» » BMW M57: один из самых надежных баварских моторов. BMW M57: один из самых надежных баварских моторов Bmw m57 на каких моделях стоит

BMW M57: один из самых надежных баварских моторов. BMW M57: один из самых надежных баварских моторов Bmw m57 на каких моделях стоит
4813 22.01.2018

Серия двигателей BMW M57 представляет собой шестицилиндровые рядные дизельные моторы, которые в 1998 году пришли на смену дизелям M51. Они является одним из лучших в линейке силовых агрегатов БМВ. Серия M57 была многократно премирована на международных конкурсах.

Моторы серии М57 начали ставиться на мюнхенские автомобили с 1998 года и заменили собой дизельный М51. Новый М57 разрабатывался на основе своего предшественника, он также использует чугунный блок цилиндров, но диаметр самих цилиндров увеличен до 84 мм, внутрь блока поставили коленвал с ходом поршня 88 мм, длина шатунов 135 мм, высота поршней 47 мм. Двигатель выпускался с двумя объемами цилиндров, 2,5 и 3 литра: самой многочисленной была версия M57D30, затем была разработана 2,5-литровая модификация M57D25.

Головка блока цилиндров мотора M57 отлита из алюминия. Коленчатый вал сконструирован с 12-ю противовесами. Привод двух распределительных валов происходит от однорядной роликовой цепи. Клапанов газораспределительного механизма 24 штуки, по 4 на цилиндр. Нажатие на клапан не прямое, а через рычаг. Размер клапанов: впускные 26 мм, выпускные 26 мм, диаметр ножки клапана 6 мм. Клапаны и пружины такие же, как на родственном 4-х цилиндровом дизельном М47.

Вращение распредвалам придает цепь ГРМ, которая имеет огромный ресурс и в нормальных условиях замена цепи может вообще не понадобиться. Поршни выполнены с конусной выемкой для улучшения смешивания рабочей смеси. Угол развала шатунных шеек коленчатого вала равен 120 градусам. Движение масс уравновешенно таким образом, что работающий двигатель почти неподвижен.

Здесь использована система впрыска Common rail и стоит турбонаддув с интеркулером. Дует в М57 турбина Garrett GT2556V с изменяемой геометрией. Все модификации мотора укомплектованы турбонаддувом, а некоторые из них и двумя турбонагнетателями.

В 2002 году начался выпуск обновленной версии M57TUD30, рабочий объем которой подтянули до круглой цифры 3 литра путем установки коленвала с ходом поршня 90 мм. Турбину заменили на Garrett GT2260V, а блок управления здесь DDE5.

Самая мощная версия носила название M57TUD30 TOP и отличалась двумя турбокомпрессорами разного размера BorgWarner KP39 и K26 (давление наддува 1.85 бар), поршнями со степенью сжатия 16.5.

Турбокомпрессоры имеют электронную регулировку геометрии крыльчатки. Двигатель получил оснащение топливной системой непосредственного впрыска Common Rail с аккумулятором давления. Увеличить количество подаваемого воздуха помогает интеркуллер. Контроль уровня масла в двигателе электронный. Применение пьезоинжектора во впрыске обеспечивает точную подачу топлива, снижение расхода топлива и повышение экологичности выхлопных газов.

Чтобы мотор соответствовал всем необходимым экологическим требованиям, на М57 поставили впускной коллектор с вихревыми заслонками, которые на низких оборотах перекрывают по одному впускному каналу, что улучшает смесеобразование и сгорание топлива. Также на этом двигателе стоит клапан ЕГР, который тоже улучшает выхлоп путем направления некоторой его части обратно в цилиндры для еще более качественного сгорания. Управляет мотором блок Bosch DDE4 или DDE6 (на самой мощной модификации).

С 2005 года пошли версии M57TU2, в которых был легкий алюминиевый блок цилиндров, обновленная Common rail, пьезофорсунки, новые распредвалы, впускные клапаны этого двигателя были увеличены до 27.4 мм, также применен чугунный выпускной коллектор, турбонагнетатель Garrett GT2260VK, ЭБУ DDE6 и все это соответствовало стандартам Евро-4.

Версию TOP заменили на новую — M57TU2D30 TOP, которая оснащалась двумя турбинами BorgWarner KP39 и K26 (давление наддува 1.98 бар) и ЭБУ DDE7. Производство М57 продолжалось до 2012 года, но уже с 2008 года его начали менять на более новый дизель N57.

Проблемы и недостатки двигателей BMW М57

Двигатель очень требователен к дизельному топливу. Использование некачественной солярки сомнительного происхождения приводит к преждевременному выходу из строя форсунок системы впрыска и регулятора давления топлива. Ресурс форсунок на М57 около 100 тыс. км.

ТНВД стал более надежным и не требует частого вмешательства в отличие от двигателей серии M51.

Срок службы турбины очень большой и может превышать 300-400 тыс. км, но при использовании низкокачественного моторного масла ресурс может очень сильно снизиться. Перед заменой масла стоит приобрести крышку корпуса масляного фильтра. Она пластиковая и чаще всего трескается при замене фильтрующего элемента.

Как и предшественник, двигатель M57 чувствителен к перегреву, что влечет за собой массу неприятностей и дорогостоящий ремонт. Распространенная проблема для двигателей BMW - клапан рециркуляции газов. Реже выходят из строя расходомеры воздуха. Электровакуумные гидроопоры мотора умирают к 200 тыс.км. пробега.

Хитрая проблема, которая сразу толкает на замену турбины - это масляное потение патрубков от турбины к интеркулеру, или от клапана вентиляции картерных газов к турбине. Маслоотделитель не выполняет свою функцию по очистке картерных газов. Постоянные масляные пары оседают на патрубках и проявляются через не плотные соединения и износившиеся фланцы. Чтобы подаваемый воздух был чистый, то при каждой замене масла меняют валик очистки картерных газов. Он лучше справляется с очисткой от масла, чем циклонник, который нужно не забывать промывать.

Как и на М47, здесь имеется проблема с вихревыми заслонками, которые могут оторваться и попасть в мотор, приведя его в самое настоящее нерабочее состояние. Лучше всего поскорей удалить заслонки путем установки заглушек и прошивкой ЭБУ под работу без этих чудо-устройств.

Посторонние стуки и шумы на моторе BMW M57 проявляются при износе демпфера коленвала.

Если рядная дизельная «шестерка» M57 вдруг перестала выдавать номинальную мощность, а в подкапотном пространстве появились выхлопные газы, то следует осмотреть выпускной коллектор на предмет трещин. Как правило, трескается коллектор TU-версии, его можно поменять на чугунный от М57 не TU-версии.

Цепь на моторе M57 (а также на его преемнике N57) ходит очень долго и практически не растягивается. В этом качественное преимущество этого мотора от 2-литрового N47/M47.

В общем и целом, дизель М57 очень надежный и служит так долго, как только это возможно, естественно при должном уходе, использовании хорошего топлива и масла. Качественное топливо здесь очень важно, иначе топливная система быстро придет в негодность. Соблюдая нормы нормальной эксплуатации, ресурс двигателя М57 составит более 500 тыс. км.

Двигатель для своего авто вы сможете на нашем сайте

Лучший дизельный двигатель БМВ, техническое знакомство с топливной системой M57.
Краткое описание принципа действия.
В двигателе М 57 впервые в дизельных двигателях БМВ применена система впрыскивания с аккумулятором высокого давления (Common Rail). При этом новом принципе впрыскивания топливным насосом высокого давления, в общей для всех инжекторов топливной магистрали - Common Rail - создаётся высокое давление, оптимальное для текущего режима работы двигателя.

В системе Common Rail впрыскивание и сжатие разъединены. Давление впрыскивания создаётся независимо от частоты вращения двигателя и количества впрыскиваемого топлива и накапливается в «Common Rail» (топливном аккумуляторе высокого давления) для впрыскивания.

