» » Аксиальные двигатели внутреннего сгорания. ДВС - что это такое? Двигатель внутреннего сгорания: характеристики, схема Двигатель внутреннего сгорания с противолежащей конструкцией

Аксиальные двигатели внутреннего сгорания. ДВС - что это такое? Двигатель внутреннего сгорания: характеристики, схема Двигатель внутреннего сгорания с противолежащей конструкцией

Допустим, сын спросит вас: «Папа, а какой самый-самый удивительный мотор на свете»? Что вы ему ответите? 1000-сильный агрегат от Bugatti Veyron? Или новый турбодвигатель AMG? Или мотор Volkswagen с двойным наддувом?

В последнее время появилось немало крутых изобретений, и все эти наддувы-впрыски кажутся удивительными… если не знать . Ибо самый удивительный мотор, о котором я знаю, был сделан в Советском Союзе и, как вы догадались, не для «Лады», а для танка Т-64. Он назывался 5ТДФ, и вот несколько удивительных фактов.

Он был пятицилиндровым, что само по себе необычно. У него было 10 поршней, десять шатунов и два коленчатых вала. Поршни двигались в цилиндрах в противоположных направлениях: сначала навстречу друг другу, потом обратно, снова навстречу и так далее. Отбор мощности осуществялся с обоих коленчатых валов, чтобы было удобно для танка.

Двигатель работал по двухтактному циклу, и поршни играли роль золотников, открывавших впускные и выпускные окна: то есть никаких клапанов и распредвалов у него не было. Конструкция была гениальной и эффективной – двухтактный цикл обеспечивал максимальную литровую мощность, а прямоточная продувка – высокое качество наполнение цилиндров.

Ко всему прочему 5ТДФ был дизелем с непосредственным впрыском, где топливо подавалось в пространство между поршнями незадолго до момента, когда они достигали максимального сближения. Причем, впрыск осуществлялся четырьмя форсунками по хитрой траектории, чтобы обеспечить мгновенное смесеобразование.

Но и этого мало. Двигатель имел турбокомпрессор с изюминкой – огромных размеров турбина и компрессор размещались на валу и имели механическую связь с одним из коленчатых валов. Гениально - на режиме разгона компрессор подкручивался от коленчатого вала, что исключало турбояму, а когда поток выхлопных газов как следует раскручивал турбину, мощность от нее передавалась на коленчатый вал, повышая экономичность мотора (такая турбина называется силовой).

Ко всему прочему мотор был многотопливным, то есть мог работать на дизтопливе, керосине, авиационном топливе, бензине или любой их смеси.

Плюс к этому еще полсотни необычных решений, вроде составных поршней со вставками из жаропрочной стали и системы смазки с сухим картером, как у гоночных автомобилей.

Все ухищрения преследовали две цели: сделать мотор максимально компактным, экономичным и мощным. Для танка важны все три параметра: первый облегчает компоновку, второй улучшает автономность, третий – маневренность.

И результат получился впечатляющим: при рабочем объеме 13,6 литра в самой форсированной версии мотор развивал более 1000 л.с. Для дизеля 60-х годов это был великолепный результат. По удельной литровой и габаритной мощностям мотор превосходил аналоги других армий в несколько раз. Я видел его вживую, и компоновка действительно поражает воображение – прозвище «Чемодан» ему очень идет. Я бы даже сказал «плотно набитый чемодан».

Он не прижился из-за чрезмерной сложности и дороговизны. На фоне 5ТДФ любой автомобильный мотор – даже от Bugatti Veyron – кажется каким-то до нельзя банальным. И чем черт не шутит, техника может сделать виток и снова вернуться к решениям, когда-то использованным на 5ТДФ: двухтактному дизельному циклу, силовым турбинам, многофорсуночному впрыску.

Началось же массовое возвращение к турбомоторам, которые одно время считались слишком сложными для неспортивных машин…

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.




Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.



Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.


Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.


Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт - такт впуска


Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.


Второй такт - такт сжатия


Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.


Третий такт - рабочий ход


Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.


Четвертый такт - такт выпуска


Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.


После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм


Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.


Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.


Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм


Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.




Устройство КШМ
Поршень


Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.



Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.


Блок и головка цилиндров


Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.

