам, представим мощности N кол и N T , в выражении (3.8) в виде произведений соответствующих моментов на угловые скорости. В результате такого преобразования получим

(3.9)

Подставим в формулу (3.9) выражение (3.5) для угловой скорости коленчатого вала и, разделив обе части равенства на к получим

(3.10)

При установившемся движении автомобиля второй член в пра­вой части формулы (3.10) равен нулю. Момент, подводимый к ведущим колесам, в этом случае называется тяговым. Его величина


(3.11)

С учетом соотношения (3.11) момент, подводимый к ведущим колесам:

(3.12)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Техническая характеристика автомобиля

2. Расчет внешней скоростной характеристики двигателя

3. Расчет тяговой диаграммы автомобиля

4. Расчет динамической характеристики автомобиля

5. Расчет ускорения автомобиля на передачах

6. Расчет времени и пути разгона автомобиля на передачах

7. Расчет остановочного пути автомобиля на передачах

8. Расчет путевого расхода топлива автомобилем

Заключение

Список литературы

Введение

Жизнь современного человека трудно представить себе без автомобиля. Автомобиль используется и в производстве, и в быту, и в спорте.

Эффективность использования автотранспортных средств в различных условиях эксплуатации определяется комплексом их потенциальных эксплуатационных свойств - тягово-скоростных, тормозных, проходимости, топливной экономичности, устойчивости и управляемости, комфортабельности плавности хода. На эти эксплуатационные свойства влияют основные параметры автомобиля и его узлов, прежде всего двигателя, трансмиссии и колес, а также характеристики дороги и условий движения.

Повышение производительности автомобиля и снижение себестоимости перевозок невозможно без изучения эксплуатационных свойств автомобиля, так как для решения этих задач следует увеличить его среднюю скорость движения и уменьшить расход топлива при одновременном сохранении безопасности движения и обеспечении максимальных удобств для водителя и пассажиров.

Показатели эксплуатационных свойств можно определить экспериментальным или расчетным методом. Для получения экспериментальных данных автомобиль испытывают на специальных стендах, или непосредственно на дороге в условиях, приближенных к эксплуатационным. Проведение испытаний сопряжено с затратой значительных средств и труда большого числа квалифицированных работников. Кроме того, воспроизвести при этом все условия эксплуатации очень сложно. Поэтому испытания автомобиля сочетают с теоретическим анализом эксплуатационных свойств и расчетом их показателей.

Тягово-скоростными свойствами автомобиля называют совокупность свойств определяющих возможные по характеристикам двигателя или сцепления ведущих колес с дорогой диапазоны изменения скоростей движения и предельные интенсивности разгона и торможения автомобиля при его работе на тяговом режиме работы в различных дорожных условиях.

В данном курсовом проекте следует выполнить необходимые расчеты на основании конкретных технических данных, построить графики и по ним анализировать тягово-скоростные и топливно-экономические свойства автомобиля ВАЗ-21099. По результатам расчетов требуется построить внешнюю скоростную, тяговую и динамическую характеристики, определить ускорения автомобиля на передачах, изучить зависимости скорости автомобиля от пути и скорости автомобиля от времени при разгоне, произвести расчет остановочного пути автомобиля, исследовать зависимость расхода топлива от скорости. В результате можно сделать вывод о тягово-скоростных и топливно-экономических свойствах автомобиля ВАЗ-21099.

1 ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА АВТОМОБИЛЯ

1 Марка и тип автомобиля: ВАЗ-21099

Марка автомобиля составляется из букв и цифрового индекса. Буквы представляют собой сокращенное название завода- изготовителя, а цифры: первая - класс автомобиля по рабочему объему цилиндров двигателя, вторая - условное обозначение вида, третья и четвертая - порядковый номер модели в классе, пятая - номер модификации. Таким образом, ВАЗ-21099 - легковой автомобиль, выпускаемый Волжским автомобильным заводом, малого класса, 9 модели, 9 модификации.

2 Колесная формула: 42.

Автомобили, рассчитанные на движение по дорогам с усовершенствованным покрытием, имеют обычно два ведущих и два не ведущих колеса, а автомобили, рассчитанные в основном на эксплуатацию в тяжелых дорожных условиях, имеют все ведущие колеса. Эти различия отражаются в колесной формуле автомобиля, которая включает общее число колес и число ведущих.

3 Число мест: 5 мест.

Для легковых автомобилей и автобусов указывают общее количество мест, включая место водителя. Легковым считается пассажирский автомобиль с числом мест для сидения не более девяти, включая место водителя. Пассажирским является автомобиль, который по своей конструкции и оборудованию предназначен для перевозки пассажиров и багажа с обеспечением необходимого комфорта и безопасности.

4 Собственная масса автомобиля: 915 кг (в том числе на переднюю и заднюю оси, соответственно, 555 и 360 кг).

Собственная масса автомобиля - масса автомобиля в снаряженном состоянии без нагрузки. Слагается из сухой массы автомобиля (не заправленный и не снаряженный), массы топлива, охлаждающей жидкости, запасного колеса (колес), инструмента, принадлежностей и обязательного оборудования.

5 Полная масса автомобиля: 1340 кг (в том числе на переднюю и заднюю оси, соответственно, 675 и 665 кг).

Полная масса - сумма собственной массы автомобиля и массы груза или пассажиров, перевозимых автомобилем.

6 Габаритные размеры (длина, ширина, высота): 400615501402 мм.

7 Максимальная скорость автомобиля - 156 км/ч.

8 Контрольный расход топлива: 5,9 л/100 км при скорости 90 км/ч.

9 Тип двигателя: ВАЗ-21083, карбюраторный, 4-тактный, 4-цилиндровый.

10 Рабочий объем цилиндров: 1,5 л.

11 Максимальная мощность двигателя: 51,5 кВт.

12 Частота вращения вала, соответствующая максимальной мощности: 5600 об/мин.

13 Максимальный крутящий момент двигателя: 106,4 Нм.

14 Частота вращения вала, соответствующая максимальному крутящему моменту: 3400 об/мин.

15 Тип коробки передач: 5-ступенчатая, с синхронизаторами на всех передачах переднего хода, передаточные числа - 3,636; 1,96; 1,357; 0,941; 0,784; З.Х. - 3,53.

16 Раздаточная коробка (если есть) - нет.

17 Тип главной передачи: цилиндрическая, косозубая, передаточное число - 3,94.

18 Шины и маркировка: радиальные низкопрофильные, размер 175/70R13.

2. РАСЧЕТ ВНЕШНЕЙ СКОРОСТНОЙ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ

Окружная сила на ведущих колесах, движущая автомобиль, возникает в результате того, что к ведущим колесам подводится через трансмиссию крутящий момент от двигателя.

Влияние двигателя на тягово-скоростные свойства автомобиля определяются его скоростной характеристикой, которая представляет собой зависимость мощности и момента на валу двигателя от частоты его вращения. Если эта характеристика снята при максимальной подаче топлива в цилиндр, то она называется внешней, если при неполной подаче - частичной.

Для расчета внешней скоростной характеристики двигателя необходимо взять технические характеристики значения ключевых точек.

1 Максимальная мощность двигателя: , кВт.

Частота вращения вала, соответствующая максимальной мощности: , об/мин.

2 Максимальный крутящий момент двигателя: , кНм.

Частота вращения вала, соответствующая максимальному крутящему моменту: , об/мин.

