» » Испытания детонационного жидкостного ракетного двигателя. Фундаментальные исследования

Испытания детонационного жидкостного ракетного двигателя. Фундаментальные исследования

Детонационный двигатель часто рассматривают как альтернативу стандартному двигателю внутреннего сгорания или ракетному. Он оброс множеством мифов и легенд. Рождаются и живут эти легенды только по тому, что распространяющие их люди или забыли школьный курс физики, или вообще прогуляли его полностью!

Рост удельной мощности или тяги

Заблуждение первое.

Из роста скорости сгорания топлива вплоть до 100 раз, можно будет поднять удельную (в расчете на единице рабочего объема) мощность двигателя внутреннего сгорания. Для работающих на детонационных режимах ракетных двигателей в 100 раз вырастит тяга на единицу массы.

Примечание: Как всегда, не понятно о какой массе идет речь — о массе рабочего тела или всей ракеты в целом.

Связи между тем с какой скоростью горит топливо и удельной мощностью нет вообще никакой.

Есть связь между степенью сжатия и удельной мощностью. Для бензиновых двигателей внутреннего сгорания степень сжатия около 10. В двигателях, использующих детонационный режим, ее можно увечить приблизительно в 2 раза, что как раз реализуется в дизельных двигателях, которые имеют степень сжатия уже около 20. Собственно работают в режиме детонации. То есть, конечно, степень сжатия повысить можно, но после того как произошла детонация, это никому не нужно! Ни о каких 100 раз не может быть и речи!! Более того, рабочий объем ДВС, скажем, 2л, объем всего двигателя литров 100 или 200. Экономия по объему составит 1%!!! А вот дополнительный «расход»(толщина стенок, новые материалы и тд) будет мериться не в процентах, а в разах или десятках раз!!

Для справки. Произведенная работа пропорционально, грубо говоря, V*P (у адиабатического процесса присутствуют коэффициенты, но сути сейчас не меняет). Если объем уменьшить в 100 раз, значит начальное давление должна вырасти в те же 100 раз! (чтобы произвести такую же работу).

Литровую мощность можно поднять если вообще отказаться от сжатия или оставить его на том же уровне, но подавать углеводороды (в большем количестве) и чистый кислород в весовом соотношении около 1:2,6-4, в зависимости от состава углеводородов, или вообще жидкий кислород (где уже это было:-)). Тогда можно и литровую мощность повысить, и КПД (за счет роста «степени расширения» которая может достигать 6000!). Но на пути стоит как способность камеры сгорания выдержать такие давления и температуры, так и необходимость «питаться» не атмосферным кислородом, а запасенным чистым или вообще жидким кислородом!

Собственно некое подобие этого — использование закиси азота. Закись азота — это просто способ поставить повышенное количество кислорода в камеру сгорания.

Но никакого отношения к детонации эти способы не имеют!!

Можно предложить дальнейшее развитие таких экзотических способов повышения литровой мощности — использовать вместо кислорода фтора. Это более сильный окислитель, т.е. реакции с ним идут с большим выделением энергии.

Увеличение скорости истечения реактивной струи

Залужение второе.
В двигателях ракет, использующих детонационные режимы работы, в результате того, что режим сгорания происходит на скоростях выше скорости звука в данной среде (которая зависит от температуры и давления), в камере сгорания параметры давления и температуры увеличиваются в несколько раз, повышается скорость выходящей реактивной струи. Это пропорционально улучшает все параметры подобного двигателя, в том числе, снижает его массу и расход, а значит и необходимый запас топлива.

Как уже отмечалось выше нельзя повысить степень сжатия более чем в 2 раза. Но опять-таки скорость истечения газов зависит от подведенной энергии и их температуры! (Закон сохранения энергии). При том же количестве энергии (том же количестве топлива) повысить скорость можно только понизив их температуру. Но этому уже препятствуют законы термодинамики.

Детонационные ракетные двигатели — будущее межпланетных полетов

Заблуждение третье.

Только ракетные двигатели на детонационных технологиях позволяют получить скоростные параметры требуемые для межпланетных перелетов на основе химической реакции окисления.

Ну это заблуждение хотя бы логически последовательное. Вытекает из первых двух.

Никакие технологии не способны ничего уже выжать из реакции окисления! По крайней мере для известных веществ. Скорость истечения определяется энергетическим балансом реакции. Часть этой энергии, согласно законам термодинамики, можно перевести в работу (кинетическую энергию). Т.е. даже если вся энергия перейдет в кинетическую, то это предел на основе закона сохранения энергии и никакими детонациями, степенями сжатия и тд его нельзя преодолеть.

