» » Детонационный жидкостный ракетный двигатель. Камеры сгорания с непрерывной детонацией

Детонационный жидкостный ракетный двигатель. Камеры сгорания с непрерывной детонацией

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси — это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно — им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации — 8 тысяч оборотов в секунду на смеси «кислород — керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

Российская Федерация первой в мире провела успешные испытания детонационного жидкостного ракетного двигателя. Новую силовую установку создали в НПО «Энергомаш». Это успех для российской ракетно-космической отрасли, заявил корреспонденту Федерального агентства новостей научный обозреватель Александр Галкин .

Как сообщается на официальном сайте Фонда перспективных исследований, в новом двигателе тяга создается за счет контролируемых взрывов при взаимодействии топливной пары кислород-керосин.

«Значение успеха этих испытаний для опережающего развития отечественного двигателестроения трудно переоценить […] За ракетными двигателями такого рода будущее», - сообщил заместитель генерального директора и главный конструктор НПО «Энергомаш» Владимир Чванов.

Необходимо отметить, что к успешному испытанию новой силовой установки, инженеры предприятия шли последние два года. Исследовательские работы проводили ученые Новосибирского института гидродинамики им. М.А.Лаврентьева Сибирского отделения РАН и Московского авиационного института.

«Я думаю, что это новое слово в ракетной отрасли, и надеюсь, что оно окажется полезным для российской космонавтики. «Энергомаш» у нас сейчас единственная структура, которая разрабатывает ракетные двигатели и успешно ими торгует. Недавно они сделали для американцев двигатель РД-181, который по совокупной мощности слабее, нежели зарекомендовавший себя РД-180. Но дело то в том, что наметилось новое веяние в двигателестроении - уменьшение веса бортового оборудования космических кораблей приводит к тому, что двигатели становятся менее мощными. Это происходит за счет снижения выводимого веса. Так что надо пожелать успехов ученым и инженерам «Энергомаша», который работает, и что-то у него получается. Есть у нас еще головы креативные», - уверен Александр Галкин.

Необходимо отметить, что сам принцип создания реактивной струи за счет контролируемых взрывов может поднимать вопрос о безопасности будущих полетов. Однако переживать не стоит, так как ударная волна закручивается в камере сгорания двигателя.

«Уверен, систему гашения вибраций для новых двигателей придумают, потому что в принципе, традиционные ракеты-носители, которые разрабатывались еще Сергее Павловиче Королеве и Валентине Петровиче Глушко , тоже давали сильную вибрацию на корпус корабля. Но ведь как-то победили же, нашли способ погасить колоссальную тряску. Вот и здесь все будет так же», - заключает эксперт.

В настоящее время сотрудники НПО «Энергомаш» проводят дальнейшие изыскания по работе над стабилизацией тяги и уменьшением нагрузок на несущую конструкцию силовой установки. Как отмечают на предприятии, работа топливной пары кислород-керосин и сам принцип создания подъемной силы обеспечивает меньший расход топлива при большей мощности. В будущем начнутся испытания полноразмерной модели, и, возможно, его будут использовать для выведения на орбиту планеты полезных грузов или даже космонавтов.

ООО «Аналог» было организовано в 2010 году для производства и эксплуатации придуманной мной конструкции опрыскивателей для полей, идея которого закреплена Патентом РФ на полезную модель № 67402 в 2007 году.

Теперь, мною же разработана концепция роторного ДВС, в котором возможна организация детонационного (взрывного) сжигания поступающего топлива с повышенным выделением (примерно в 2 раза) энергии давления и температуры отработавших газов с сохранением работоспособности двигателя. Соответственно, с увеличением, примерно в 2 раза, КПД теплового двигателя, т.е. примерно до 70%. Реализация этого проекта требует больших финансовых затрат на его проектирование, подбор материалов и изготовление опытного образца. А по характеристикам и применимости, это двигатель, более всего, авиационный, а также, вполне применимый для автомобилей, самоходной техники и т.д., т.е. является необходимым на современном этапе развития техники и требований экологии.

Главными его преимуществами будут простота конструкции, экономичность, экологичность, высокий крутящий момент, компактность, низкий уровень шума даже без использования глушителя. Защитой от копирования будут его высокая технологичность и специальные материалы.