Промежуточные значения определяются из уравнения полинома:

где - текущее значение мощности двигателя, кВт;

Максимальная мощность двигателя, кВт;

Текущее значение частоты вращения коленчатого вала, рад/с;

Частота вращения коленчатого вала в расчетном режиме, соответствующая максимальному значению мощности, рад/с;

Коэффициенты полинома.

Коэффициенты полинома рассчитываются по следующим формулам:

где - коэффициент приспособляемости по моменту;

Коэффициент приспособляемости по частоте вращения.

Коэффициенты приспособляемости

где - момент, соответствующий максимальной мощности;

Перевод частоты об/мин в рад/с

Для проверки правильности коэффициентов полинома должно выполняться равенство: .

Значение величины крутящего момента

Рассчитанные значения мощности отличаются от фактических, передаваемых в трансмиссию за счет потерь мощности двигателя на привод вспомогательного оборудования. Поэтому фактические значения мощности и момента определяются по формулам:

где - коэффициент, учитывающий потери мощности на привод вспомогательного оборудования; для легковых автомобилей

0,95..0,98. Принимаем =0,98

Расчет внешней скоростной характеристики двигателя автомобиля ВАЗ-21099.

Значения в ключевых точках берем из краткой технической характеристики:

1 Максимальная мощность двигателя =51,5 кВт.

Частота вращения вала, соответствующая максимальной мощности, =5600 об/мин.

2 Максимальный крутящий момент двигателя =106,4 Нм.

Частота вращения вала, соответствующая максимальному крутящему моменту, =3400 об/мин.

Произведем перевод частот в рад/с:

Тогда крутящий момент при максимальной мощности

Определим коэффициенты приспособляемости по моменту и по частоте вращения:

Приведем расчет коэффициентов полинома:

Проверка: 0,710 + 1,644 - 1,354= 1

Следовательно, расчеты коэффициентов произведены правильно.

Произведем расчеты мощности и крутящего момента для холостого хода. Минимальная частота вращения, при которой двигатель работает устойчиво с полной нагрузкой, равна для карбюраторного двигателя =60 рад/с:

Дальнейшие расчеты заносим в таблицу 2.1, по данным которой строим графики изменения внешней скоростной характеристики:

Таблица 2.1 - Расчет значений внешней скоростной характеристики

Параметр

Вывод: в результате проведенных расчетов была определена внешняя скоростная характеристика автомобиля ВАЗ-21099 построены ее графики, правильность которых удовлетворяет следующим условиям:

1) кривая изменения мощности проходит через точку с координатами (51,5; 586,13);

2) кривая изменения момента двигателя проходит через точку с координатами (0,1064; 355,87);

3) экстремум функции моментов находится в точке с координатами (0,1064; 355,87).

Графики изменения внешней скоростной характеристики приведены в приложении А.

3. РАСЧЕТ ТЯГОВОЙ ДИАГРАММЫ АВТОМОБИЛЯ

Тяговой диаграммой называется зависимость окружной силы на ведущих колесах от скорости движения автомобиля.

Основной движущей силой автомобиля является окружная сила, приложенная к его ведущим колесам. Эта сила возникает в результате работы двигателя и вызвана взаимодействием ведущих колес и дороги.

Каждой частоте вращения коленчатого вала соответствует строго определенное значение момента (по внешней скоростной характеристике). По найденным значениям момента определяют, а по соответствующей частоте вращения вала - .

Для установившегося режима окружная сила на ведущих колесах

где - фактическое значение момента, кНм;

Передаточное число трансмиссии;

Радиус качения колеса, м;

КПД трансмиссии, значение определено в задании.

Установившимся называется такой режим, при котором будут отсутствовать потери мощности, обусловленные ухудшением наполнения цилиндра свежим зарядом и тепловой инерцией двигателя.

Значение передаточного числа трансмиссии и окружной силы рассчитывается для каждой передачи:

где - передаточное число коробки передач;

Передаточное число раздаточной коробки;

Передаточное число главной передачи.

Радиус качения колеса

где - максимальная скорость автомобиля из технической характеристики, м\с;

UТ - передаточное число пятой передачи;

wp - частота вращения вала, соответствующая максимальной мощности, рад\с;

Скорость движения автомобиля

где - скорость автомобиля, м/с;

w - частота вращения коленчатого вала, рад/с.

Значение величины, ограничивающей окружную силу на ведущих колесах по условиям сцепления колеса с дорогой, определяется по формуле

где - коэффициент сцепления колеса с дорогой;

Вертикальная составляющая под ведущими колесами, кН;

Вес автомобиля, приходящийся на ведущие колеса, кН;

Масса автомобиля, приходящаяся на ведущие колеса, т;

Ускорение свободного падения, м/с.

Рассчитаем параметры тяговой диаграммы автомобиля ВАЗ-21099. Передаточное число трансмиссии при включении первой передачи

Радиус качения колеса

Тогда значение окружной силы

Скорость движения автомобиля

м/с=3,438 км/ч

Все последующие расчеты целесообразно свести в таблицу 3.1.

Таблица 3.1 - Расчет параметров тяговой диаграммы

По полученным значениям строится зависимость окружной силы на ведущих колесах (FK) от скорости движения автомобиля FK=f(va) (тяговая диаграмма), на которую наносится ограничивающая линия по условиям сцепления колеса с дорогой. Количество кривых тяговой характеристики равно числу передач в его коробке.

Определим значение величины, ограничивающей окружную силу на ведущих колесах по условию сцепления колеса с дорогой, по формуле (3.5)

Вывод: линия ограничения окружной силы по условиям сцепления пересекает одну из зависимостей (для I передачи), следовательно, максимальное значение окружной силы будет ограничено по условиям сцепления значением кН.

Тяговая диаграмма автомобиля ВАЗ-21099 приведена в приложении Б.

4. РАСЧЕТ ДИНАМИЧЕСКОЙ ХАРАКТЕРИСТИКИ АВТОМОБИЛЯ

Динамической характеристикой автомобиля называется зависимость динамического фактора от скорости. Динамическим фактором называется отношение свободной силы, направленной на преодоление сил сопротивления дороги, к весу автомобиля:

где - окружная сила на ведущих колесах автомобиля, кН;

Сила сопротивления воздуха, кН;

Вес автомобиля, кН.

При расчете силы сопротивления воздуха учитываются лобовое и добавочное сопротивления воздуха.

Сила сопротивления воздуха

где - суммарный коэффициент, учитывающий коэффициент лобового

сопротивления, и коэффициент дополнительного сопротивления,

который для легковых автомобилей принимается в пределах =0,15…0,3 Нс/м;

Скорость движения автомобиля;

Площадь лобового сопротивления (проекция автомобиля на плоскость,

перпендикулярную направлению движения).

Площадь лобового сопротивления

где - коэффициент заполнения площади (для легковых автомобилей равен 0,89-0,9);

Габаритная высота автомобиля, м;

Габаритная ширина автомобиля, м.

Ограничение динамического фактора по условиям сцепления колеса с поверхностью дороги

где - ограничивающая окружной силы, кН.

Так как ограничение наблюдается при начале движения автомобиля, т.е. на малых скоростях, то величиной сопротивления воздуха можно пренебречь.

По результатам расчетов строится график динамической характеристики для всех передач и наносится линия ограничения динамического фактора, а также линия суммарного дорожного сопротивления.