Начало впрыскивания и количество впрыскиваемого топлива вычисляются в DDE и реализуются форсункой каждого цилиндра посредством управляемого магнитного клапана.

Устройство системы

Система питания подразделяется на 2 подсистемы:

Система низкого давления состоит из следующих частей:

  • топливного бака,
  • топливоподающего насоса,
  • клапанов предохранения от вытекания,
  • дополнительного топливоподкачивающего насоса,
  • топливного фильтра с датчиком давления притока,
  • клапана ограничения давления (система НД);
  • а на стороне обратного потока топлива из:
  • обогревателя топлива (биметаллический клапан),
  • охладителя топлива.,
  • распределительного патрубка с дросселем.

Система высокого давления состоит из следующих частей:

  • насоса высокого давления,
  • топливного аккумулятора высокого давления (Rail),
  • редукционного клапана,
  • датчика давления в Rail,
  • форсунка.

Системное давление составляет около

в системе НД

  • на подводящей стороне 1,5 < р < 5 бар
  • на отводящей стороне р< 0,6 бар
  • в системе ВД 200 бар < р < 1350 бар

А теперь немного более детально по каждой системе:

Общая схема м57

  • 1 ТОПЛИВНЫЙ насос высокого давления (СP1)
  • 2 редукционный клапан
  • 3 аккумулятор высокого давления (Rail)
  • 4 датчик давления в рэйле
  • 5 инжектор
  • 6 дифференциальный клапан давления
  • 7 биметаллический клапан
  • 8 датчик давления топливоподачи
  • 9 топливный фильтр
  • 10 дополнительный топливоподкачивающий насос
  • 11 охладитель топлива
  • 12 дроссель
  • 13 бак с ЕКР
  • 14 датчик педали
  • 15 инкрементный датчик коленчатого вала
  • 16 датчик температуры охлаждающей жидкости
  • 17 датчик распределительного вала
  • 18 датчик давления наддува
  • 19 НFM
  • 20 турбонагнетатель (VMT)
  • 21 2xEPDW для AGR
  • 22 Управление VNT
  • 23 вакуумный распределитель

Описание узлов

Топливный бак в моделях Е39 (М 57) и Е38 (М 57, М 67) перенят из соответствующего варианта с двигателем М 51ТU.

Два клапана предохранения вытекания в случае аварии (напр. при переворачивании) предотвращают вытекание топлива.

  • 1 Топливный бак
  • 2 Топливоподающий насос

Электрический топливный насос (ЕКР) находится внутри топливного бака, в правой его половине.

(шиберный роликовый насос) - Е39 / Е38

  • 1 - сторона всасывания
  • 2 - подвижная пластина
  • 3 - ролик
  • 4 - основание
  • 5 - сторона нагнетания

Электрический топливный насос подаёт топливо из горшка бака к двигателю и приводит в действие струйные насосы в левой и правой половинах бака. Струйные насосы, в свою очередь, подают топливо в горшок в правой половине топливного бака.

Работой насоса управляет контроллер через реле ЕКР.

Дополнитель-ный топливо - подкачивающий насос

  1. Задача дополнительного топливоподкачивающего насоса - обеспечивать топливный насос высокого давления достаточным количеством топлива:
  2. в любом режиме работы двигателя,
  3. с необходимым давлением,
  4. во время всего срока службы.

Дополнительный топливоподкачивающий насос в двигателе М57 Е39 / Е38 - "инлайн" - электрический топливный насос (ЕКР), т.к. он расположен на подводящем топливопроводе.

Он находится под днищем автомобиля и выполнен как винтовой насос (высокая производительность).

Последствия в случае сбоя

  1. предупредительный сигнал контрольной лампы ООЕ
  2. потеря мощности в при частоте вращения > 2000 об / мин. (т.е. движение в подъём с частотой вращения < 2000 об / мин. возможно, при > 2000 об / мин. двигатель заглохнет).

топливный фильтр - место установки в Е38 М57

Топливный фильтр очищает топливо перед его попаданием в насос высокого давления и таким образом предотвращает преждевременный износ чувствительных деталей. Недостаточная очистка может вызвать повреждения деталей насоса, напорных клапанов и форсунок.

Он не имеет электрического обогревателя топлива и водоотделителя. Фильтр аналогичен используемому в двигателе М51Т0.

Электрический контакт соединён с датчиком давления притока.

Топливный фильтр

Для предотвращения забивания фильтра парафиновыми хлопьями при низких температурах, в обратном топливопроводе имеется биметаллический клапан. Через него подогретое обратное топливо подмешивается к холодному топливу из бака.

Датчик давления притока размещён в корпусе топливного фильтра позади фильтрующего элемента. Он является специальной деталью БМВ.

топливный фильтр с датчиком давления притока - место установки в Е38 М57

Его задачей является измерение давления притока к топливному насосу высокого давления (ТНВД) в топливопроводе.

Таким образом у DDE появляется возможность при пониженном давлении притока настолько снизить количество впрыскиваемого топлива, что произойдёт снижение частоты вращения и давления в рэйле. При этом уменьшается необходимое количество топлива поступающего к насосу высокого давления. Этим достигается возможность возрастания давления притока перед ТНВД на требуемый уровень.

При давлении притока < 1,5 бар возможно повреждение ТНВД вследствие недостаточного наполнения.

При разности давлений между впускным и нагнетательным топливопроводами на ТНВД <0,5 бар, двигатель резко глохнет (защита насоса).

Клапан ограничения давления расположен между топливным фильтром и топливным насосом высокого давления. Он находится в соединительном проводе, соединяющем впускной топливопровод перед ТНВД и возвратный топливопровод за ТНВД.

Задача клапана ограничения давления идентична задаче предохранительного клапана. Он ограничивает давление притока к насосу высокого давления на 2,0 - 3,0 бар. Избыток давления ликвидируется путём перенаправления лишнего топлива в возвратный топливопровод.

Он защищает насос высокого давления и дополнительный топливоподкачивающий насос от перегрузок.

Последствия в случае неисправности

  1. повышенное давление сокращает срок службы дополнительного топливоподкачивающего насоса,
  2. усиление поточных шумов в области ТНВД и дополнительного топливоподкачивающего насоса,
  3. возможно выдавливание сальника ТНВД.

Насос высокого давления

Топливный насос высокого давления (ТНВД) находится впереди

на левой стороне двигателя (сравнимо с распределительным ТНВД).

Задача

Насос высокого давления является местом стыковки между системами низкого и высокого давления. Его задача состоит в подаче достаточного количества топлива под необходимым давлением во всех режимах работы двигателя в течение всего срока службы автомобиля. Это включает в себя также и обеспечение подачи резерва топлива, необходимого для быстрого пуска двигателя и скорого возрастания давления в рэйле.

Устройство

  • - приводной вал
  • - эксцентрик
  • - плунжерная пара с плунжером
  • - камера сжатия
  • - впускной клапан
  • - клапан отключения элемента (у БМВ нет) 7 - выпускной клапан
  • 3 - уплотнитель
  • - штуцер высокого давления к рэйлу
  • - редукционный клапан
  • - шариковый клапан 12- возврат топлива
  • -cпуск топлива
  • - предохранительный клапан с дроссельным отверстием
  • - канал низкого давления к плунжерной паре

топливный насос высокого давления - продольный разрез (СР1)

топливный насос высокого давления - поперечный разрез

Принцип действия

Топливо подаётся через фильтр к впуску ТНВД (13) и лежащему за ним предохранительному клапану. Затем оно через дроссельное отверстие нагнетается в канал низкого давления (15). Этот канал связан с системами смазки и охлаждения насоса высокого давления. Поэтому ТНВД не подключен к какой-либо системе смазки.

Приводной вал (1) приводится в действие при помощи цепной передачи с частотой вращения несколько большей половины частоты вращения двигателя (макс. 3300 мин."1). Посредством эксцентрика (2), в соответствии с его формой, приводятся в возвратно-поступательное движение три плунжера (3).