Простота конструкции обеспечивается его роторной конструкцией, в которой все детали двигателя совершают простое вращательное движение.

Эклологичность и экономичность обеспечивается 100%-ным мгновенным сгоранием топлива в прочной, высокотемпературной (порядка 2000 гр С), неохлаждаемой, отдельной камере сгорания, запираемой на это время клапанами. Охлаждение такого двигателя предусмотрени изнутри (охлаждение рабочего тела) любыми, необходимыми для этого, порциями воды, поступающими в рабочую секцию перед выстрелом очередных порций рабочего тела (газов горения) из камеры сгорания, с получением при этом, дополнительного давления водяного пара и полезной работы на рабочем валу.

Высокий крутящий момент даже на малых оборотах обеспечивается (сравнительно с поршневым ДВС), большим и постоянного размера плечом воздействия рабочего тела на рабочую лопатку. Этот фактор позволит для любого наземного транспорта обойтись без сложной и дорогой трансмиссии или, как минимум, существенно её упростить.

Несколько слов о его конструкции и работе.

ДВС имеет цилиндрическую форму с двумя роторно-лопаточными секциями, одна из которых служит для впуска и предварительного сжатия топливо-воздушной смеси и представляет собой известную и работоспособную секцию обычного роторного компрессора; другая, рабочая, представляет собой модернизированную ротационную паровую машину Марциневского; а между ними находится статичный массив прочного термостойкого материала, в котором выполнена отдельная, запираемая на время горения, камера сгорания с тремя невращающимися клапанами, 2 из которых свободные, по типу лепестковых, и один управляемый для стравливания давления перед впуском очередной порции ТВС.

При работе двигателя поворачивается рабочий вал с роторами и лопатками. Во входной секции лопатка засасывает и сжимает ТВС и, при увеличении давления выше давления камеры сгорания (после стравливания из неё давления) рабочая смесь загоняется в горячую (порядка 2000 гр С) камеру, поджигается искрой, мгновенно взрывается. При этом, впускной клапан закрывается, открывается выпускной клапан, а перед его открытием в рабочую секцию впрыскивается необходимое количество воды. Получается, что, в рабочую секцию выстреливаются под большим давлением сверхгорячие газы, а там порция воды, которая превращается в пар и парогазовая смесь приводит во вращение ротор двигателя, одновременно охлаждая его. По имеющейся информации уже есть материал, способный длительно выдерживать температуру до 10000 гр С, из которого нужно сделать камеру сгорания.

В мае 2018 г подана Заявка на изобретение. Заявка сейчас в стадии рассмотрения по существу.

Данная заявка на инвестиции подаётся для обеспечения финансирования НИОКР, создания опытного образца, его доводки и настройки до получения работоспособного образца данного двигателя. По времени этот процесс может занять год-два. Финансирование вариантов дальнейшей разработки модификаций двигателя для различной техники могут и должны будут разрабатываться отдельно под конкретные её образцы.

Дополнительные сведения

Реализация этого проекта - это проверка изобретения практикой. Получение работоспособного опытного образца. Полученный материал можно предложить всей отечественной машиностроительной отрасли для разработки моделей транспортных средств с эффективным ДВС на основе договоров с разработчиком и уплатой комиссионных сборов.

Можно выбрать своё, наиболее перспективное направления проектирования ДВС, скажем авиационное моторостроение для СЛА и предлагать выпускаемый двигатель, а также устанавливать этот ДВС на собственную разработку СЛА, опытный образец которого находится в стадии сборки.

Необходимо отметить что рынок личных самолётов в мире только начал развиваться, а у нас в стране он находится в зачаточном состоянии. И, в т.ч. именно, отсутствие подходящего ДВС сдерживает его развитие. А в нашей стране, с её бескрайними просторами, такая авиация будет востребована.

Аналитика рынка

Реализация проекта - это получение принципиально нового и крайне перспективного ДВС.