На динамической характеристике отмечаются ключевые точки, по которым происходит сравнение автомобилей различных масс.

Расчет динамической характеристики автомобиля ВАЗ-21099.

Определим площадь лобового сопротивления

Подставим числовые значения для первой точки:

Все последующие расчеты сводятся в таблицу 5.1.

Рассчитаем ограничение динамического фактора по условиям сцепления колеса с поверхностью дороги:

Вывод: из построенного графика (приложение В) видно, что линия ограничения динамического фактора пересекает зависимость динамической характеристики на первой передаче, что означает, что условия сцепления влияют на динамическую характеристику автомобиля ВАЗ-21099 и при заданных условиях автомобиль не сможет развить максимального значения динамического фактора. На динамической характеристике отмечаются ключевые точки, по которым происходит сравнение автомобилей разных масс:

1) максимальное значение динамического фактора на высшей передаче Dv(max) и соответствующая ему скорость vк - критическая скорость: (0,081; 12,223);

2) значение динамического фактора при максимальной скорости движения автомобиля (0,021; 39,100);

3) максимальное значение динамического фактора на первой передаче и соответствующая ему скорость: (0,423; 3,000)

Максимальная скорость движения определяется сопротивлением дороги и в данных дорожных условиях автомобиль не может достичь максимального значения скорости по технической характеристике.

5. РАСЧЕТ УСКОРЕНИЙ АВТОМОБИЛЯ НА ПЕРЕДАЧАХ

Ускорение автомобиля на передачах

автомобиль тяговый ускорение передача

где - ускорение свободного падения, м/с;

Коэффициент, учитывающий разгон вращающихся масс;

Динамический фактор;

Коэффициент сопротивлению качению;

Уклон дороги.

Коэффициент, учитывающий разгон вращающихся масс

где - эмпирические коэффициенты, принимаются в пределах

0,03…0,05; =0,04…0,06;

Передаточное число коробки передач.

Для расчетов принимаем =0,04, =0,05, тогда

Для первой передачи;

Для второй передачи;

Для третьей передачи;

Для четвертой передачи;

Для пятой передачи.

Найдем ускорение для первой передачи:

Результаты остальных расчетов сводятся в таблицу 5.1.

По полученным данным строится график ускорения автомобиля ВАЗ-21099 на передачах (приложение Г).

Таблица 5.1 - Расчет значений динамического фактора и ускорений

Вывод: в данном пункте был произведен расчет ускорений автомобиля ВАЗ-21099 на передачах. Из расчетов видно, что ускорение автомобиля зависит от динамического фактора, сопротивления качению, разгона вращающихся масс, уклона местности и т. д., что значительно влияет на его величину. Максимального значения ускорения автомобиль достигает на первой передаче м/с при скорости =4,316 м/с.

6. РАСЧЕТ ВРЕМЕНИ И ПУТИ РАЗГОНА АВТОМОБИЛЯ НА ПЕРЕДАЧАХ

Считается, что разгон автомобиля начинается с минимальной устойчивой скорости, ограниченной минимальной устойчивой частотой вращения коленчатого вала. Также считается, что разгон осуществляется при полной подаче топлива, т.е. двигатель работает на внешней характеристике.

Для построения графиков времени и пути разгона автомобиля на передачах необходимо выполнить следующие расчеты.

Для первой передачи кривая ускорений разбивается на интервалы по скорости:

Для каждого интервала определяется среднее значение ускорения

Для каждого интервала время разгона

Общее время разгона на данной передаче

Путь определяется по формуле

Общий путь разгона на передаче

В том случае, если характеристики ускорений на соседних передачах пересекаются, то момент переключения с передачи на передачу осуществляют в точке пересечения характеристик.

Если же характеристики не пересекаются, переключение осуществляют при максимальной конечной скорости для текущей передачи.

Во время переключения передач с разрывом потока мощности автомобиль движется накатом. Время переключения передач зависит от квалификации водителя, конструкции коробки передач и типа двигателя.

Время движения автомобиля при нейтральном положении в коробке передач для автомобилей с карбюраторным двигателем находится в пределах 0,5-1,5 с, а с дизельным 0,8- 2,5 с.

В процессе переключения передач скорость автомобиля уменьшается. Снижение скорости движения, м/с, при переключении передач может быть подсчитано по формуле, выведенной из тягового баланса,

где - ускорение свободного падения;

Коэффициент, учитывающий разгон вращающихся масс (принимается =1,05);

Суммарный коэффициент сопротивления поступательному движению

Время переключения передач; =0,5 с.

Путь, пройденный за время переключения передач,

где - максимальная (конечная) скорость на переключаемой передаче, м/с;

Снижение скорости движения при переключении передач, м/с;

Время переключения передач, с;

Разгон автомобиля осуществляется до скорости. Равновесная максимальная скорость движения на высшей передаче находится из графика изменения динамического фактора, на котором в масштабе отмечается линия суммарного коэффициента сопротивления поступательному движению. Перпендикуляр, опущенный из точки пересечения этой линии с линией динамического фактора на ось абсцисс, указывает на равновесную максимальную скорость.

Пример расчета для первого участка первой передачи. Первый интервал по скорости равен

Среднее значение ускорения равно

Время разгона для первого интервала равно

Среднее скорость прохождения первого участка равна

Путь равен

Аналогичным образом определяется путь на каждом участке передачи. Суммарный путь, пройденный на первой передаче, равен

Снижение скорости движения при переключении передач может быть подсчитано по формуле:

Путь, пройденный за время переключения передач, равен

Разгон автомобиля осуществляется до скорости м/с= 112,608 км/ч. Все последующие расчеты времени и пути разгона автомобиля на передачах сводятся в таблицу 6.1.

Таблица 6.1 - Расчет времени и пути разгона автомобиля ВАЗ-21099 на передачах

По рассчитанным данным строятся графики зависимости скорости автомобиля от пути и от времени при разгоне (приложения Д, Е).

Вывод: при проведении расчетов определили общее время разгона автомобиля ВАЗ-21099, которое равно =29,860 с30 с, а также пройденный им путь за это время 614,909 м615 м.

7. РАСЧЕТ ОСТАНОВОЧНОГО ПУТИ АВТОМОБИЛЯ НА ПЕРЕДАЧАХ

Остановочным путем называется расстояние, пройденное автомобилем от момента обнаружения препятствия до полной остановки.

Расчет остановочного пути автомобиля определяется по формуле:

где - полный остановочный путь, м;

Начальная скорость торможения, м/с;

Время реакции водителя, 0,5…1,5 с;

Время запаздывания срабатывания тормозного привода; для гидравлической системы 0,05…0,1 с;

Время нарастания замедления; 0,4 с;

Коэффициент эффективности тормозов; при для легковых автомобилей =1,2; при =1.

Расчеты остановочного пути выполняются при разных коэффициентах сцепления колеса с дорогой: ; ; - принимается по заданию, =0,84.

Скорость принимается по заданию от минимального до максимального равновесного значения.

Пример определения остановочного пути автомобиля ВАЗ-21099.

Остановочный путь при и скорости =4,429м/с равен

Все последующие расчеты сведены в таблицу 7.1.

Таблица 7.1 - Расчет остановочного пути

По рассчитанным данным построены графики зависимости остановочного пути от скорости движения для различных условий сцепления колес с дорогой (приложение Ж).