VR-образный
"VR" аббревиатура двух немецких слов, обозначающих V-образный и R- рядный, т.е "v-образно-рядный". Двигатель разработан компанией Volkswagen и представляет собой симбиоз V-образного двигателя с экстремально малым углом развала 15° и рядного двигателя.Его шесть цилиндров расположены V-образно под углом 15° в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни расположены в блоке в шахматном порядке. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V-образного двигателя. В результате двигатель VR6 получился существенно меньше по длине, чем рядный 6 цилиндровый, и меньше по ширине, чем обычный V-образный 6-цилиндровый двигатель. Ставился с 1991г (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы "AAA" объемом 2.8 литра, мощностью 174 л/с и "ABV" объемом 2.9 литра и мощностью 192 л/с.

Оппозитный двигатель - поршневой двигатель внутреннего сгорания , в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного , так же оппозитное расположение поршней позволяет им взаимно нейтрализовывать вибрации, благодаря чему двигатель имеет более плавную рабочую характеристику.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Kaefer (Beetle, в английском варианте) выпущенной за годы производства (с по 2003 год) в количестве 21 529 464 штук.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделях серий , GT1 , GT2 и GT3.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru , который устанавливается практически во все модели Subaru c 1963 года . Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров, но в то же время делает двигатель сложным в ремонте. Старые двигатели серии EA (EA71, EA82 (выпускались примерно до 1994 года)) славятся своей надёжностью . Более новые двигатели серии EJ, EG, EZ (EJ15, EJ18, EJ20, EJ22, EJ25, EZ30, EG33, EZ36), устанавливаемые на различные модели Subaru с 1989 года и по настоящее время (с февраля 1989 года автомобили Subaru Legacy оснащаются оппозитными дизельными двигателями вкупе с механической коробкой передач).
Также устанавливался на румынские автомобили Oltcit Club (является точной копией Citroen Axel), с 1987 по 1993 годы. В производстве мотоциклов оппозитные двигатели нашли широкое применение в моделях фирмы BMW , а также в советских тяжёлых мотоциклах «Урал» и «Днепр».

U-образный двигатель - условное обозначение силовой установки, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при помощи цепи или шестерней.
Известные примеры использования: спортивные автомобили - Bugatti Type 45 , опытный вариант Matra Bagheera ; некоторые судовые и авиационные двигатели.
U-образный двигатель с двумя цилиндрами в каждом блоке обозначается иногда как square four .

Двигатель со встречным движением поршней - конфигурация двигателя внутреннего сгорания с расположением цилиндров в два ряда один напротив другого (обычно один над другим) таким образом, что поршни расположенных друг напротив друга цилиндров движутся навстречу друг другу и имеют общую камеру сгорания. Коленвалы механически соединены, мощность отбирается с одного из них, или с обоих (например, при приводе двух гребных винтов). Двигатели этой схемы в основном двухтактные с турбонаддувом . Эта схема применяется на авиадвигателях, танковых двигателях (Т-64 , Т-80УД , Т-84 , Chieftain), двигателях тепловозов (ТЭ3 , 2ТЭ10) и больших морских судовых дизелях. Встречается и другое название этого типа двигателей - двигатель с противоположно-движущимися поршнями (двигатель с ПДП).


Принцип действия:
1 впуск
2 приводной нагнетатель
3 воздухопровод
4 предохранительный клапан
5 выпускной КШМ
6 впускной КШМ (запаздывает на ~20° относительно выпускного)
7 цилиндр со впускными и выпускными окнами
8 выпуск
9 рубашка водяного охлаждения
10 свеча зажигания

Ротативный двигатель - звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме . Подобные двигатели широко использовались во времена первой мировой войны и гражданской войны в России . На протяжений этих войн эти двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому в основном использовались именно они (в истребителях и самолетах-разведчиках) .
Звёздообразный двигатель (радиальный двигатель ) - поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашел широкое применение в авиации.
Звёздообразный двигатель отличается от других типов конструкцией кривошипно-шатунного механизма. Один шатун является основным, он похож на шатун обычного двигателя с рядным расположением цилиндров, остальные являются вспомогательными и крепятся к основному шатуну по его периферии (такой же принцип применяется в V-образных двигателях). Недостатком конструкции звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма.
Четырёхтактные звездообразные моторы имеют нечётное число цилиндров в ряду - это позволяет давать искру в цилиндрах «через один».


Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в году инженером компании NSU Вальтером Фройде , ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем , работавшим над другой конструкцией роторно-поршневого двигателя.
Особенность двигателя - применение трёхгранного ротора (поршня), имеющего вид треугольника Рело , вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде .

Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля , Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Смесеобразование, зажигание , смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Конфигурация двигателя W
Двигатель разработан компаниями Audi и Volkswagen и представляет собой два V-образно расположенных двигателя . Крутящий момент снимается с обоих коленвалов.

Роторно-лопастной двигатель внутреннего сгорания (РЛД, двигатель Вигрия́нова), конструкция которого разработана в 1973 году инженером Михаилом Степановичем Вигрияновым. Особенность двигателя - применение вращающегося сложносоставного ротора размещённого внутри цилиндра и состоящего из четырех лопастей.
Конструкция На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта (набор рабочей смеси, сжатие, рабочий ход и выброс отработанных газов). Таким образом, в рамках данной конструкции возможно реализовать любой четырехтактный цикл. (Ничто не мешает использовать данную конструкцию для работы парового двигателя, только лопастей придется использовать две вместо четырех.)


Уравновешанность двигателей


Степень уравновешенности
(зеленая ячейка- уравновешенные силы или моменты, красная -
свободные)


1


R2


R2*


V2


B2


R3


R4


V4


B4


R5


VR5


R6


V6


VR6


B6


R8


V8


B8


V10


V12


B12


Силы инерции первого
порядка

Двигатель со встречным движением поршней - конфигурация двигателя внутреннего сгорания с расположением поршней в два ряда один напротив другого в общих цилиндрах таким образом, что поршни каждого цилиндра движутся навстречу друг другу и образуют общую камеру сгорания. Коленвалы механически синхронизированы, причем выпускной вал вращается с опережением относительно впускного на 15-22°, мощность отбирается либо с одного из них, либо с обоих (например, при приводе двух гребных винтов или двух фрикционов). Компоновка автоматически обеспечивает прямоточную продувку - самую совершенную для двухтактной машины и отсутствие газового стыка.

Встречается и другое название этого типа двигателей - двигатель с противоположно-движущимися поршнями (двигатель с ПДП ).

Устройство двигателя со встречным движением поршней:

1 - впускной патрубок; 2 - нагнетатель; 3 - воздухопровод; 4 - предохранительный клапан; 5 - выпускной КШМ; 6 - впускной КШМ (запаздывает на ~20° от выпускного); 7 - цилиндр со впускными и выпускными окнами; 8 - выпуск; 9 - рубашка водяного охлаждения; 10 - свеча зажигания. изометрия

Полезная модель относится к области двигателестроения. Предложена конструкция двигателя, работающего по двухтактному циклу с наддувом и комбинированной схемой газообмена, при которой в течение первой фазы происходит продувка и наполнение цилиндра одним воздухом по обычной кривошипно-камерной схеме газообмена, при второй фазе происходит наддув цилиндра, переобогащенной в карбюраторе, сжатой в компрессоре топливной смесью через впускные окна в цилиндре, имеющие фазы впуска, превышающие фазы выпуска. Для предотвращения попадания продуктов сгорания из цилиндра в ресивер при такте расширения, окна закрыты специальным кольцом, выполняющим роль золотника, управляемым кулачком или эксцентриком на цапфе коленчатого вала, либо любого другого вала, вращающегося с ним синхронно.

Двигатель выполнен с двумя противолежащими цилиндрами, установленными на одном общем картере, и тремя коленчатыми валами, из которых один имеет два кривошипа, расположенных под углом 180° относительно друг друга. Цилиндры содержат поршни с двумя поршневыми пальцами, соединенными шатунами с кривошипами коленчатых валов, симметрично расположенных относительно оси цилиндров. Поршни состоят из головки с компрессионными кольцами и двухсторонней юбки. Нижняя часть юбки выполнена в виде фартука, прикрывающего выпускные окна при положении поршня в верхней мертвой точке (ВМТ). При положении поршня в нижней мертвой точке (НМТ) фартук размещен в зоне, занимаемой коленчатыми валами. Верхняя часть юбки при положении поршня в ВМТ входит в кольцевое пространство, расположенное вокруг камеры сгорания. Каждый цилиндр двигателя снабжен индивидуальным компрессором, поршни которых при помощи штока соединены с поршнями двигателя противолежащих цилиндров.

Экономический эффект от снижения расхода топлива при стоимости бензина 35 руб./л. будет составлять около 7 руб./кВт·ч, т.е. двигатель мощностью 20 кВт за ресурс 500 моточасов сэкономит около 70000 рублей или 2000 литров бензина.