Сейчас упор идёт на экологию, и в качестве альтернативы поршневому ДВС предлагается электродвигатель, но ведь эту необходимую для него энергию нужно где-то выработать, накопить для него. Львиная доля электроэнергии вырабатывается на ТЭС, далеко не экологичных, что приведёт к значительным загрязнениям в местах их расположения. А срок службы накопителей энергии не превышает 2-х лет, где хранить этот вредный хлам? Результат предлагаемого проекта - эффектиыный и безвредный и, что не менее важно, удобный и привычный ДВС. Нужно только залить низкосортное топливо в бак.

Результат проекта - это перспектива замены всех поршневых двигателей в мире именно на такой. Это перспектива использовать могучую энергию взрыва в мирных целях, а конструктивное решение для этого процесса в ДВС предлагается впервые. Тем более что это сравнительно недорого.

Уникальность проекта

Это изобретение. Конструкция, позволяющая использовать детонацию в двигателе внутреннего сгорания предлагается впервые.

Во все времена, одной из главных задач конструирования ДВС было приблизиться к условиям детонационного горения, но не допускать её возникновения.

Каналы монетизации

Продажа лицензий на право производства.

1

Рассмотрена проблема разработки ротационных детонационных двигателей. Представлены основные типы таких двигателей: ротационный детонационный двигатель Николса, двигатель Войцеховского. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Показано, что современные концепции ротационного детонационного двигателя не могут в принципе привести к созданию работоспособной конструкции, превосходящей по своим характеристикам существующие воздушно-реактивные двигатели. Причиной является стремление конструкторов объединить в один механизм генерацию волны, горение топлива и эжекцию топлива и окислителя. В результате самоорганизации ударно-волновых структур детонационное горение осуществляется в минимальном, а не максимальном объеме. Реально достигнутый сегодня результат – детонационное горение в объеме, не превышающем 15 % объема камеры сгорания. Выход видится в ином подходе – сначала создается оптимальная конфигурация ударных волн, а уже затем в эту систему подаются компоненты топлива и организуется оптимальное детонационное горение в большом объеме.

детонационный двигатель

ротационный детонационный двигатель

двигатель Войцеховского

круговая детонация

спиновая детонация

импульсный детонационный двигатель

1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е., Структура фронта детонации в газах. – Новосибирск: Изд-во СО АН СССР, 1963.

2. Усков В.Н., Булат П.В. О задаче проектирования идеального диффузора для сжатия сверхзвукового потока // Фундаментальные исследования. – 2012. – № 6 (ч. 1). – С. 178–184.

3. Усков В.Н., Булат П.В., Продан Н.В. История изучения нерегулярного отражения скачка уплотнения от оси симметрии сверхзвуковой струи с образованием диска Маха // Фундаментальные исследования. – 2012. – № 9 (ч. 2). – С. 414–420.

4. Усков В.Н., Булат П.В., Продан Н.В. Обоснование применения модели стационарной Маховской конфигурации к расчету диска Маха в сверхзвуковой струе // Фундаментальные исследования. – 2012. – № 11 (ч. 1). – С. 168–175.

5. Щелкин К.И. Неустойчивость горения и детонации газов // Успехи физических наук. – 1965. – Т. 87, вып. 2.– С. 273–302.

6. Nichols J.A., Wilkmson H.R., Morrison R.B. Intermittent Detonation as a Trust-Producing Mechanism // Jet Propulsion. – 1957. – № 21. – P. 534–541.

Ротационные детонационные двигатели

Все виды ротационных детонационных двигателей (RDE) роднит то, что система подачи топлива объединена с системой сжигания топлива в детонационной волне, но дальше все работает, как в обычном реактивом двигателе - жаровая труба и сопло. Именно этот факт и инициировал такую активность на ниве модернизации газотурбинных двигателей (ГТД). Представляется привлекательным заменить в ГТД только смесительную головку и систему розжига смеси. Для этого нужно обеспечить непрерывность детонационного горения, например, запустив волну детонации по кругу. Одним из первых такую схему предложил Николс в 1957 г. , а затем развил ее и в середине 60-х годов провел серию экспериментов с вращающейся детонационной волной (рис. 1).

Регулируя диаметр камеры и толщину кольцевого зазора, для каждого вида топливной смеси можно подобрать такую геометрию, что детонация будет устойчивой. На практике соотношения величины зазора и диаметра двигателя получаются неприемлемыми и регулировать скорость распространения волны приходится, управляя подачей топлива, о чем сказано ниже.