Вывод: на основании полученных графиков можно сделать вывод, что с возрастанием скорости движения автомобиля и снижением коэффициента сцепления с дорогой остановочный путь автомобиля увеличивается.

8. РАСЧЕТ ПУТЕВОГО РАСХОДА ТОПЛИВА АВТОМОБИЛЕМ

Топливной экономичностью автомобиля называют совокупность свойств, определяющих расход топлива при выполнении автомобилем транспортной работы в различных условиях эксплуатации.

Топливная экономичность в основном зависит от конструкции автомобиля и условий его эксплуатации. Она определяется степенью совершенства рабочего процесса в двигателе, коэффициентом полезного действия и передаточным числом трансмиссии, соотношением между снаряженной и полной массой автомобиля, интенсивностью его движения, а также сопротивлением, оказываемым движению автомобиля окружающей средой.

При расчете топливной экономичности исходными данными являются нагрузочные характеристики двигателя, по которым ведется расчет путевого расхода топлива:

где - удельный расход топлива на номинальном режиме, г/кВтч;

Коэффициент использования мощности двигателя (И);

Коэффициент использования частоты вращения коленчатого вала двигателя (Е);

Мощность, подводимая в трансмиссию, кВт;

Плотность топлива, кг/м;

Скорость движения автомобиля, км/ч.

Удельный расход топлива на номинальном режиме для карбюраторных двигателей равен =260..300 г/кВтч. В работе принимаем =270 г/кВтч.

Величины и для карбюраторных двигателей определяются по эмпирическим формулам:

где И и Е - степень использования мощности и оборотов двигателя;

где - мощность, подводимая в трансмиссию, кВт;

Мощность двигателя по внешней скоростной характеристике, кВт;

Текущая частота вращения коленчатого вала двигателя, рад/с;

Частота вращения коленчатого вала двигателя при номинальном режиме, рад/с;

где - мощность двигателя, затрачиваемая на преодоление сил сопротивления дороги, кВт;

Мощность двигателя, затрачиваемая на преодоление силы сопротивления воздуха, кВт;

Мощность потерь в трансмиссии и на привод вспомогательного оборудования автомобиля, кВт;

Плотность бензина согласно справочным данным принимаем 760 кг/м, значение коэффициента суммарного сопротивления дороги было рассчитано ранее и равно=0,021,

Пример расчета путевого расхода топлива для первой передачи. Мощность двигателя, затрачиваемая на преодоление сил сопротивления дороги равна

Мощность двигателя, затрачиваемая на преодоление силы сопротивления воздуха равна

Мощность потерь в трансмиссии и на привод вспомогательного оборудования автомобиля равна

Мощность, подводимая в трансмиссию равна

Путевой расход топлива равен

Все последующие расчеты сводятся в таблицу 8.1.

Таблица 8.1 - Расчет путевого расхода топлива

По рассчитанным данным строится график расхода топлива от скорости на передачах (приложение И).

Вывод: анализ графика показал, что при движении автомобиля на одной скорости на различных передачах путевой расход топлива уменьшатся от первой передачи к пятой.

ЗАКЛЮЧЕНИЕ

В результате выполнения курсового проекта для оценки тягово-скоростных и топливно-экономических свойств автомобиля ВАЗ-21099 были рассчитаны и построены следующие характеристики:

· внешняя скоростная характеристика, которая отвечает следующим требованиям: кривая изменения мощности проходит через точку с координатами (51,5; 586,13); кривая изменения момента двигателя проходит через точку с координатами (0,1064; 355,87); экстремум функции моментов находится в точке с координатами (0,1064; 355,87);

· тяговая диаграмма автомобиля, на основании которой можно говорить о том, что условия сцепления колес с поверхностью дороги влияют на тяговую характеристику заданного автомобиля;

· динамическая характеристика автомобиля, из которой было определено максимальное значение динамического фактора на первой передаче =0,423 (=0,423, что показывает, что условия сцепления влияют на динамическую характеристику), а также максимальное значение скорости на пятой передаче =39,1 м/с;

· ускорение автомобиля на передачах. Было определено, что максимального значения ускорения автомобиль достигает на первой передаче, причем J=2,643 м/с при скорости =3,28 м/с;

· время и путь разгона автомобиля на передачах. Общее время разгона автомобиля составило примерно 30 с, а путь, пройденный автомобилем за это время, - 615 м;

· остановочный путь автомобиля, который зависит от скорости и коэффициента сцепления колеса с дорогой. С увеличением скорости и уменьшением коэффициента сцепления остановочный путь автомобиля возрастает. При скорости =39,1 м/с и =0,84 максимальный остановочный путь составил =160,836 м;

· путевой расход топлива автомобилем, который показал, что на одинаковых скоростях различных передач расход топлива уменьшается.

СПИСОК ЛИТЕРАТУРЫ

1. Лапский С. Л. Оценка тягово-скоростных и топливно-экономических свойств автомобиля: пособие по выполнению курсовой работы по дисциплине “Транспортные средства и их эксплуатационные качества”// БелГУТ. - Гомель, 2007 г.

2. Требования по оформлению отчетных документов самостоятельной работы студентов: учеб.метод.пособ Бойкачев М.А. и другие. - М-во образования Респ.Беларусь, Гомель, БелГУТ, 2009. - 62 с.

Размещено на Allbest.ru

Подобные документы

    Техническая характеристика автомобиля ГАЗ-3307. Расчет внешней скоростной характеристики двигателя и тяговой диаграммы автомобиля. Расчет ускорения на передачах, времени, остановочного пути и разгона. Расчет путевого расхода топлива автомобилем.

    курсовая работа , добавлен 07.02.2012

    Подбор и построение внешней скоростной характеристики двигателя. Определение передаточного числа главной передачи. Построение графиков ускорения, времени и пути разгона. Расчет и построение динамической характеристики. Тормозные свойства автомобиля.

    курсовая работа , добавлен 17.11.2017

    Построение внешней скоростной характеристики автомобильного двигателя. Тяговый баланс автомобиля. Динамический фактор автомобиля, характеристика его ускорений, времени и пути разгона. Топливно-экономическая характеристика автомобиля, мощностной баланс.

    курсовая работа , добавлен 17.01.2010

    Расчет полной и сцепной массы автомобиля. Определение мощности и построение скоростной характеристики двигателя. Расчет передаточного числа главной передачи автомобиля. Построение графика тягового баланса, ускорений, времени и пути разгона автомобиля.

    курсовая работа , добавлен 08.10.2014

    Построение внешней скоростной характеристики двигателя, график силового баланса, тяговая и динамическая характеристики. Определение ускорения автомобиля, времени и пути его разгона, торможения и остановки. Топливная экономичность (путевой расход топлива).

    курсовая работа , добавлен 26.05.2015

    Конструкторский анализ и компоновка автомобиля. Определение мощности двигателя, построение его внешней скоростной характеристики. Нахождение тягово-скоростных характеристик автомобиля. Расчет показателей разгона. Проектирование базовой системы автомобиля.

    методичка , добавлен 15.09.2012

    Расчет сил тяги и сопротивления движению, тяговые характеристики, построение динамического паспорта автомобиля, графика разгона с переключением передач и максимальной скоростью движения. Тягово-скоростные свойства автомобиля. Скорость и затяжные подъёмы.

    курсовая работа , добавлен 27.03.2012

    Построение внешней скоростной характеристики автомобильного двигателя. Тяговый баланс, динамический фактор, мощностной баланс топливно-экономическая характеристика автомобиля. Величины ускорений, времени и пути его разгона. Расчет карданной передачи.