Когда давления в канале низкого давления превышает давление открывания впускного клапана (5) (0,5 - 1,5 бар), топливоподающий насос нагнетает топливо в ту камеру сжатия, плунжер которой движется вниз (ход всасывания), когда плунжер проходит мёртвую точку, впускной клапан закрывается. Топливо в камере сжатия (4) оказывается закрытым. Теперь происходит его сжатие. Создающееся давление открывает выпускной клапан (7) как только достигается давление рэйла. Сжатое топливо попадает в систему высокого давления.

Плунжер насоса нагнетает топливо до того момента, когда он достигает верхней мёртвой точки (ход нагнетания), после этого давление падает, так что выпускной клапан закрывается. Остаточное топливо разрежается. Плунжер движется вниз.

Когда давление в камере сжатия становится ниже давления канала низкого давления, впускной клапан вновь открывается. Процесс начинается с начала.

Насос высокого давления постоянно создаёт системное давление для аккумулятора высокого давления (рэйла). Давление в рэйле определяется редукционным клапаном.

Поскольку насос высокого давления рассчитан на большой объём подачи, то на холостом ходу или в диапазоне частичных нагрузок возникает избыток сжатого топлива. Так как при возврате избытка сжатое топливо разрежается, энергия полученная во время сжатия превращается в тепло и нагревает топливо.

Это избыточное топливо возвращается через редукционный клапан и охладитель топлива в топливный бак.


редукционный клапан

Задачей редукционного клапана является регулирование и поддержание давления в рэйле в зависимости от нагрузки двигателя.

При повышенном давлении в рэйле редукционный клапан открывается, так что часть топлива из рэйла через коллекторный провод возвращается в топливный бак.

При пониженном давлении в рэйле редукционный клапан закрывается и разобщает системы низкого и высокого давления.

Устройство

Редукционный клапан в двигателе М57 расположен на насосе высокого давления, а в двигателе М67 на распределительном блоке (см. рис. Аккумулятора высокого давления - рэйла).

Редукционный клапан

ООЕ - контроллер посредством катушки воздействует на якорь, который в свою очередь вдавливает шарик в седло клапана и таким образом уплотняет систему высокого давления относительно системы низкого давления. При отсутствии воздействия со стороны якоря, шарик удерживается пружинным пакетом. Для смазки и охлаждения якорь целиком омывается топливом из соседнего узла.

Принцип действия

Редукционный клапан имеет два регулирующих контура:

электрический контур для регулирования переменного показателя давления в рэйле,

механический контур для гашения высокочастотных колебаний давления.

Поскольку при регулировании давления в рэйле временной фактор играет важную роль, электрический контур сглаживает медленные, а механический контур быстро протекающие колебания и изменения давления в рэйле.

Редукционный клапан без управляющего воздействия

Давление в рэйле или на выходе насоса высокого давления через провод высокого давления воздействует на редукционный клапан. Поскольку обесточенный электромагнит не оказывает воздействия, давление топлива превышает силу пружины, так что клапан открывается. Пружина устроена таким образом, что устанавливается давление в максимально 100 бар.

Редукционный клапан под управляющим воздействием

Если требуется повысить давление в системе высокого давления, дополнительно к усилию пружины действует сила магнита. На редукционный клапан так долго подаётся ток, и он закрывается, пока давление топлива с одной стороны, и суммарная сила пружины и магнита с другой, не уравновесятся. Магнитная сила электромагнита пропорциональна управляющему току. Изменения управляющего тока реализуются путём тактирования (широтно-импульсная модуляция). Тактовая частота в 1 кГц достаточно высока, чтобы избежать лишних движений якоря, и отсюда нежелательных колебаний давления в рэйле.

Топливный аккумулятор высокого давления (Common Rail) расположен рядом с крышкой головки блока цилиндров, под крышкой двигателя.

Топливный аккумулятор высокого давления

  • - инжекторы
  • - аккумулятор высокого давления (рэйл)
  • - редукционный клапан
  • - насос высокого давления (СР1)
  • - резиновый элемент
  • - датчик давления в рэйле

В рэйле накапливается и предоставляется для впрыскивания топливо под высоким давлением.

Этот общий для всех цилиндров топливный аккумулятор (Common Rail), даже при отдаче достаточно больших количеств топлива, поддерживает фактически постоянное внутреннее давление. Таким образом обеспечивается практически константное давление впрыскивания при открывании инжектора.

Колебания давления, вызванные насосной подачей топлива и впрыскиванием, гасятся за счёт объёма аккумулятора.

Устройство

Основой рэйла является толстостенная труба с гнёздами для подключения трубопроводов и датчиков.

В двигателе М57 в конец рэйла помещается датчик давления в рэйле.

Рэйл в зависимости от вида установки в двигатель может быть устроен различным образом. Чем меньше объём рэйла, или соответственно его внутренний диаметр при одинаковых внешних габаритах, тем становятся возможными более высокие нагрузки. Меньший объём рэйла также снижает требования к производительности насоса высокого давления при пуске двигателя и изменении заданной величины давления в рэйле. С другой стороны, объём рэйла должен быть достаточно велик, чтобы избежать падения давления в момент впрыскивания. Внутренний диаметр трубы рэйла составляет приблизительно 9 мм.

Рэйл непрерывно снабжается топливом насосом высокого давления. Из этого промежуточного накопителя топливо через топливопровод попадает к инжекторам. Давление в рэйле регулируется посредством редукционного клапана.

Принцип действия

Внутренний объём рэйла постоянно наполнен сжатым топливом. Достигаемое вследствие высокого давления амортизирующее действие топлива используется для поддержания аккумулирующего эффекта.

Когда происходит отдача топлива из рэйла для впрыскивания, давление в рэйле остаётся практически неизменным. Кроме того, колебания давления гасятся, или соответственно сглаживаются пульсирующей подачей топлива насосом высокого давления.

Датчик давления в рэйле

Датчик давления в рэйле в двигателе М57 ввинчен в конец рэйла, а в двигателе М67, соответственно, в блок распределителя вертикально снизу.


1 - датчик давления в рэйле

система Common Rail - датчик давления в рэйле М57

Датчик давления в рэйле должен измерять текущее давление в рэйле

с достаточной точностью,

в соответственно короткие интервалы,

и передавать сигнал в виде соответствующего давлению напряжения в контроллер.

Устройство

  • - электрические контакты 4 - стык с рэйлом
  • - схема обработки измерений 5 - резьба крепления
  • - мембрана с чувствительным элементом

датчик давления в рэйле - разрез

Датчик давления в рэйле состоит из следующих деталей:

  1. интегрированным чувствительным элементом,
  2. печатной платы со схемой обработки измерений,
  3. корпуса датчика с электрическим штекерным контактом.

Топливо через стык с рэйлом попадает на чувствительную мембрану. На этой мембране находится чувствительный элемент (полупроводниковый), который служит для преобразования деформации, вызванной давлением, в электрический сигнал. Оттуда выработанный сигнал попадает в схему обработки измерений, которая через электрический контакт передаёт готовый сигнал измерения в контроллер.

Принцип действия

Датчик давления в рэйле работает по следующему принципу:

Электрическое сопротивление мембраны меняется когда меняется её форма. Эта, вызванная воздействием системного давления деформация (ок. 1 мм при 500 бар), в свою очередь вызывает изменение электрического сопротивления и, как следствие, изменение напряжения в питаемом 5 вольтами мосту сопротивления.

Это напряжение составляет от 0 до 70 мВ (в соответствии с воздействующим давлением) и усиливается схемой обработки измерений до значения от 0,5 до 4,5 Вольт. Точное измерение давления обязательно для функционирования системы. По этой причине допустимые отклонения для датчика при измерении давления очень малы. Точность измерений в основном режиме работы составляет ок. 30 бар, т.е. ок. + 2% от конечной величины. При сбое датчика давления в рэйле, контроллер управляет редукционным клапаном при помощи аварийной функции.