Так же как и в импульсных детонационных двигателях, круговая детонационная волна способна эжектировать окислитель, что позволяет использовать RDE при нулевых скоростях. Этот факт повлек за собой шквал экспериментальных и расчетных исследований RDE c кольцевой камерой сгорания и самопроизвольной эжекцией топливно-воздушной смеси, перечислять здесь которые не имеет никакого смысла. Все они построены примерно по одной схеме (рис. 2), напоминающей схему двигателя Николса (рис. 1).

Рис. 1. Схема организации непрерывной круговой детонации в кольцевом зазоре: 1 - детонационная волна; 2 - слой «свежей» топливной смеси; 3 - контактный разрыв; 4 - распространяющийся вниз по течению косой скачок уплотнения; D - направление движения детонационной волны

Рис. 2. Типичная схема RDE: V - скорость набегающего потока; V4 - скорость потока на выходе из сопла; а - свежая ТВС, b - фронт детонационной волны; c - присоединенный косой скачок уплотнения; d - продукты сгорания; p(r) - распределение давления на стенке канала

Разумной альтернативой схеме Николса могла бы стать установка множества топливно-окислительных форсунок, которые бы вспрыскивали топливно-воздушную сместь в область непосредственно перед детонационной волной по определенному закону с заданным давлением (рис. 3). Регулируя давление и скорость подачи топлива в область горения за детонационной волной, можно влиять на скорость ее распространения вверх по потоку. Данное направление является перспективным, но основная проблема в проектировании подобных RDE заключается в том, что повсеместно используемая упрощенная модель течения во фронте детонационного горения совершенно не соответствует реальности.

Рис. 3. RDE с регулируемой подачей топлива в область горения. Ротационный двигатель Войцеховского

Основные надежды в мире связываются с детонационными двигателями, работающими по схеме ротационного двигателя Войцеховского. В 1963 г. Б.В. Войцеховский по аналогии со спиновой детонацией разработал схему непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале (рис. 4).

Рис. 4. Схема Войцеховского непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале: 1 - свежая смесь; 2 - дважды сжатая смесь за тройной конфигурацией ударных волн, область детонации

В данном случае стационарный гидродинамический процесс с горением газа за ударной волной отличается от схемы детонации Чепмена-Жуге и Зельдовича-Неймана. Такой процесс вполне устойчив, его длительность определяется запасом топливной смеси и в известных экспериментах составляет несколько десятков секунд.

Схема детонационного двигателя Войцеховского послужила прототипом многочисленных исследований ротационных и спиновых детонационных двигателей, инициированных в последние 5 лет. На эту схему приходится более 85 % всех исследований. Всем им присущ один органический недостаток - зона детонации занимает слишком маленькую часть общей зоны горения, обычно не более 15 %. В результате удельные показатели двигателей получаются хуже, чем у двигателей традиционной конструкции.

О причинах неудач с реализацией схемы Войцеховского

Большинство работ по двигателям с непрерывной детонацией связано с развитием концепции Войцеховского. Несмотря на более чем 40-летнюю историю исследований, результаты фактически остались на уровне 1964 г. Доля детонационного горения не превышает 15 % от объема камеры сгорания. Остальное - медленное горение в условиях, далеких от оптимальных.

Одной из причин такого положения дел является отсутствие работоспособной методики расчета. Поскольку течение является трехмерным, а при расчете учитываются только законы сохранения количества движения на ударной волне в перпендикулярном к модельному фронту детонации направлении, то результаты расчета наклона ударных волн к потоку продуктов сгорания отличаются от экспериментально наблюдаемых более чем на 30 %. Следствием является то, что, несмотря на многолетние исследования различных систем подачи топлива и эксперименты по изменению соотношения компонентов топлива, все, что удалось сделать, - это создать модели, в которых детонационное горение возникает и поддерживается в течение 10-15 с. Ни об увеличении КПД, ни о преимуществах по сравнению с существующими ЖРД и ГТД речи не идет.