    курсовая работа , добавлен 17.05.2013

    Построение внешней скоростной характеристики двигателя автомобиля с использованием эмпирической формулы. Оценка показателей разгона автомобиля, графики ускорений, времени и пути разгона. График мощностного баланса, анализ тягово-скоростных свойств.

    курсовая работа , добавлен 10.04.2012

    Построение динамического паспорта автомобиля. Определение параметров силовой передачи. Расчет внешней скоростной характеристики двигателя. Мощностной баланс автомобиля. Ускорение при разгоне. Время и путь разгона. Топливная экономичность двигателя.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И

ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙГОСУДАРСТВЕННЫЙ

АГРАРНОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТМЕХАНИЗАЦИИ СЕЛЬСКОГО

ХОЗЯЙСТВА

Кафедра« Трактора и автомобили»

КУРСОВОЙ ПРОЕКТ

По дисциплине: Основы теориии расчета трактора и автомобиля.

На тему: Тягово-скоростныесвойства и топливная экономичность

автомобиля.

Студента 5 курса 45 группы

Снопкова А.А.

Руководитель КП

Минск2002.
Введение.

1.Тягово-скоростныесвойства автомобиля.

Тягово-скоростнымисвойствами автомобиля называют совокупность свойств определяющих возможные похарактеристикам двигателя или сцепления ведущих колес с дорогой диапазоныизменения скоростей движения и предельные интенсивности разгона и торможенияавтомобиля при его работе на тяговом режиме работы в различных дорожныхусловиях.

Показателитагово-скоростных свойств автомобиля (максимальная скорость, ускорение приразгоне или замедлении при торможении, сила тяги на крюке, эффективная мощностьдвигателя, подъем, преодолеваемый в различных дорожных условиях, динамическийфактор, скоростная характеристика) определяются проектировочным тяговымрасчетом. Он предполагает определение конструктивных параметров, которые могутобеспечить оптимальные условия движения, а также установление предельныхдорожных условий движения для каждого типа автомобиля.

Тягово-скоростныесвойства и показатели определяются при тяговом расчете автомобиля. В качествеобъекта расчета выступает грузовой автомобиль малой грузоподъемности.

1.1. Определение мощности двигателя автомобиля.

В основу расчета кладется номинальная грузоподъемностьавтомобиля />в кг (масса установленнойполезной нагрузки + масса водителя и пассажиров в кабине) или автопоезда />, она равняется из задания –1000 кг.

Мощность двигателя />, необходимая для движенияполностью груженого автомобиля со скоростью />взаданных дорожных условиях, характеризующих приведенным сопротивлением дороги />, определяют из зависимости:

/>собственная масса автомобиля, 1000 кг;

/>сопротивление воздуха(в Н) – 1163,7 при движении смаксимальной скоростью />= 25 м/с;

/> - КПД трансмиссии = 0,93. Номинальнаягрузоподъемность />указана в задании;

/>= 0,04 с учетом работы автомобиля в сельском хозяйстве(коэффициент дорожного сопротивления).

/>(0,04*(1000*1352)*9,8+1163,7)*25/1000*0,93=56,29кВт.

Собственная массаавтомобиля связана в его номинальной грузоподъемностью зависимостью:/>

/>1000/0,74=1352 кг.

где:/> - коэффициентгрузоподъемности автомобиля – 0,74.

У автомобиля особомалой грузоподъемности =0,7…0,75.

Коэффициентгрузоподъемности автомобиля существенно влияет на динамические и экономическиепоказатели автомобиля: чем он больше, тем лучше эти показатели.

Сопротивлениевоздуха зависит от плотности воздуха, коэффициент /> обтекаемостиобводов и днища (коэффициент парусности), площади лобовой поверхности F (в />) автомобиля и скоростногорежима движения. Определяется зависимостью: />,

/>0.45*1.293*3.2*625= 1163.7 Н.

где:/>=1,293 кг//> -- плотность воздуха притемпературе 15…25 С.

Коэффициентобтекаемости у автомобиля/> =0,45…0,60.Принимаю = 0,45.

Площадьлобовой поверхности может быть подсчитана по формуле:

F= 1.6*2=3.2 />

Где: В – колея задних колес,принимаю её = 1,6м, величина Н = 2м. Величины В и Н уточняют при последующихрасчетах при определении размеров платформы.

/>= максимальная скоростьдвижения по дороге с улучьшеным покрытием при полной подаче топлива, по заданиюона равна 25 м/с.

Так как />автомобиля развивает, какправило, на прямой передаче, то

где: />0,95…0,97 – 0,95 КПДдвигателя на холостом ходу; />=0,97…0,98– 0,975.

КПДглавной передачи.

/>0,95*0,975=0,93.

1.2. Выбор колесной формулы автомобиля игеометрических параметров колес.

Количество иразмеры колес (диаметр колеса /> и масса,передаваемая на ось колеса) определяются исходя из грузоподъемности автомобиля.

При полностьюгруженом автомобиле 65…75% от общей массы машины приходиться на заднюю ось и25…35% - на переднюю. Следовательно, коэффициент нагрузки передних и заднихведущих колес составляют соответственно 0.25…0.35 и –0.65…0.75.

/>/>; />0,65*1000*(1+1/0,45)=1528,7кг.

на переднюю: />. />0,35*1000*(1+1/0,45)=823,0кг.

Принимаю следующиезначения: на задней оси –1528,7 кг, на одно колесо задней оси – 764,2 кг; напередней оси – 823,0 кг, на колесо передней оси – 411,5кг.

Исходя из нагрузки />и давления в шинах, потаблице 2 выбираются размеры шин, в м (ширина профиля шины />и диаметр посадочного обода />). Тогда расчетный радиусведущих колес (в м);

Расчетные данные:наименование шины -- ; её размеры –215-380 (8,40-15) ; расчетныйрадиус.

/>(0,5*0,380)+0,85*0,215=0,37м.

1.3. Определение вместимости игеометрических параметров платформы.

По грузоподъемности/> (в т) выбираетсявместимость платформы /> в куб. м., изусловия:

/> />0,8*1=0,8 />/>

Для бортовогоавтомобиля />принимается = 0.7…0.8 м.,выбираю 0,8 м.

Определив объемподбираю внутренние размеры платформы автомобиля в м: ширину, высоту и длину.

Ширину платформыдля грузовых автомобилей принимаю (1.15…1.39) от колеи автомобиля, то есть =1,68 м.

Высоту кузоваопределяю по размерам похожего автомобиля – УАЗа. Она равна – 0,5 м.

Длину платформыпринимаю – 2,6 м.

По внутренней длине/>определяю базу Lавтомобиля (расстояние между осями передних и задних колес):

принимаю базуавтомобиля = 2540 м.

1.4. Тормозные свойства автомобиля.

Торможение –процесс создания и изменения искусственного сопротивления движению автомобиля сцелью уменьшения его скорости или удержания неподвижным относительно дороги.

1.4.1. Установившееся замедление при движенииавтомобиля.

Замедление />=/>,

Где g – ускорениесвободного падения =9,8 м/с; />--коэффициент сцепления колес с дорогой, значения которого для различных дорожныхпокрытий берутся из таблицы 3; /> --коэффициент учета вращающихся масс. Значения его для проектируемого автомобиляравны 1.05…1.25, принимаю = 1,12.
Чем лучше дорога, тем больше может быть замедление машины при торможении.На твердых дорогах замедление может достигать 7 м/с. Плохие дорожные условиярезко снижают интенсивность торможения.