Инжекторы расположены в головке блока цилиндров, центрально над камерами сгорания.

Инжектор (форсунка).

  • - выпускные каналы А - тангенциальный канал (впуск)
  • - инжектор 5 - штифт свечи накаливания
  • - вихревой канал (впуск)

Расположение инжектора относительно камеры сгорания - вид М57

Инжекторы крепятся к головке блока цилиндров с помощью прижимных скоб, что похоже на способ крепления корпусов форсунок в дизелях с непосредственным впрыскиванием топлива. Таким образом Common Rail инжекторы могут быть установлены в имеющиеся дизеля без существенных изменений конструкции головки блока цилиндров.

Инжектор

Это значит, что инжекторы заменяют собой форсуночные пары (корпус форсунки - распылитель) обыкновенных систем впрыскивания топлива.

Задача инжектора состоит в точной установке начала впрыскивания и количества впрыскиваемого топлива.

Игла форсунки имеет простую направляющую, чтобы принципиально. избежать риска трения и задирания иглы. Одновременно применяется новая посадочная геометрия с обозначениемZHI (цилиндрическое основание, калиброванная часть, инверсная разность посадочных углов), см. нижеследующую иллюстрацию. Таким образом, вследствие выравнивания давления на калиброванной части, достигается симметричная картина впрыскивания. Кроме того, при такой посадочной геометрии отсутствует склонность к увеличению количества впрыскиваемого топлива вследствие износа.

инжектор с усовершенствованной посадочной геометрией (ZHI= цилиндрическое основание, калиброванная часть, инверсная разность посадочных углов)

Устройство

Инжектор можно разделить на различные функциональные блоки:

  • бесштифтовый распылитель форсунки с иглой,
  • гидравлический привод с усилителем,
  • магнитный клапан,
  • места стыковки и топливопровода.

Топливо через впускной патрубок высокого давления (4) и канал (10) направляется к распылителю, а через впускной дроссель (7) в камеру управления (8).

инжекторзакрыт(состояние покоя)

  • - впускной дроссель
  • - камера управления клапана
  • - управляющий плунжер
  • - впускной канал к распылителю
  • - игла распылителя форсунки

инжектор открыт (всасывание)

  • - возврат топлива
  • - электрический контакт
  • - управляемый узел (2/2 - магнитный клапан)
  • - впускной патрубок, давление из рэйла
  • - шарик клапана
  • - выпускной дроссель

инжектор - разрез

Камера управления через выпускной дроссель (6), открываемый магнитным клапаном, связана с возвратом топлива (1). В закрытом состоянии выпускного дросселя гидравлический напор на управляющий плунжер (9) превышает напор на ступень давления иглы распылителя (11). Вследствие этого игла распылителя вдавливается в своё седло и герметично запирает канал высокого давления относительно цилиндра. Топливо не может попасть в камеру сгорания, хотя всё это время оно уже находится под необходимым давлением во впускном отсеке.

При подаче пускового сигнала на управляемый узел инжектора (2/2 - магнитный клапан), выпускной дроссель открывается. Вследствие этого давление в камере управления, а вместе с ним и гидравлический напор на управляющий плунжер падают.

Как только гидравлический напор на ступень давления иглы распылителя превысит напор на управляющий плунжер, игла открывает отверстие распылителя и топливо попадает в камеру сгорания.

Такое непрямое управление иглой распылителя через гидравлическую систему усиления, применяется по той причине, что необходимая для быстрого открывания иглой отверстия распылителя сила не может быть развита магнитным клапаном напрямую. Необходимая для этого процесса дополнительная к впрыскиваемому топливу, т.н. усилительная порция топлива, через выпускной дроссель камеры управления попадает в возвратный топливопровод.

Дополнительно к усилительной порции топлива происходит утечка топлива на игле распылителя и в направляющей плунжера (дренажное топливо).

Усилительное и дренажное топливо могут составлять до 50 мм3 за один ход. Это топливо возвращается в топливный бак через возвратный топливопровод, к которому также подсоединены перепускной и редукционный клапана и насос высокого давления.

Принцип действия

Работу инжектора при работающем двигателе и качающем насосе высокого давления можно подразделить на четыре рабочих состояния:

инжектор закрыт (при воздействующем давлении топлива)

инжектор открывается (начало впрыскивания),

инжектор открыт полностью,

инжектор закрывается (окончание впрыскивания).

Эти рабочие состояния определяются распределением сил, воздействующих на конструктивные элементы инжектора. На неработающем двигателе и при отсутствии давления в рэйле, инжектор закрывается при помощи пружины иглы.

Инжектор закрыт (состояние покоя).

2/2 - магнитный клапан в состоянии покоя инжектора обесточен и поэтому закрыт (см. рис. инжектор - разрез, а).

Поскольку выпускной дроссель закрыт, шарик якоря прижат к своему седлу на этом дросселе усилием пружины клапана. В управляющую камеру клапана нагнетается давление рэйла. Такое же давление создаётся в камере распылителя. Усилием давления рэйла на плунжер и пружины на иглу, противодействующих давлению рэйла на ступень давления иглы, она удерживается в закрытом положении.

Инжектор открывается (начало впрыскивания).

Инжектор находится в состоянии покоя. На магнитный 2/2 - клапан подаётся втягивающий ток (I = 20 ампер), что вызывает его быстрое открывание. Теперь втягивающая сила клапана превышает силу пружины клапана, и якорь открывает выпускной дроссель. Через максимально 450 мс повышенный втягивающий ток (I = 20 ампер) понижается до более низкого удерживающего тока (I = 12 ампер). Это становится возможным благодаря уменьшению воздушного зазора в магнитном контуре.

При открытом выпускном дросселе топливо из камеры управления может поступать в соседнюю камеру, а затем через возвратный топливопровод в бак. Впускной дроссель при этом предотвращает полное уравновешивание давлений, и давление в управляющей камере падает. Вследствие этого давление в камере распылителя, до сих пор равное давлению в рэйле, превышает давление в камере управления. Понижение давления в камере управления уменьшает усилие на плунжер и приводит к открыванию иглы распылителя. Начинается впрыскивание.

Скорость открывания иглы распылителя определяется разностью протока впускного и выпускного дросселей. После хода примерно в 200 дм, плунжер достигает своего верхнего упора и там задерживается на буферном слое топлива. Этот слой возникает вследствие потока топлива между впускным и выпускным дросселями. В этот момент инжектор открыт полностью, и топливо впрыскивается в камеру сгорания с давлением, примерно равным давлению в рэйле.

Инжектор закрывается (окончание впрыскивания).

Когда подача тока на 2/2 - магнитный клапан прекращается, якорь усилием пружины клапана перемещается вниз и шариком закрывает выпускной дроссель. Чтобы предотвратить чрезмерный износ седла клапана шариком, якорь выполнен из двух частей. Толкатель пружины клапана при этом продолжает выжимать пластину якоря вниз, но она уже не давит на якорь с шариком, а погружается в пружину обратного действия. Закрытием выпускного дросселя через впускной дроссель в управляющей камере снова начинает создаваться давление, равное давлению в рэйле. Повышение давления усиливает воздействие на плунжер. Суммарное усилие давления в управляющей камере и пружины иглы распылителя превышают силу давления в камере распылителя и игла закрывает отверстие распылителя. Скорость закрытия иглы определяется протоком впускного дросселя. Процесс впрыскивания заканчивается, когда игла распылителя достигает своего нижнего упора.

Биметаллический клапан теперь устанавливается внешне, т.е. он уже не расположен непосредственно на фильтре. Горячее топливо в режиме подогрева возвращается к распределительному патрубку и оттуда поступает в топливный фильтр.