Учитывая наличие высоких энерго-экономических показателей по мощности, массе и габаритам, обеспечиваемых применением 2-х тактного цикла, наддува, снижением на 2530% расхода топлива, при сохранении моторесурса в прежних пределах 5001000 моточасов за счет уменьшения нагрузок на шатунные подшипники коленчатых валов при их удвоении, предлагаемая конструкция двигателя в 2-х или 4-х цилиндровом исполнении мощностью в пределах 2060 кВт может найти применение в силовых установках летательных аппаратов, глиссирующих маломерных судов с движетелями в виде воздушных или гребных винтов, портативных мотоизделий, применяемых населением, в ведомствах МЧС, армии и флота, а также в других установках, где требуется малая удельная масса и габариты.

Предлагаемая полезная модель относится к области двигателестроения, в частности, к двухтактным карбюраторным двигателям внутреннего сгорания (ДВС), передающим усилия от давления газов на поршень кривошипом коленчатых валов, симметрично расположенных относительно оси цилиндра и вращающихся в противоположных направлениях.

Указанные двигатели обладают рядом преимуществ, главные из которых возможность уравновешенности сил инерции возвратно-поступательно движущихся масс за счет противовесов коленчатых валов, отсутствие сил, вызывающих повышенное трение поршня о стенки цилиндра, отсутствие реактивного крутящего момента, высокие удельные энерго-экономические параметры по мощности, массе и габаритам, сниженные нагрузки на шатунные подшипники коленчатого вала, которые, в основном, лимитируют ресурс двигателя.

Известен двухтактный карбюраторный двигатель с кривошипно-камерной схемой газообмена, содержащий цилиндр, размещенный в нем поршень с двумя поршневыми пальцами, два коленчатых вала, симметрично расположенных относительно оси цилиндра, причем, каждый из них соединен шатуном с одним из поршневых пальцев. (Двухтактный двигатель внутреннего сгорания. Патент RU 116906 U1. Беднягин Л.В., Лебединская О.Л. Бюл. 16. 2012.).

Двигатель отличается тем, что поршень выполнен в виде головки с двухсторонней юбкой, нижняя часть юбки при положении поршня в нижней мертвой точке (НМТ) размещена в зоне, занимаемой коленчатыми валами, верхняя часть юбки, при положении поршня в верхней мертвой точке (ВМТ), частично входит в кольцевое пространство, расположенное вокруг камеры сгорания, причем впускные и выпускные окна расположены на двух уровнях: впускные окна расположены над головкой поршня при его положении в НМТ, выпускные - над верхней кромкой юбки.

Известна конструкция двигателя, выполненная по схеме один цилиндр - два коленчатых вала, обеспечивающая повышение мощности за счет применения наддува (Двухтактный двигатель внутреннего сгорания с наддувом. Заявка 2012132748/06 (051906). Беднягин Л.В., Лебединская О.Л. Получена ФИПС 31.07.12), где соосно цилиндру двигателя размещен цилиндр компрессора (нагнетателя), поршень которого при помощи штока соединен с поршнем двигателя, наружная нагнетательная полость насоса соединена каналами с внутри-картерным пространством, от которого его внутренняя полость изолирована с помощью уплотняющей втулки, размещенной на штоке и зафиксированной между двух половин картера. Наружная полость компрессора обеспечивает дополнительную подачу топливной смеси в картер двигателя. Для возможности обеспечения дозарядки цилиндр двигателя оборудован дополнительными впускными (продувочными) окнами, расположенными над основными, с фазами впуска, превышающими фазы выпуска, при этом между ними в плоскости разъема цилиндра и картера размещены обратные пластинчатые клапаны, предотвращающие попадание продуктов сгоревшего топлива из цилиндра в картер, когда давление в нем превышает давление внутри картера. Указанный двигатель является прототипом предлагаемой конструкции ПМ.

Все карбюраторные двухтактные двигатели с кривошипно-камерной схемой газообмена (продувкой и наполнением цилиндра свежей топливной смесью), в том числе и прототип, обладают общим существенным недостатком - повышенным расходом топлива, связанным с потерей части топлива при продувке, осуществляемой непосредственно топливной смесью.