1.4.2. Минимальный тормозной путь.

Длина минимальноготормозного пути />/>может быть определена из условия,что работа совершенная машиной за время торможения, должна быть равна кинетическойэнергии, потерянной ею за то время. Тормозной путь будет минимальным принаиболее интенсивном торможении, то есть когда она имеет максимальное значение.Если торможение осуществляется на горизонтальной дороге с постояннымзамедлением, то путь до остановки равен:

Определяю тормознойпуть для различных значений />, трехразличных скоростей 14,22 и 25 м/с, и занесу их в таблицу:

Таблица№ 1.

Опорная поверхность.

Замедление на дороге. Тормозная сила. Минимальный тормозной путь. Скорость движения. 14 м/с 22 м/с

1.Асфальт 0,65 5,69 14978 17.2 42.5 54.9 2. Гравийка. 0,6 5,25 13826 18.7 46.1 59.5 3. Булыжник. 0,45 3,94 10369 24.9 61.4 79.3 4. Сухая грунтовка. 0,62 5,43 14287 18.1 44.6 57.6 5. Грунтовка после дождя. 0,42 3,68 9678 26.7 65.8 85.0 6. Песок 0,7 6,13 16130 16.0 39.5 51.0 7. Снежная дорога. 0,18 1,58 4148 62.2 153.6 198.3 8. Обледенение дороги. 0,14 1,23 3226 80.0 197.5 255.0

1.5.Динамические свойства автомобиля.

Динамическиесвойства автомобиля в значительной степени определяются правильным выборомколичества передач и скоростным режимом движения на каждой из выбранныхпередач.

Количество передачиз задания – 5. Прямую передачу выбираю –4, пятая – экономичная.

Таким образом,одной из важнейших задач при выполнении курсовой работы по автомобилям являетсяправильный выбор количества передач.

1.5.1.Выбор передач автомобиля.

Передаточное число />=/>,

Где: /> - передаточное числокоробки передач; /> - передаточноечисло главной передачи.

Передаточное числоглавной передачи находиться по уравнению:

где: /> -- расчетный радиусведущих колес, м; принимается из предыдущих расчетов; /> -- частота вращениядвигателя при номинальной частоте вращения.

Передаточное числотрансмиссии на первой передаче:

где /> -- максимальныйдинамический фактор, допустимый по условиям сцепления ведущих колес автомобиля.Величина его находиться в пределах – 0,36…0,65, она не должна превышатьвеличины:

/>=0.7*0.7=0.49

где: /> -- коэффициент сцепленияведущих колес с дорогой, в зависимости от дорожных условий = 0.5…0.75; /> -- коэффициент нагрузкиведущих колес автомобиля; рекомендуемые значения = 0.65…0.8; максимальныйкрутящий момент двигателя, в Н*м, берется из скоростной характеристики длякарбюраторных двигателей; G – полный вес автомобиля, Н; - КПД трансмиссииавтомобиля на первой передаче, подсчитывается по формуле:

0.96 – КПДдвигателя при холостом прокручивании коленчатого вала; />=0.98 – КПД цилиндрическойпары шестерен; />=0.975 –КПДконической пары шестерен; - соответственно количество цилиндрическихи конических пар, участвующих в зацеплении на первой передаче. Их количествовыбирается, ориентируясь на схемы трансмиссий.

В первомприближении при предварительных расчетах передаточные числа грузовыхавтомобилей подбираются по принципу геометрической прогрессии, образуяряд, где q – знаменатель прогрессии; он подсчитывается поформуле:

где: z – числопередач, указываемых в задании.

Передаточное числопостоянно включенной главной передач автомобиля берется, сообразуясь спринятыми у прототипа = .

По передаточнымчислам трансмиссии подсчитывается максимальные скорости движения автомобиля наразных передачах. Полученные данные сводятся в таблицу.

Таблица № 1.

Передача Передаточное число Скорость, м/с. 1 30 6,1 2 19 9,5 3 10,5 17,1 4 7,2 25 5 5,8 31

1.5.2. Построение теоретической (внешней) скоростнойхарактеристики карбюраторного двигателя.

Теоретическаяскоростная внешняя характеристика /> = f(n) строитсяна листе миллиметровой бумаги. Расчет и построение внешней характеристикипроизводят в такой последовательности. На оси абсцисс откладываем в принятоммасштабе значение частот вращения коленчатого вала: номинальной, максимальнойхолостого хода, при максимальном крутящем моменте, минимальной, соответствующейработе двигателя.

Номинальная частотавращения задается в задании, частота />,

Частота />. Частота вращениямаксимальная принимается на основании справочных данных двигателя прототипа –4800 об/мин.

Промежуточные точкизначений мощности карбюраторного двигателя находят из выражения, задаваясьзначениями />(не менее 6 точек).

Значения крутящегомомента />подсчитывается позависимости:

Текущие значения />и/>берутиз графика />. Удельный эффективныйрасход топлива карбюраторного двигателя подсчитывают по зависимости:

/>, г/(кВт, ч),

где: /> удельный эффективныйрасход топлива при номинальной мощности, заданный в задании = 320 г/кВт*ч.

Часовой расходтоплива определяется по формуле:

Значения />и /> берут из построенныхграфиков, по результатам расчета теоретической внешней характеристикисоставляется таблица.

Данные дляпостроения характеристики. Таблица№ 2.

1 800 13,78 164,5 4,55 330,24 2 1150 20,57 170,86 6,44 313,16 3 1500 27,49 175,5 8,25 300 4 1850 34,30 177,06 9,97 290,76 5 2200 40,75 176,91 11,63 285,44 6 2650 48,15 173,52 13,69 284,36 7 3100 54,06 166,54 15,66 289,76 8 3550 57,98 155,97 17,49 301,64 9 4000 59,40 141,81 19,01 320 10 4266 58,85 131,75 19,65 333,90 11 4532 57,16 120,44 20,01 350,06 12 4800 54,17 107,78 19,97 368,64 /> /> /> /> /> /> /> /> /> />

1.5.4. Универсальнаядинамическая характеристика автомобиля.

Динамическаяхарактеристика автомобиля иллюстрирует его тягово-скоростные свойства приравномерном движении с разными скоростями на разных передачах и в различныхдорожных условиях.

Из уравнениятягового баланса автомобиля при движении без прицепа на горизонтальной опорнойповерхности, следует, что разность сил />(касательнойсилы тяги и сопротивления воздуха при движении автомобиля) в этом уравнении представляетсобой силу тяги, расходуемую на преодоление всех внешних сопротивлений движениюавтомобиля, за исключением сопротивления воздуха. Поэтому отношение />характеризует запас силытяги, приходящийся на единицу веса автомобиля. Этот измеритель динамических, вчастности, тягово-скоростных, свойств автомобиля, называется динамическим факторомD автомобиля.

Таким образом,динамический фактор автомобиля.

Динамический факторавтомобиля определяется на каждой передаче в процессе работы двигателя с полнойнагрузкой при полной подаче топлива.

Между динамическимфактором и параметрами, характеризующими сопротивление дороги (коэффициент />) и инерционные нагрузкиавтомобиля, существуют следующие зависимости:

/>/>--при неустановившемся движении;

/>при установившемся движении.