Кроме энергетического баланса очень важный параметр — «энергия на нуклон». Если сделать небольшие расчеты, то можно получить что реакция окисления атома углерода(C) дает в 1,5 раза больше энергии чем реакция окисления молекулы водорода (H2). Но из-за того что продукт окисления углерода (СО2) в 2,5 раза тяжелее продукта окисления водорода (Н2О), скорость истечения газов из водородных двигателей на 13%. Правда, надо еще учитывать теплоемкость продуктов горения, но это дает совсем небольшую поправку.

Испытания детонационного двигателя

FPI_RUSSIA / Vimeo

Специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» провела испытания первых в мире полноразмерных демонстраторов технологий детонационного жидкостного ракетного двигателя. Как сообщает ТАСС, новые силовые установки работают на топливной паре кислород-керосин.

Новый двигатель, в отличие от других силовых установок, работающих по принципу внутреннего сгорания, функционирует за счет детонации топлива. Детонацией называется сверхзвуковое горение какого-либо вещества, в данном случае топливной смеси. При этом по смеси распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Первые такие работы начались еще в Германии в 1940-х годах. Правда тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1».

В пульсирующих воздушно-реактивных двигателях топливо сгорало с дозвуковой скоростью. Такое горение называется дефлаграцией. Пульсирующим двигатель называется потому, что в его камеру сгорания топливо и окислитель подавались небольшими порциями через равные промежутки времени.


Карта давления в камере сгорания ротационного детонационного двигателя. A - детонационная волна; B - задний фронт ударной волны; C - зона смешения свежих и старых продуктов горения; D - область заполнения топливной смесью; E - область несдетонировавшей сгоревшей топливной смеси; F - зона расширения со сдетонировавшей сгоревшей топливной смесью

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания.

В ротационных детонационных двигателях используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Все детонационные двигатели, испытывавшиеся до сих пор, разрабатывались для экспериментальных самолетов. Испытанная в России такая силовая установка является первой, предназначенной для установки на ракету. Какой именно тип детонационного двигателя прошел испытания, не уточняется.

Испытания детонационного двигателя

Фонд перспективных исследований

Научно-производственное объединение «Энергомаш» провело испытания модельной камеры жидкостного детонационного ракетного двигателя, тяга которого составила две тонны. Об этом в интервью «Российской газете» заявил главный конструктор «Энергомаша» Петр Левочкин. По его словам, эта модель работала на керосине и газообразном кислороде.

Детонацией называется такое горение какого-либо вещества, в котором фронт горения распространяется быстрее скорости звука. При этом по веществу распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла. В современных ракетных двигателях сгорание топлива происходит с дозвуковой скоростью; такой процесс называется дефлаграцией.

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. В импульсных двигателях происходят короткие взрывы по мере сгорания небольших порций топливо-воздушной смеси. В ротационных же горение смеси происходит постоянно без остановки.

В таких силовых установках используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Новый российский жидкостный детонационный двигатель разрабатывается совместно несколькими институтами, включая МАИ, Институт гидродинамики имени Лаврентьева, «Центр Келдыша», Центральный институт авиационного моторостроения имени Баранова и Механико-математический факультет МГУ. Разработку курирует Фонд перспективных исследований.

По словам Левочкина, во время испытаний давление в камере сгорания детонационного двигателя составило 40 атмосфер. При этом установка надежно работала без сложных систем охлаждения. Одной из задач испытаний было подтверждение возможности детонационного горения кислородно-керосиновой топливной смеси. Ранее сообщалось, что частота детонации в новом российском двигателе составляет 20 килогерц.

Первые испытания жидкостного детонационного ракетного двигателя летом 2016 года. Испытывался ли с тех пор двигатель еще раз, неизвестно.

В конце декабря 2016 года американская компания Aerojet Rocketdyne контракт Национальной лаборатории энергетических технологий США на разработку новой газотурбинной энергетической установки на базе ротационного детонационного двигателя. Работы, по итогам которых будет создан прототип новой установки, планируется завершить к середине 2019 года.

По предварительной оценке, газотурбинный двигатель нового типа будет иметь по меньшей мере на пять процентов лучшие характеристики, чем обычные такие установки. При этом сами установки можно будет сделать компактнее.

Василий Сычёв

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси — это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно — им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации — 8 тысяч оборотов в секунду на смеси «кислород — керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давление при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.

В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси – это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.

На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной для понимания процессов, происходящих внутри и для этого была создана целая наука — физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.
В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно – им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации – 8 тысяч оборотов в секунду на смеси «кислород – керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

Видео: «Энергомаш» первым в мире испытал детонационный жидкостный ракетный двигатель