Работы по устранению этого недостатка практически ведутся в одном направлении - осуществлении продувки чистым воздухом и применении непосредственного впрыска топлива в цилиндр. Основная трудность, сдерживающая внедрение систем непосредственного впрыска топлива на двухтактных двигателях - высокая стоимость топливоподающей аппаратуры, которая на малоразмерных двигателях или двигателях, работающих эпизодически (например, пожарная мотопомпа), при существующих ценах не окупается за весь период их эксплуатации.

Вторая причина - проблема обеспечения работоспособности топливной аппаратуры и качества смесеобразования в связи с необходимостью двукратного увеличения частоты подачи топлива в цилиндр при использовании двухтактного цикла и дальнейшего ее увеличения с учетом тенденций роста скоростных режимов ДВС, и особенно малоразмерных, работающих по двухтактному циклу.

Однако, не следует ожидать, что создание новой, более совершенной аппаратуры для «двухтактников» повысит экономическую целесообразность ее применение на указанных выше двигателях, т.к. будет еще дороже.

Техническим результатом предлагаемой конструкции двигателя является снижение удельного расхода топлива до величины 380410 г/кВт·ч, что на 2530% ниже, чем у серийно выпускаемых двухтактных карбюраторных двигателей с кривошипно-камерной схемой газообмена (Перспективы двухтактных ДВС на ЛА авиации общего назначения. В. Новосельцев (http://www.aviajournal.com/arhiv/2004/06/02.html), при сохранении высоких энергетических и других показателей, обеспечивающих его конкурентоспособность.

Для достижения указанного результата использован комплекс конструктивных решений:

1. Применен двухтактный двигатель внутреннего сгорания, с двумя противолежащими цилиндрами, установленными на одном общем картере, обеспечивающий передачу сил от давления газов на кривошипы коленчатых валов, симметрично расположенных относительно оси цилиндров. Применение указанной схемы позволяет использовать их преимущества, указанные выше, и рационально разместить поршневые компрессоры с их приводом для осуществления наддува.

2. Для реализации двухтактного цикла работы двигателя с кривошипно-камерной продувкой и улучшения его параметров уменьшен объем кривошипной камеры, для чего применен поршень в виде головки с двухсторонней юбкой, обеспечивающий размещение нижней юбки в зоне коленчатых валов, а верхней - в зоне кольцевого пространства, расположенного вокруг камеры сгорания.

3. Цилиндры двигателя снабжены тремя комплектами окон, расположенными на различных уровнях: продувочные над днищем головки поршня, при его положении в НМТ, выпускные - над верхней кромкой юбки поршня. При этом увеличивается «время-сечение» окон, исключаются явления «короткого замыкания» - прямого выброса (топливной) смеси из выпускных окон в выпускные, снижается уровень остаточных газов, весь периметр выпускных окон становится доступным для истечения отработавших газов и почти в два раза сокращается их путь; что способствует сохранению параметров газообмена при увеличении скоростного режима двигателя. Следует также отметить, что устройство, обеспечивающее несимметричность фаз газораспределения, расположено в зоне малонагруженной термически, что выгодно отличает его от подобных устройств, работающих в каналах выпуска отработавших газов на двигателях спортивных машин.

4. Впускные окна, расположенные над продувочными, с фазами впуска, превышающими фазы выпуска, для предотвращения попадания продуктов сгорания из цилиндра в ресивер 10 при такте расширения, в отличии от прототипа, закрыты кольцом 11, выполняющим роль золотника, управляемого кулачком или эксцентриком на цапфе коленчатого вала (либо любого другого вала, вращающегося с ним синхронно).

5. Для экономии топлива предложена конструкция, обеспечивающая применение комбинированной схемы газообмена путем осуществления продувки цилиндров сначала чистым воздухом из кривошипной камеры, затем их дозарядки (наддуве) переобогащенной топливной смесью за счет применения отдельных для каждого цилиндра компрессоров.

6. Впускной тракт топливной смеси, содержащий карбюратор(ы), обратные пластинчатые клапаны (ОПК), всасывающий и нагнетательный полости компрессора, ресивер и впускные окна цилиндра, разобщен с внутри-картерным пространством, которое оборудовано своей индивидуальной системой впуска воздуха, используемого для продувки цилиндров.

7. Каждый цилиндр двигателя и компрессора выполнены в одном блоке, при этом синхронное движение их поршней в противоположных направлениях достигается наличием связи поршня компрессора с поршнем двигателя противолежащего цилиндра.