Динамический факторзависит от скоростного режима автомобиля – частоты вращения двигателя (его крутящегомомента) и включенной передачи (передаточное число трансмиссии). Графическоеизображение и называют динамической характеристикой. Её величина зависит такжеот веса автомобиля. Поэтому характеристику строят сначала для порожнегоавтомобиля без груза в кузове, а потом путем дополнительных построенийпреобразуют ее в универсальную, позволяющую находить динамический фактор для любоговеса автомобиля.

Дополнительныепостроения для получения универсальной динамической характеристики.

Наносим напостроенной характеристике сверху вторую ось абсцисс, на коэффициентторойоткладываю значения коэффициента нагрузки автомобиля.

На крайней слеваточке верхней оси абсцисс коэффициент Г=1, что соответствует порожнемуавтомобилю; на крайней точке справа откладываем максимальное значение,указанное в задании, величина которого зависит от максимального веса груженогоавтомобиля. Затем наносим на верхней оси абсцисс ряд промежуточных значенийкоэффициента нагрузки и проводим из них вниз вертикали до пересечения с нижнейосью абсцисс.

Вертикаль,проходящую через точку Г=2, принимаю за вторую ось ординат характеристики.Поскольку динамический фактор при Г=2 вдвое меньше, чем у порожнего автомобиля,то масштаб динамического фактора на второй оси ординат должен быть в два разабольше, чем на первой оси, проходящей через точку Г=1. Соединяю однозначныеделения на обеих ординатах наклонными линиями. Точки пересечения этих прямых состальными вертикалями образуют на каждой вертикали масштабную шкалу для соответствующегозначения коэффициента нагрузки автомобиля.

Результаты расчетовпоказателей заносятся в таблицу.

Таблица№3.

Передача V, м/с.

Крутящий момент, Нм.

D Г=1 Г=2.5 1 1,22 800 164,50 12125 2,07 0,858 0,394 2,29 1500 175,05 12903 7,29 0,912 0,420 3,35 2200 176,91 13040 15,69 0,921 0,424 4,72 3100 166,54 12275 31,15 0,866 0,398 6,10 4000 141,81 10453 51,86 0,736 0,338 6,91 4532 120,44 8877 66,27 0,623 0,286 7,3 4800 107,78 7944 66,03 0,557 0,255 2 1,90 800 164,50 7766 5,06 0,549 0,291 3,57 1500 175,05 8264 17,78 0,583 0,309 5,23 2200 176,91 8352 38,24 0,588 0,312 7,38 3100 166,54 7862 75,93 0,551 0,292 9,52 4000 141,81 6695 126,41 0,464 0,246 10,78 4532 120,44 5686 162,27 0,390 0,207 11,45 4800 107,78 5088 182,03 0,346 0,184 3 3,44 800 164,50 4292 16,56 0,302 0,160 6,46 1500 175,05 4567 58,26 0,317 0,168 9,47 2200 176,91 4615 125,21 0,319 0,169 13,35 3100 166,54 4345 248,61 0,289 0,154 17,22 4000 141,81 3700 413,92 0,231 0,123 19,51 4532 120,44 3142 531,34 0,183 0,098 20,64 4800 107,78 2812 596,04 0,155 0,083

5,02 800 164,50 2943 35,21 0,206 0,094 9,42 1500 175,05 3131 123,79 0,212 0,096 13,81 2200 176,91 3165 266,29 0,204 0,090 19,46 3100 166,54 2979 528,73 0,172 0,071 25,11 4000 141,81 2537 880,30 0,144 0,04 28,45 4532 120,44 2154 1130,03 0,069 0,015 30,12 4800 107,78 1928 1267,63 0,043 0,001 5 6,23 800 164,50 2370 54,26 0,164 0,087 11,69 1500 175,05 2522 190,77 0,164 0,088 17,15 2200 176,91 2549 410,36 0,150 0,080 24,16 3100 166,54 2400 814,78 0,110 0,060 31,17 4000 141,81 2043 1356,56 0,044 0,026 35,32 4532 120,44 1735 1741,40 0,001 37,42 4800 107,78 1553 1953,53 /> /> /> /> /> /> /> /> /> />
1.5.5. Краткий анализ полученных данных.

1.Определить,на каких передачах будет работать автомобиль в заданных дорожных условиях,характеризуемых приведенным коэффициентом />дорожныхсопротивлений (не менее 2…3 значений) и какие максимальные скорости сможет онразвивать при равномерном движении с различными значениями (не менее 2-х) коэффициентаГ нагрузки автомобиля, обязательно включая при этом Г макс.

Задаюсьследующими значениями дорожных сопротивлений: 0,04, 0,07, 0,1 (асфальт, грунтоваядорога, грунтовка после дождя). При коэффициенте =1 автомобиль может двигатьсяпри />= 0,04 со скоростью 31,17м/с на 5 передаче; />=0,07 – 28 м/с, 5передача; />= 0,1 – 24 м/с, 5 передача. При коэффициенте = 2,5 (максимальная нагрузка) автомобиль может двигаться при />= 0,04 – скорость 25 м/с, 4передача; />= 0,07 – скорость 19 м/с, 4передача; />= 0,1 – скорость 17 м/с, 3 передача.

2.Определить по динамической характеристике наибольшие дорожные сопротивления,которые сможет преодолевать автомобиль, двигаясь на каждой передаче с равномернойскоростью (на точках перегиба кривых динамического фактора).

Полученные данныепроверить с точки зрения возможности их реализации по условиям сцепления сдорожным покрытием. Для автомобиля с задними ведущими колесами:

где:/> - коэффициент нагрузкиведущих колес.

Таблица№ 4.

№ передачи Преодолеваемое дорожное сопротивление Сила сцепления с дорожным покрытием (асфальт). Г=1 Г=2,5 Г=1 Г=2,5 1 передача 0,921 0,424 0,52 0,52 2 передача 0,588 0,312 0,51 0,515 3 передача 0,319 0,169 0,51 0,51 4 передача 0,204 0,09 0,5 0,505 5 передача 0,150 0,08 0,49 0,5

По табличным даннымвидно что на 1 передаче автомобиль может преодолевать песок; на 2 –ой снежнуюдорогу; на 3-ей обледенелую дорогу; на 4 – ой сухую грунтовую дорогу; на 5–ой асфальт

3. Определить углыподъема, которые автомобиль способен преодолеть в различных дорожных условиях(не менее 2…3-х значений) на различных передачах, и скорости какие он при этомбудет развивать.

Таблица№5.

Дорожные сопротивления. № передачи Угол подъема Скорость Г=1 Г=2,5 0,04 1 передача 47 38 3,35 2 передача 47 27 5,23 3 передача 27 12 9,47 4 передача 16 5 13,8 5 передача 11 4 17,15 0,07 1 передача 45 35 3,35 2 передача 45 24 5,23 3 передача 24 9 9,47 4 передача 13 2 13,8 5 передача 8 17,15 0,1 1 передача 42 32 3,35 2 передача 42 21 5,23 3 передача 22 7 9,47 4 передача 10 13,8 5 передача 5 17,15

4.Определить:

Максимальнуюскорость при установившемся движении в наиболее типичных для данного видаавтомобиля дорожных условиях (асфальтированное покрытие). Значения f приэтом для различных дорожных условий принимаются из соотношения:

При заданныхдорожных условиях т.е. асфальтированном шоссе сопротивление принимает значение– 0,026 и скорость равна 26,09 м/с;

Динамическийфактор на прямой передаче при наиболее употребительной для данного видаавтомобиля скорости движения (обычно берется скорость, равная половинемаксимальной) – 12 м/с;

n максимальное значениединамического фактора на прямой передаче и значение скорости – 0,204 и 11,96м/с;

n максимальное значениединамического фактора на низшей передаче – 0,921;

n максимальное значениединамического фактора на промежуточных передачах; 2 передача – 0,588; 3передача – 0,317; 5 передача – 0,150;

5. сравнитьполученные данные со справочными по автомобилю, имеющему близкие к прототипуосновные показатели. Данные полученные при расчете практически похожи на данныеавтомобиля УАЗ.