Принцип действия подогрева топлива

Подогрев топлива регулируется при помощи терморегулятора (биметаллического клапана).

Принцип действия аналогичен М47. Различия с М47 (точки переключения)

При температуре возвращаемого топлива > 73°С (± 3°С), 100% его возвращаются в бак через охладитель топлива.

Подогрев / охлаждение топлива (воздушный теплообменник)

При температуре возвращаемого топлива < 63°С (± 3°С), от 60% до 80 % топлива поступают напрямик к фильтру, остальное через охладитель в бак.

Принцип действия охлаждения топлива

Когда биметаллический клапан отпирает возвратный топливопровод, топливо протекает через охладитель.

Этот охладитель посредством собственного воздуховода снабжается прохладным наружным воздухом и таким образом забирает тепло у топлива.

распределительный патрубок - Е38 М57

В зависимости от модели двигателя используется 2 разных вида распределительных патрубка:

Распределительный патрубок расположен в области днища автомобиля на левой стороне, за дополнительным топливоподкачивающим насосом.

Распредели-тельный патру-бок с дроссе-лем

  • 5 - кратный распределительный патрубок с дросселем (М57),
  • Н - образный патрубок с дросселем (М67).

Задачей 5 - кратного распределительного патрубка является предоставление топлива из возвратного топливопровода при пониженном давлении перед электрическим топливным "инлайн" - насосом (ЕКР).

Для этого напрямую соединяются возвратный топливопровод и впускная сторона. Таким образом часть возвращаемого топлива подмешивается к топливу, поступающему к ТНВД.

  • При создании статьи использованы технические материалы TIS, DIS BMW.

Оставляйте свои коментарии! Удачи за рулём!


Двигатель BMW M57

Характеристики двигателя M57D30

Производство Steyr Plant
Марка двигателя М57
Годы выпуска 1998-2012
Материал блока цилиндров чугун
алюминий (M57TU2)
Тип двигателя дизельный
Конфигурация рядный
Количество цилиндров 6
Клапанов на цилиндр 4
Ход поршня, мм 88 (M57D30)
90
Диаметр цилиндра, мм 84
Степень сжатия 16.5 (TOP)
18
Объем двигателя, куб.см 2926
2993
Мощность двигателя, л.с./об.мин 184/4000
193/4000
197/4000
204/4000
218/4000
231/4000
235/4000
272/4400
286/4400
Крутящий момент, Нм/об.мин 390/1750-3200
410/1750-3000
400/1300-320
410/1500-3250
500/2000-2750
500/1750-3000
500/1750-3000
560/2000-2250
580/1750-2250
Экологические нормы Евро 3
Евро 4 (M57TU2)
Турбокомпрессор Garrett GT2556V
Garrett GT2260V
BorgWarner BV39 + K26
BorgWarner KP39 + K26
Вес двигателя, кг ~200
Расход топлива, л/100 км (для 335d E90)
- город
- трасса
- смешан.

9.7
5.6
7.1
Расход масла, гр./1000 км до 700
Масло в двигатель 5W-30
5W-40
Сколько масла в двигателе, л 6.75 (M57)
7.5 (M57TU2)
8.25 (M57TU)
Замена масла проводится, км 7000-8000
Рабочая температура двигателя, град. ~90
Ресурс двигателя, тыс. км
- по данным завода
- на практике

-
500+
Тюнинг, л.с.
- потенциал
- без потери ресурса

250+
-
Двигатель устанавливался BMW 325d/330d/335d E46/E90
BMW 525d/530d/535d E39/E60
BMW 635d E63
BMW 730d E38/E65
BMW X3 E83
BMW X5 E53/E70
BMW X6 E71
Range Rover

Надежность, проблемы и ремонт двигателя БМВ М57

Моторы серии М57 начали ставиться на мюнхенские автомобили с 1998 года и заменили собой дизельный М51 . Новый М57 разрабатывался на основе своего предшественника, он также использует чугунный блок цилиндров, но диаметр самих цилиндров увеличен до 84 мм, внутрь блока поставили коленвал с ходом поршня 88 мм, длина шатунов 135 мм, высота поршней 47 мм. Все это дает рабочий объем почти 3 литра, а именно 2.93 л.
Сверху этого блока установлена алюминиевая DOHC головка с 24-мя клапанами. Размер клапанов: впускные 26 мм, выпускные 26 мм, диаметр ножки клапана 6 мм. Клапаны и пружины такие же, как на родственном 4-х цилиндровом дизельном М47 .
Вращение распредвалам придает цепь ГРМ, которая имеет огромный ресурс и в нормальных условиях замена цепи может вообще не понадобиться.
Здесь использована система впрыска Common rail и стоит турбонаддув с интеркулером. Дует в М57 турбина Garrett GT2556V с изменяемой геометрией.

Чтобы мотор соответствовал всем необходимым экологическим требованиям, на М57 поставили впускной коллектор с вихревыми заслонками, которые на низких оборотах перекрывают по одному впускному каналу, что улучшает смесеобразование и сгорание топлива. Также на этом двигателе стоит клапан ЕГР, который тоже улучшает выхлоп путем направления некоторой его части обратно в цилиндры для еще более качественного сгорания.
Управляет мотором блок Bosch DDE4.

В 2002 году начался выпуск обновленной версии M57TUD30, рабочий объем которой подтянули до круглой цифры 3 литра путем установки коленвала с ходом поршня 90 мм. Турбину заменили на Garrett GT2260V, а блок управления здесь DDE5.
Самая мощная версия носила название M57TUD30 TOP и отличалась двумя турбокомпрессорами разного размера BorgWarner KP39 и K26 (давление наддува 1.85 бар), поршнями со степенью сжатия 16.5, а управлял всем ECU DDE6.

С 2005 года пошли версии M57TU2, в которых был легкий алюминиевый блок цилиндров, обновленная Common rail, пьезофорсунки, новые распредвалы, впускные клапаны этого двигателя были увеличены до 27.4 мм, также применен чугунный выпускной коллектор, турбонагнетатель Garrett GT2260VK, ЭБУ DDE6 и все это соответствовало стандартам Евро-4.
Версию TOP заменили на новую - M57TU2D30 TOP, которая оснащалась двумя турбинами BorgWarner KP39 и K26 (давление наддува 1.98 бар) и ЭБУ DDE7.

Кроме многочисленных версий, на базе M57D30 была создана 2.5-литровая модификация M57D25 .

Производство М57 продолжалось до 2012 года, но уже с 2008 года его начали менять на более новый дизель N57 .

Модификации двигателя BMW M57D30

1. M57D30O0 (1998 - 2003) - базовый мотор М57D30 с турбонагнетателем Garrett GT2556V. Мощность 184 л.с. при 4000 об/мин, крутящий момент 390 Нм при 1750-3200 об/мин. Предназначался мотор для BMW 330d E46 и 530d E39.
Для автомобилей BMW X5 3.0d E53 и 730d E38 выпускалась версия мощностью 184 л.с. при 4000 об/мин и с крутящим моментом 410 Нм при 2000-3000 об/мин.
2. M57D30O0 (2000 - 2004 г.в.) - чуть более мощная версия для БМВ Е39 530d. Ее отдача достигает 193 л.с. при 4000 об/мин, крутящий момент 410 Нм при 1750-3000 об/мин.
Для BMW 730d E38 выпускалась модификация мощность 193 л.с. при 4000 об/мин, крутящий момент которой равен 430 Нм при 2000-3000 об/мин.