8. Необходимые направления вращения коленчатых валов и потоков продувочного воздуха обеспечено применением трех коленчатых валов, из которых один выполнен с двумя кривошипами, расположенными под углом 180° друг к другу, что обеспечивает движение поршней в противоположных направлениях.

9. Для снижения габаритов двигателя нижняя юбка поршня выполнена в виде одностороннего «фартука», обеспечивающего прикрытие выпускных окон при его положении в ВМТ.

10. Для сохранения давления в ресивере при движении поршня двигателя в направлении ВМТ нагнетательная полость компрессора отделена от него обратным пластинчатым клапаном.

Конструктивные решения, обладающие признаками, характеризующими новизну предлагаемой модели:

1. Конструкция двухтактного карбюраторного двигателя в оппозитном исполнении с двумя противолежащими цилиндрами, смонтированными на одном картере, и тремя коленчатыми валами, обеспечивающая передачу усилий от поршня на кривошипы коленчатых валов, симметрично расположенных относительно оси цилиндра (п.п.1 и 2; здесь и далее см. выше);

2. Комбинированная схема газообмена, при которой в течение первой фазы происходит продувка и наполнение цилиндра одним воздухом, во-второй - происходит наддув цилиндра переобогащенной топливной смесью (см. выше, п.5).

3. Отдельный впускной тракт топливной смеси, включающий впускные окна цилиндра, разобщенный с внутри-картерным пространством (п.6).

4. Привод поршней компрессора за счет их связи с поршнями двигателя противолежащих цилиндров (п.7), обеспечивающих движение поршней двигателя и компрессора в противоположных направлениях.

5. Поршень с нижней юбкой, выполненной в виде одностороннего «фартука» (п.9).

6. Устройство, обеспечивающее несимметричность фаз газораспределения (п.4).

7. Размещение цилиндров двигателя и компрессора в одном блоке (п.7).

Компоновка предлагаемой модели двигателя показана на чертежах: на фиг.1 дан горизонтальный разрез по осям цилиндров. На фиг.2 - вертикальный разрез А-А по осям коленчатых валов, на котором также показан редуктор, обеспечивающий кинематическую связь коленчатых валов между собой и видна возможность создания четырехцилиндровой модификации путем установки аналогичного двухцилиндрового двигателя с нижней стороны редуктора.

Цилиндры 1 содержат размещенные в них поршни 2 с двумя поршневыми пальцами, каждый из которых соединен шатуном 3 с кривошипами коленчатых валов 4, симметрично расположенных относительно оси цилиндров. Поршень состоит из головки с компрессионными кольцами и двухсторонней юбки. Нижняя часть юбки выполнена в виде одностороннего фартука, прикрывающего выпускные окна при положении поршня в ВМТ. При положении поршня в НМТ фартук размещен в зоне, занимаемой коленчатыми валами. Верхняя часть юбки при положении поршня в (ВМТ) входит в кольцевое пространство 5, расположенное вокруг камеры сгорания, которая соединена с ним тангенциальными каналами. Каждый цилиндр двигателя снабжен индивидуальным компрессором 6, выполненным в одном с ним блоке, поршни 7 которых при помощи штоков 8 связаны с поршнями двигателя противолежащих цилиндров 2.

Цилиндры двигателя оборудованы впускными окнами 9, расположенными над продувочными, с фазами впуска, превышающими фазы выпуска. Для предотвращения попадания продуктов сгорания из цилиндра в ресивер 10 при такте расширения, окна закрыты кольцом 11, выполняющим роль золотника, управляемым кулачком или эксцентриком на цапфе коленчатого вала 4 (либо любого другого вала, вращающегося с ним синхронно). Механизм управления показан на фиг.3.

Нагнетательная полость компрессора соединена каналами не с внутри-картерным пространством, а с ресивером, откуда предварительно переобогащенная в карбюраторе топливная смесь через впускные окна попадает в цилиндр, где, смешиваясь с воздухом, поступившим из картера при продувке и остаточными газами, образует рабочую топливную смесь. Между всасывающей полостью компрессора, изолированного от внутри-картерного пространства, и карбюратором установлены обратные пластинчатые клапаны (на фиг. не показаны), обеспечивающие поступление топливной смеси в компрессор. Для подачи воздуха, используемого для продувки, аналогичные клапаны установлены на картере со стороны цилиндров двигателя. Клапаны 12, установленные на выходе смеси из компрессора, предназначены для сохранения давления в ресивере при движении поршня двигателя в направлении ВМТ.