Проведенный авторами проекта анализ имеющихся схем RDE показал, что все предлагающиеся сегодня схемы RDE неработоспособны в принципе. Детонационное горение возникает и успешно поддерживается, но только в ограниченном объеме. В остальном объеме мы имеем дело с обычным медленным горением, причем за неоптимальной системой ударных волн, что приводит к значительным потерям полного давления. Кроме того, давление оказывается также ниже в разы, чем необходимо для идеальных условий горения при стехиометрическом соотношении компонентов топливной смеси. В результате удельный расход топлива на единицу тяги оказывается на 30-40 % выше, чем у двигателей традиционных схем.

Но самой главной проблемой является сам принцип организации непрерывной детонации. Как показали исследования непрерывной круговой детонации, выполненные еще в 60-е годы , , фронт детонационного горения представляет собой сложную ударно-волновую структуру, состоящую как минимум из двух тройных конфигураций (о тройных конфигурациях ударных волн . Такая структура с присоединенной зоной детонации, как и любая термодинамическая система с обратной связью, оставленная в покое, стремится занять положение, соответствующее минимальному уровню энергии. В результате тройные конфигурации и область детонационного горения подстраиваются друг под друга так, чтобы фронт детонации перемещался по кольцевому зазору при минимально возможном для этого объеме детонационного горения. Это прямо противоположно той цели, которую ставят перед детонационным горением конструкторы двигателей.

Для создания эффективного двигателя RDE необходимо решить задачу создания оптимальной тройной конфигурации ударных волн и организации в ней зоны детонационного сжигания. Оптимальные ударно-волновые структуры необходимо уметь создавать в самых разных технических устройствах, например, в оптимальных диффузорах сверхзвуковых воздухозаборников . Основная задача - максимально возможное увеличение доли детонационного горения в объеме камеры сгорания с неприемлемых сегодняшних 15 % до хотя бы 85 %. Существующие проекты двигателей, основанные на схемах Николса и Войцеховского, не могут обеспечить выполнения данной задачи.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. РОТАЦИОННЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1672-1675;
URL: http://fundamental-research.ru/ru/article/view?id=32642 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Испытания детонационного двигателя

Фонд перспективных исследований

Научно-производственное объединение «Энергомаш» провело испытания модельной камеры жидкостного детонационного ракетного двигателя, тяга которого составила две тонны. Об этом в интервью «Российской газете» заявил главный конструктор «Энергомаша» Петр Левочкин. По его словам, эта модель работала на керосине и газообразном кислороде.

Детонацией называется такое горение какого-либо вещества, в котором фронт горения распространяется быстрее скорости звука. При этом по веществу распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла. В современных ракетных двигателях сгорание топлива происходит с дозвуковой скоростью; такой процесс называется дефлаграцией.

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. В импульсных двигателях происходят короткие взрывы по мере сгорания небольших порций топливо-воздушной смеси. В ротационных же горение смеси происходит постоянно без остановки.

В таких силовых установках используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Новый российский жидкостный детонационный двигатель разрабатывается совместно несколькими институтами, включая МАИ, Институт гидродинамики имени Лаврентьева, «Центр Келдыша», Центральный институт авиационного моторостроения имени Баранова и Механико-математический факультет МГУ. Разработку курирует Фонд перспективных исследований.

По словам Левочкина, во время испытаний давление в камере сгорания детонационного двигателя составило 40 атмосфер. При этом установка надежно работала без сложных систем охлаждения. Одной из задач испытаний было подтверждение возможности детонационного горения кислородно-керосиновой топливной смеси. Ранее сообщалось, что частота детонации в новом российском двигателе составляет 20 килогерц.

Первые испытания жидкостного детонационного ракетного двигателя летом 2016 года. Испытывался ли с тех пор двигатель еще раз, неизвестно.

В конце декабря 2016 года американская компания Aerojet Rocketdyne контракт Национальной лаборатории энергетических технологий США на разработку новой газотурбинной энергетической установки на базе ротационного детонационного двигателя. Работы, по итогам которых будет создан прототип новой установки, планируется завершить к середине 2019 года.

По предварительной оценке, газотурбинный двигатель нового типа будет иметь по меньшей мере на пять процентов лучшие характеристики, чем обычные такие установки. При этом сами установки можно будет сделать компактнее.

Василий Сычёв