3. M57D30O1 / M57TU (2003 - 2006) - замена мотору M57D30O0. Главные отличия серии M57TU кроются в рабочем объем 3 литра и в турбине Garrett GT2260V. Мощность этого движка 204 л.с. при 4000 об/мин, крутящий момент 410 Нм при 1500-3250 об/мин. Встретить его можно на BMW 330d E46 и Х3 Е83.
4. M57D30O1 / M57TU (2002 - 2006) - более мощная версия вышеприведенного мотора. Мощность 218 л.с. при 4000 об/мин, крутящий момент 500 Нм при 2200 об/мин. Ставили его на BMW E60 530d, 730d E65, Х5 Е53 и Х3 Е83.
5. M57D30T1 / M57TU TOP (2004 - 2007) - топовая версия M57TU. Основные отличия мотора в двух турбинах BorgWarner BV39 + K26. В результате мощность достигла 272 л.с. при 4400 об/мин, а крутящий момент 560 Нм при 2000-2250 об/мин.
6. M57D30U2 / M57TU2 (2006 - 2010) - версия для BMW 525d E60 и 325d E90, вышедшая для замены M57D25 . Основное отличие в алюминиевом блоке цилиндров, доработанной топливной и в соответствии нормам Евро-4. ДВС имеет мощность 197 л.с. при 4000 об/мин и крутящий момент 400 Нм при 1300-3250 об/мин.
7. M57D30O2 / M57TU2 (2005 - 2008) - модель с отдачей в 231 л.с. при 4000 об/мин и с крутящим моментом 500 Нм при 1750-3000 об/мин. Мотор стоит на E90 330d и E60 530d. Для 730d E65 крутящий момент увеличен до 520 Нм при 2000-2750 об/мин.
8. M57D30O2 / M57TU2 (2007 - 2010) - вариация для E60 530d на 235 л.с. при 4000 об/мин и с крутящим моментом 500 Нм при 1750-3000 об/мин. Для моделей Е71 Х6 и Е70 Х5 крутящий момент увеличен до 520 Нм при 2000-2750 об/мин.
9. M57D30T2 / M57TU2 TOP (2006 - 2012) - самый мощный двигатель серии М57. Отличается двумя турбинами BorgWarner KP39 + K26. Мощность мотора 286 л.с. при 4400 об/мин, а крутящий момент 580 Нм при 1750-2250 об/мин.

Проблемы и недостатки двигателей БМВ М57

1. Вихревые заслонки. Как и на М47, здесь имеется проблема с вихревыми заслонками, которые могут оторваться и попасть в мотор, приведя его в самое настоящее нерабочее состояние. Лучше всего поскорей удалить заслонки путем установки заглушек и прошивкой ЭБУ под работу без этих чудо-устройств.
2. Стуки, шумы. Это вторая популярная проблема с демпфером коленвала, посмотрите в каком он состоянии, возможно, его надо заменить.
3. Пропала мощность, выхлоп внутри автомобиля. Чаще всего проблема в треснувшем выпускном коллекторе, его меняют на чугунный от М57 не TU.

Ресурс форсунок на М57 около 100 тыс. км. Срок службы турбины очень большой и может превышать 300-400 тыс. км, но при использовании низкокачественного моторного масла ресурс может очень сильно снизиться.
В общем и целом, дизель М57 очень надежный и служит так долго, как только это возможно, естественно при должном уходе, использовании хорошего топлива и масла. Качественное топливо здесь очень важно, иначе топливная система быстро придет в негодность. Соблюдая нормы нормальной эксплуатации, ресурс двигателя М57 составит более 500 тыс. км.

Тюнинг двигателя BMW M57

Чип-тюнинг

Моторы серии M57TU2 неплохо тюнингуются и обычной прошивкой можно поднять мощность примерно на 40 л.с., а с даунпайпом еще +10-20 л.с. Мощность 335d/535d/635d можно поднять до 330-340 л.с., а на Stage 2 с даунпайпом можно получить и 360 л.с.
Старшая серия M57TU дает похожий результат: плюс 40 л.с. и еще + 10-15 л.с. с даунпайпом.
Самые первые версии M57D30 с прошивкой ЭБУ дают около 220 л.с.

Покупка престижного автомобиля среднего или более высокого класса с 2-литровым турбодизелем, это как лизать конфетку через бумажку. Низкий расход топлива важен, только руководителям автопарков. Настоящие ценители предпочитают большие объемы, мощность и высокий крутящий момент.

К счастью, некоторые производители (в частности немецкие) прекрасно понимали это и уже с 70-х годов предлагали 5-ти и 6-цилиндровые дизели. Изначально они не пользовались большим спросом, так как по многим параметрам проигрывали бензиновым моторам. Но в конце 90-х немецкие инженеры доказали, что дизель может быть быстрым, экономичным и при этом не будет тарахтеть, как трактор.

Сегодня прошло уже почти 20 лет с момента дебюта двух дизельных агрегатов, когда-то будораживших воображение поклонников немецких автомобилей: 3.0 R6 (M 57) BMW и 2.5 V 6 TDI (VW ). Дальнейшая эволюция этих моторов привела к появлению 3.0 R6 N57 (с 2008 года) и 2.7 / 3.0 TDI (с 2003 / 2004 года). Попробуем разобраться - чей же двигатель лучше?

Подержанный автомобиль с большим дизельным двигателем обычно привлекает низкой ценой. Но заезженный экземпляр (а таких хватает) чаще всего приводит к растратам денег, времени и нервов. В очередной раз напоминаем, что в Европе (подавляющее большинство автомобилей с рассматриваемыми двигателями именно оттуда) большие дизеля покупают для того, чтобы много ездить. С уверенностью можно предположить, что минимальный годовой пробег таких машин около 25 000 км. А границу подержанные экземпляры с дизелем под капотом пересекают, когда на счетчике уже значатся цифры порядка 200 000 км. Поэтому при выборе подобных автомобилей необходимо сосредоточиться, прежде всего, на техническом состоянии и поиске следов крупного кузовного ремонта в прошлом. Не стоит придавать большого значения пробегу.

Будьте внимательны. Некоторые двигатели VW оказались настоящей бомбой замедленного действия. Речь идет о версии 2.5 TDI V6, предлагавшейся с 1997 по 2001 год. Гораздо лучше, хотя и не идеально, проявили себя более современные 2.7 и 3.0 TDI, оснащенные системой впрыска Common Rail и приводом ГРМ цепного типа.

Если же важна еще более высокая прочность, то стоит проявить интерес к двигателям BMW. Оба блока (M 57 и N 57) практически не имеют конструктивных недостатков и считаются одними из лучших в своем классе. Но это не означает, что они не ломаются. Любой дизель с большим пробегом может неожиданно удивить неприятным сюрпризом. Многое зависит от условий эксплуатации.

BMW M57

М57 появился в 1998 году, сменив М51. Новичок позаимствовал часть решений от предшественника. Среди новшеств система впрыска Common Rail и турбина изменяемой геометрии с вакуумным управлением лопатками. С самого начала турбодизели BMW имели цепной привод ГРМ. В М57 использовались две однорядные цепи.

В рамках первой модернизации в 2002 году M 57N (M 57TU ) получил впускной коллектор переменной длины, систему впрыска Common Rail нового поколения и две турбины (только версия 272 л.с.). Очередная модернизация произошла на рубеже 2004-2005 года – M57N 2 (M 57TU 2). В топ–версии появились пьезофорсунки и DPF-фильтр. 286-сильная версия обрела 2 турбины. На базе М57 был создан 2,5-литровый агрегат M57D25 (M57D25TU).

Одна из главных проблем M 57N – дефектные заслонки впускного коллектора. Нередко дело доходило до их обрыва. В результате обломки попадали в двигатель и повреждали его. В M57N2 это происходит реже – была пересмотрена конструкция крепления. При больших пробегах встречаются проблемы с системой вентиляции картерных газов, клапаном EGR, форсунками и свечами накала.

Цепь ГРМ оказалась достаточно прочной, а ее растяжение – результат жестокой эксплуатации. В версии N57 цепь перенесли на сторону коробки. Так что, если с приводом что-то случится (например, выйдет из строя натяжитель), то затраты на ремонт вызовут ужас даже у самых стрессоустойчивых.