2.Топливная экономичность автомобиля.

Одним из основныхтопливная экономичность как эксплутационного свойства принято считатьколичество топлива, расходуемое на 100 км пути при равномерном движении сопределенной скоростью в заданных дорожных условиях. На характеристике наноситьсяряд кривых, каждая из которых соотвествует определенным дорожным условиям; привыполнении работы рассматривается три коэффициента дорожного сопротивления:0,04, 0,07, 010.

Расход топлива,л/100 км:

где: /> - мгновенный расход топливадвигателем автомобиля, л;

где /> - время прохождения 100 кмпути, =/>.

Отсюда приучитывании мощности двигателя затрачиваемую на преодоление сопротивления дорогии воздуха получаем:

Для наглядногопредставления о экономичности строится характеристика. На оси ординатоткладывается расход топлива, на оси абсцисс скорость движения.

Порядок построенияследующий. Для различных скоростных режимов движения автомобиля из зависимости

определяют значение частотывращения коленчатого вала двигателя.

Зная частотувращения двигателя из соответствующих скоростных характеристик определяютзначения g.

По формуле 17определяют мощность двигателя (выражение в квадратных скобках), требуемую длядвижения автомобиля с разными скоростями на одной из заданных дорог,характеризуемых соответствующим значением сопротивления: 0,04, 0,07, 0,10 .

Расчеты ведутся до скорости,при которой двигатель загружается на максимальную мощность. Переменнойвеличиной при этом является только скорость движения и сопротивление воздуха,все остальные показатели берутся из предыдущих расчетов.

Подставляянайденные для разных скоростей подсчитывают искомые значения расхода топлива.

Таблица№ 6.

/>л/100 км

5,01 800 940,54 46,73 5,36 330,24 5,5 13,1 9,39 1500 940,54 164,2 11,26 300 3,0 13,31 11,59 1850 940,54 250,11 14,97 290,76 2,4 13,91 13,78 2200 940,54 253,39 19,33 285,44 2,0 14,84 19,41 3100 940,54 701,68 34,58 289,76 1,4 19,12 22,23 3550 940,54 920,11 44,86 301,64 1,2 22,55 25 4000 940,54 1168 59,35 320,00 1,0 28,08

Сухой грунт

5,01 800 1654,8 46,73 9,20 330,24 5,5 22,46 7,20 1150 1654,8 96,55 13,61 313,16 3,9 21,92 9,39 1500 1654,8 164,28 18,44 300 3,0 21,82 11,59 1850 1654,8 249,90 23,83 290,76 2,4 22,15 13,78 2200 1654,8 353,39 29,88 285,44 2,0 22,93 16,59 2650 1654,8 512,75 38,84 284,36 1,7 24,66 19,41 3100 1654,8 701,68 49,43 289,76 1,4 27,33 0,1 5,01 800 2351,4 46,73 13,03 330,24 5,5 31,81 7,20 1150 2351,4 96,55 19,12 313,16 3,9 30,79 9,39 1500 2351,4 164,28 25,62 300 3,0 30,32 11,59 1850 2351,4 249,90 32,70 290,76 2,4 30,39 13,78 2200 2351,4 353,39 40,43 285,44 2,0 31,02 4000 4532 4800 /> /> /> /> /> /> /> /> /> /> /> /> /> /> />

Дляанализа экономической характеристики на ней проводится две резюмирующие кривые:огибающая кривая а-а максимальных скоростей движения на разных дорогах, повеличине полного использования установленной мощности двигателя и кривая с-снаиболее экономичных скоростей.

2.1. Анализ экономической характеристики.

1. Определить на каждом дорожномпокрытии (почвенном фоне) наиболее экономичные скорости движения. Указать ихзначения и величины расхода топлива. Наиболее экономичная скорость, как иследовало ожидать на твердом покрытии, на скорости равной половине максимальнойрасход топлива равен 14,5 л/100 км.

2. Объяснить характер измененияэкономичности при отклонении от экономической скорости вправо и влево. Приотклонении вправо увеличивается удельный расход топлива на кВт, при отклонениивлево возрастает весьма резко воздушное сопротивление.

3. Определитьконтрольный расход топлива. 14,5 л/100 км.

4. Сравнитьполученный контрольный расход топлива с аналогичным показателемавтомобиля-прототипа. У прототипа контрольный расход равен полученному.

5. Исходя из запасахода автомобиля (суточного), пройденного по дороге с улучьшеным покрытием,определить ориентировочную вместимость />топливногобака (в л) по зависимости:

На прототипеемкость баков – 80 литров, принимаю такую емкость (ее удобно заправлять изканистр).

Послезавершения расчетов результаты сводятся в таблицу.

Таблица№ 7.

Показатели 1.Тип. Малый грузовой автомобиль. 2. коэффициент нагрузки автомобиля (по заданию). 2,5 3. Грузоподъемность, кг. 1000 4. Максимальная скорость движения, м/с. 25 5. Масса снаряженного автомобиля, кг. 1360 6. Число колес. 4

7. Распределение снаряженной массы по осям автомобиля, кг

Через задний мост;

Через передний мост.

8. Полная масса груженого автомобиля, кг. 2350

9. Распределение полной массы по осям автомобиля, кг,

Через задний мост;

Через передний мост.

10. Размеры колес, мм.

Диаметр (радиус),

Ширина профиля шины;

Внутреннее давление воздуха в шинах, Мпа.

11. Размеры грузовой платформы:

Вместимость, м/куб;

Длина, мм;

Ширина, мм;

Высота, мм.

12.База автомобиля, мм. 2540 13. Установившееся замедление при торможении, м/с. 5,69

14. Тормозной путь, м при торможении со скоростью:

Скорость максимальная.

15. Максимальные значения динамического фактора по передачам:

16. Наименьшее значение расхода топлива на почвенных фонах, л/100 км:

17. Наиболее экономичные скорости движения (м/с) на почвенных фонах:

18. Вместимость топливного бака, л. 80 19. Запас хода автомобиля, км. 550 20. Контрольный расход топлива, л/100 км (примерный). 14.5 Двигатель: Карбюраторный 21. Максимальная мощность, кВт. 59,40 22. Частота вращения коленчатого вала при максимальной мощности, об/мин. 4800 23. Максимальный вращающий момент, Нм. 176,91 24. Частота вращения коленчатого вала при максимальном моменте, об/мин. 2200

Список литературы.

1. Скотников В.А., Мащенский А.А.,Солонский А.С. Основы теории и расчета трактора и автомобиля. М.: Агропромиздат,1986. – 383с.

2. Методические пособия по выполнениюкурсовой работы, старое и новое издание.