Принятая компоновка с тремя коленчатыми валами обеспечивает рациональное расположение цилиндров двигателя и компрессора для организации поступления топливной смеси из компрессора в двигатель, снижает сопротивление потоку продувочного воздуха при его перепуске из картера в цилиндр, повышает технологичность за счет изготовления цилиндров в одном блоке, без особых затрат позволяет создать четырехцилиндровую модификацию, или редуктор с валами, вращающимися в противоположных направлениях.

Таким образом, снижение удельного расхода топлива достигается за счет применения для продувки цилиндров двигателя вместо топливовоздушной смеси только одного воздуха, в который топливо для осуществления рабочего процесса поступает, в основном, после завершения процесса продувки в виде переобогащенной топливной смеси из компрессора, осуществляемого наддув, через впускные окна, когда выпускные окна закрыты верхней кромкой юбки поршня.

Поскольку трудоемкость изготовления двигателя с предлагаемой комбинированной схемой газообмена по сравнению с трудоемкостью изготовления аналогичного двигателя, выполненного с кривошипно-камерной продувкой цилиндров топливо-воздушной смесью, практически, не изменится, экономический эффект при ее использовании будет определяться только снижением потерь топлива при газообмене, которые при продувке топливной смесью составляют около 35% от общего его расхода (Г.Р. Рикардо. Быстроходные двигатели внутреннего сгорания. Гос. научно-техн. изд-во машиностроительной литературы. M. 1960. (с.180); А.Е. Юшин. Система непосредственного впрыскивания топлива в двухтактных ДВС. В сб. «Совершенствование мощностных, экономических и экологических показателей «ДВС», ВлГУ, г. Владимир, 1997., (с.215).).

Экономический эффект от применения предлагаемой конструкции двигателя с комбинированной системой газообмена, обеспечивающей снижение удельного расхода топлива по сравнению с прежней кривошипно-камерной схемой, использующей для продувки топливную смесь, при стоимости бензина 35 руб/л. будет составлять около 7 руб/кВт·ч, т.е. двигатель мощностью 20 кВт за ресурс 500 моточасов сэкономит около 70000 рублей или 2000 литров бензина. При расчетах было принято, что потери топлива при продувке уменьшатся на 80%, т.к. возможность попадания топливной смеси в выпускную систему сокращена только по продолжительности одновременного открытия впускных и выпускных окон со 125° поворота коленчатого вала до 15°. Размещение впускных и выпускных окон на разных уровнях дает основание полагать, что потери топлива сократятся еще больше или прекратятся вовсе.

Учитывая наличие высоких энерго-экономических показателей, обеспечиваемых применением двухтактного цикла, наддува, снижением на 2530% расхода топлива, при сохранении моторесурса в прежних пределах 5001000 моточасов за счет уменьшения нагрузок на шатунные подшипники коленчатых валов при их удвоении, предлагаемая конструкция двигателя в 2-х или 4-х цилиндровом исполнении мощностью в пределах 2060 кВт может найти применение в силовых установках летательных аппаратов, глиссирующих маломерных судов с движетелями в виде воздушных или гребных винтов, портативных мотоизделий, применяемых населением, в ведомствах МЧС, армии и флота, а также в других установках, где требуются малые удельная масса и габариты.

1. Двухтактный двигатель внутреннего сгорания с наддувом и комбинированной схемой газообмена, передающий усилие от давления газов на поршень одновременно двум коленчатым валам, симметрично расположенным относительно оси цилиндра, содержащий встроенные соосно с осью цилиндра компрессоры, поршни которых при помощи штока соединены с поршнями двигателя, цилиндры оборудованы впускными окнами, расположенными над продувочными, с фазами впуска, превышающими фазы выпуска, с одним общим картером, отличающийся тем, что он выполнен в двухцилиндровом оппозитном исполнении, с противоположно движущимися поршнями, с тремя коленчатыми валами, из которых один имеет два кривошипа, содержит отдельный, изолированный от кривошипной камеры впускной тракт топливной смеси, включающий карбюратор, обратные пластинчатые клапаны, компрессор со всасывающей и нагнетательной полостями и ресивер, связанный с впускными окнами цилиндра, через которые переобогащенная топливная смесь поступает в цилиндры двигателя, при этом поршни компрессора кинематически связаны с поршнями противолежащих цилиндров двигателя.