VW 2.5 TDI V6

Затрудненный доступ к приводу ГРМ (зубчатый ремень) имеет и Фольксвагеновский 2.5 V6 TDI. 2,5-литровый турбодизель появился в активе VW еще в 90-е годы. Тогда это была рядная «пятерка», обладающая посредственными характеристиками и архаичной, по сегодняшним меркам, конструкцией. Двигатель применялся, в частности, в Ауди 100, Volkswagen Touareg и Transporter T 4, Volvo 850 и S80 первого поколения.

Осенью 1997 года был представлен 2,5-литровый V6. Это был совершенно новый двигатель, оснащенный практически всеми последними технологиями Фольксваген (за исключением форсунок). Таким образом, здесь присутствует два ряда цилиндров, разнесенных на 90 градусов (хорошая балансировка), управляемый электроникой топливный насос высокого давления, алюминиевая головка блока с четырьмя клапанами на цилиндр и уравновешивающий вал в масляном поддоне. В процессе производства мощность увеличилась со 150 до 180 л.с.

Наиболее склонны к отказам версии 2.5 TDI V6, предлагавшиеся с 1997 по 2001 год. В турбодизелях того периода (первая буква в обозначении «А») преждевременно изнашивались кулачки распределительного вала и выходил из строя ТНВД. Со временем масштабы проблем сократились, но случаи разрушения распределительного вала фиксировались и позже, например, в Skoda Superb 2006 модельного года. Ресурс ТНВД увеличился почти в 2 раза – с 200 до 400 тыс. км. Но осталась не решенной еще одна проблема: неисправность цепи привода масляного насоса может привести к заклиниванию двигателя. Кроме того, со временем выходят из строя система надува, EGR и расходомер.

BMW N57

Двигатель BMW N57 (с 2008 года) – настоящий шедевр инженерной мысли. Мотор, в зависимости от версии, укомплектован одной, двумя или даже тремя турбинами и самым современным оборудованием. N57 – прямой преемник М57. Каждый двигатель с алюминиевым блоком оснащен кованым коленчатым валом, фильтром твердых частиц и системой впрыска CR с пьезо-электрическими форсунками, работающими под высоким давлением – до 2200 бар.

К сожалению, новый двигатель получил цепь ГРМ со стороны коробки, как и 2-литровый N47. К счастью, проблемы с цепью в 3-литровом агрегате возникают реже, чем в 2.0d.

В 2011 году на рынок была выведена усовершенствованная версия мотора 3.0d (N 57N , N 57TU ). Производитель вновь вернулся к электромагнитным форсункам Bosch CRI 2.5 и 2.6, а так же установил более мощный топливный насос и более эффективные свечи накала (1300 вместо 1000 С). Флагманский N57S отдачей 381 л.с. может похвастаться тремя турбинами и 740 Нм крутящего момента.

Среди проблем стоит отметить – невысокий ресурс шкива ремня навесного оборудования и клапана системы рециркуляции отработавших газов (ЕГР). Применявшиеся ранее дорогие пьзоэлектрические форсунки очень чувствительны к качеству топлива, а система очистки выхлопных газов плохо переносит частые поездки на короткие расстояния.

VW 2.7 / 3.0 TDI V 6

Двигатель Volkswagen 2.7 TDI / 3.0 TDI (с 2003 года) в вопросе долговечности обходит предшественника на голову! Оба агрегата имеют схожую конструкцию, и оба разработаны инженерами Audi. Первым на рынок вышел 3.0 TDI, а через год (в 2004 году) 2.7 TDI. Двигатели имеют 6 цилиндров, расположенных V-образно, систему впрыска Common Rail с пьезофорсунками, фильтр твердых частиц, кованый коленчатый вал, сложный цепной привод ГРМ и впускной коллектор с вихревыми заслонками.

В 2010 году на свет появилось новое поколение двигателя 3.0 TDI. Были переработаны вихревые заслонки, топливный насос переменной производительности и упрощена конструкция ГРМ (вместо 4-х цепей установили 2). Кроме того, некоторые версии получили систему очистки выхлопных газов, работающую на AdBlue.

В 2012 году было прекращено производство 2.7 TDI. Его место заняла самая слабая модификация 3.0 TDI. В тоже время под капот Ауди попали версии с двойным наддувом мощностью 313, 320 и 326 л.с.

Главная проблема двигателя 2.7 / 3.0 TDI первого поколения (2003-2010 гг.) – цепи ГРМ. Они растягиваются. На работу вместе с запчастями придется потратить до 60 000 рублей. К счастью, конструкция не требует снятия двигателя.

Кроме того, владельцы часто сообщают о проблемах с заслонками во впускном коллекторе. Симптомы: потеря мощности и загорание индикатора неисправности двигателя. Рекомендуется замена впускного коллектора в сборе, ремонта хватает ненадолго.

Автомобили с двигателем BMW M57 3.0

M57: период 1998-2003 год; мощность 184 и 193 л.с.; Модели: 3 серии (E46), 5-й серии (E39), 7-й серии (E38), X5 (E53).

M57TU : период 2002-2007 год; мощность 204, 218 и 272 л.с.; Модели: 3 серии (E46), 5-й серии (E60), 7-й серии (E65), X3 (E83), X5 (E53).

M57TÜ2 : период 2004-2010 год; Индекс модели: 35d - 231, 235 и 286 л.с.; 25d - 197 л.с. (E60 после подтяжки лица, как 325d и 525d); Модели: 3-й серии (E90), 5-й серии (E60), 6-й серии (E63), 7-й серии (E65), X3 (E83), X5 (E70), X6 (E71).

Версия 3.0 / 177 л.с. в 2002-06 году в Range Rover Vogue.

Двигатель М57 объемом 2,5 литра в 2000-2003 Opel Omega (150 л.с.) и BMW 5-й серии (Е39; 163 л.с.). В 2003-07 году 525d / 177 л.с. (E60).

Автомобили с двигателем BMW N57 3.0

N57 : 2008-13 гг., мощность 204 л.с. (только как 325d или 525d), 211, 245, 300, 306 л.с.; Модели: 3 серии (E90), 5-й серии (F10), 5-й серии GT (F07), 7-й серии (F01), X5 (E70) и X6 (E71).

N57TÜ :с 2011 года, Мощность 258 или 313 л.с.; Модели: 3 серии (F30), 3-й серии GT (F34), 4 серии (F32), 5-й серии (F10), 5-й серии GT (F07), 6-й серии (F12), 7-й серии (F01), X3 (F25), Х4 (F26), X5 (F15), X6 (F16).

N57S : с 2012;. мощность 381 л.с.; Модели: M550d (F10), X5 M50d (в 2013 году на E70, а затем - F15), X6 M50d (в 2014 году на E71, а затем - F16) и 750D (F01). Двигатель оснащен тремя турбонагнетателями.

Автомобили с двигателем VW 2.5 TDI V6

Двигатель 2.5 V6 TDI имел много обозначений (например, AFB), но рассмотрим только годы производства и мощность.

Audi A4 B5 (1998-2001) - 150 л. с., B6 и B7 (2000-07) - 155, 163, 180 л. с., A6 C5 (1997-2004) - 155 и 180 л. с., A6 Allroad (2000-05) - 180 л. с. A8 D2 (1997-2002) - 150 и 180 л. с.

Skoda Superb I: 155 л. с. (2001-03) и 163 л. с. (2003-08).

Volkswagen Passat B5 (1998-2005): 150, 163 и 180 л. с.

Автомобили с двигателями VW 2.7 / 3.0 TDI V 6

Audi A4 B7 (2004-08) - 2,7 / 180 л. с., 3,0 / 204 и 233 л. с.;

A4 B8 (2008-15): 2,7 / 190 л. с. (2012), 3.0 / 204, 240, 245 л. с.;

A5: 2,7 / 190 л. с., 3,0 / 204, 240 и 245 л. с.;

А6 C 6 и Allroad (2004-11): 2,7 / 180 и 190 л.с., 3,0 / 224, 233 и 240 л.с.;

A 6 C 7 и Allroad (с 2011 года) 3.0 / 204, 218, 245, 272, 313, 320, 326 л.с.;

A7 (с 2010 года): 3,0 / 190-326 л.с.;

A8 D3 (2004-10): 3,0 / 233 л.с.;

A8 D4: 3,0 / 204-262 л.с.;

Q5 (с 2008 года): 3.0 / 240, 245, 258 л.с.;

SQ5 (с 2012 г.): 313, 326 и 340 л.с.;

Q7 (2005--15): 3,0 / 204-245 л.с.;

Q7 (с 2015 года): 3,0 / 218 и 272 л.с., и гибрид.

3.0 TDI также использовался в VW Touareg I и II, Phaeton ; Porsche Cayenne и Macan .

Автомобили BMW всегда отличало то, что их производство предусматривало широчайшую гамму устанавливаемых в них силовых агрегатов. Двигатели могли быть бензиновыми или дизельными, иметь различный рабочий объём и мощность, всё это позволяло произвести выбор конкретной машины. При этом вариаций авто с бензиновыми моторами было значительно больше, чем с дизельными агрегатами, тем не менее многие двигатели с воспламенением от сжатия требуют обратить на них особое внимание, ввиду своей удачной конструкции и высокой надежности. Отдельным таким примером служит двигатель M57.

Двигатель M57 и его отличительные особенности

Силовой агрегат был спроектирован компанией BMW и его производство начато с 1998 г. Мотор имеет несколько своих модификаций, изменения и усовершенствования вносились по мере изучения эксплуатационных качеств, причём не все внедрённые инженерные доработки одинаково сказались на надёжности агрегата.

Двигатель имеет рядную и шестицилиндровую конструкцию. Материалом блока цилиндров являлся чугун, лишь на самых последних версиях блок стали изготавливать из алюминиевого сплава для достижения низкой массы. Головка блока цилиндров выполнена из алюминия. Главной инновацией этого мотора стала система впрыска дизельного топлива «Common rail», с помощью которой удалось добиться высоких показателей работы двигателя. Система газораспределения включала работу двух распределительных валов, приводимых во вращение цепью. Объём мотора составлял 2,5 и 3 л в зависимости от модификации. Все силовые агрегаты имели систему трубонаддува, в некоторых исполнениях устанавливалось две нагнетающие турбины.

Учитывая то, что любой рядный шестицилиндровый двигатель менее всего подвержен появлению вибраций различного рода, новый M57 получился мощным, экономичным и сбалансированным мотором и именно это привело к увеличенному ресурсу службы. Пробег данного агрегата до капитального ремонта обычно превышал 500 000 км, а иногда достигал и 1 000 000 км!

Краткий список особенностей мотора M57 :

  • коленчатый вал, имеющий 12 балансиров (противовесов);
  • привод распределительных валов от одной цепи однорядного типа;
  • не прямое управление газораспределительными клапанами, а через рычаги;
  • поршни имеют особую геометрию днища, влияющие на качество топливной смеси;
  • система впрыска топлива аккумуляторного типа, под постоянным давлением в рампе;
  • электронная регулировка лопаток компрессора наддува воздуха;
  • высокий уровень сбалансированности.

Важной характеристикой всех двигателей M57 является их способность обеспечивать высокий крутящий момент при низких оборотах коленвала (точные данные зависят от модификации) и средние значения максимальных оборотов, что привело к повышению ресурса эксплуатации.

Технические характеристики некоторых модификаций моторов M57

Первые образцы агрегатов имели меньшую мощность при большей массе. По мере проведения модернизации мощностные характеристики росли, а снижение массы моторов происходило за счёт применения алюминия в качестве материала блока цилиндров.

Важно учесть то, что некоторые образцы M57 определённых модификаций могли иметь и чугунный и алюминиевый блок.

Двигатель BMW M57D25 :

  • мощность, л.с./об.мин – 163/4000;
  • рабочий объём, см3 – 2497;
  • диаметр цилиндра и ход поршня, мм – 80/80.2;
  • максимальный крутящий момент, Нм/об.мин – 350/2000–3000;
  • масса, кг – 180.

Этот мотор устанавливался на автомобили с кузовом Е39 (525d). Период установки занял интервал с 2000 по 2003 гг. Другие модификации устанавливались на машины с кузовом Е60 и Е61, (2004–2007 гг).

Двигатель BMW M57D30:

  • мощность, л.с./об.мин – 184/4000;
  • рабочий объём, см3 – 2926;
  • диаметр цилиндра и ход поршня, мм – 84/88;
  • максимальный крутящий момент, Нм/об.мин – 410/2000–3000;
  • масса, кг – 162.

Мотор устанавливался на машину с кузовом Е46 (1998-2000), модификация M57D30O0 ставилась на кузова Е38 (730d), Е53 (Х5). Последняя версия мотора стояла в Е39 (530d).

Двигатель BMW M57TUD30 :

  • мощность, л.с/об.мин – 218/4000;
  • рабочий объём, см3 – 2993;
  • максимальный крутящий момент, Нм/об.мин – 500/2000–2700;
  • масса, кг – 150.

Первая модификация этого мотора устанавливалась на кузова Е60, Е61, Е65, Е53. Более слабая вторая модификация также ставилась на кузова Е46, Е6, Е65, Е83 (Х3). Самая мощная версия с турбонаддувом двойного действия устанавливалась только на Е60 и Е61.

Двигатель BMW M57TU2D30:

  • мощность, л.с./об.мин – 197;
  • рабочий объём, см3 – 2993;
  • диаметр цилиндра и ход поршня, мм – 84/90;
  • крутящий момент, Нм/об.мин – 400/1300;
  • масса, кг – 170.

Моторы имели три модификации, отличающиеся по мощности и величине крутящего момента. Агрегаты, имеющие 193 л.с., устанавливались на такие кузова: Е90, Е91, Е92, Е93, Е60. Двигатели с мощностью 231 л.с. стояли на таких авто: Е90, Е91, Е92, Е93, Е60, Е61, Е65, Е66. Наиболее мощные модификации применяли также в машинах с кузовами Е60, Е61, Е70 и некоторых Х6.

Все моторы имели общую схему своей конструкции и вне зависимости от конкретных модификаций обладали значительным ресурсом. Отличиями служили динамические характеристики и факторы экономичности. Тем не менее моторы с повышенной мощностью, укомплектованные двумя турбокомпрессорами, являлись наиболее сложными и имели несколько меньший выбег из-за возросших нагрузок на основные детали.

Типичные неисправности силового агрегата M57

Главной проблемой этого мотора, как и остальных дизелей, является низкокачественное дизельное топливо с повышенным содержанием серы. Это, как правило, приводит к выходу из строя форсунок впрыска. Особенно это актуально в двигателях, которые выпущены позже 2003 г., так как в них устанавливали форсунки нового образца, прихотливые к качеству топлива и неремонтопригодные. Одновременно известны проблемы с топливными фильтрами, которые забиваются парафинообразными включениями, появляющимися в плохом топливе при низкой температуре.

Узлы и детали, которые могут выйти из строя по конструкционным причинам :

  • клапан рециркуляции газов;
  • гидроопоры двигателя;
  • заслонки коллектора (ослабление);
  • крышка корпуса масляного фильтра;
  • проблемы очистки картерных газов, идущих к турбине.

Подавляющее большинство проблем вызывает использование низкокачественного топлива. Прецизионная система впрыска «Common rail» требует применения топлива высокого класса, покупка неизвестной солярки приводит к преждевременному выходу из строя форсунок и ТНВД, ремонт или замена которых имеет высокую стоимость.

Двигатель M57 является классическим примером попытки создания мощного и одновременно экономичного агрегата, имеющего наилучшие физические показатели в моторах такого класса.