» » It технологии в процессе производства автомобиля. Инновации в автомобилестроении: машины будущего, о которых грезили фантасты

It технологии в процессе производства автомобиля. Инновации в автомобилестроении: машины будущего, о которых грезили фантасты

– одна из первых отраслей, где 3D-технологии нашли коммерческое применение: еще в 1988 год концерн Ford начал использовать 3D-принтеры для печати отдельных элементов прототипов.

Сегодня этот сектор экономики по максимуму использует достижения аддитивных технологий и 3D-сканирования. Трехмерная печать является идеальным способом создания прототипов , функциональных деталей и узлов, а также оснастки и пресс-форм. Она позволяет сэкономить время и деньги на стадиях разработки продукта и литья, обеспечивая изготовление геометрически сложных деталей с высокой детализацией. 3D-сканеры и специализированное программное обеспечение на новом уровне решают задачи контроля геометрии и реверс-инжиниринга , сокращая сроки производства автомобилей, способствуя повышению качества продукции и уменьшению процента брака.

Некоторые крупные автопроизводители уже наладили серийное изготовление на 3D-принтерах компонентов для своих классических моделей или кастом-каров. Лидеры рынка вкладывают огромные средства в создание центров аддитивных технологий для опытно-экспериментального производства. Такой центр, есть, к примеру, у BMW – он производит более 100 тысяч компонентов в год, а в 2019 году планируется открытие еще одного крупного комплекса.

Завод Nissan в Санкт-Петербурге: изготовленные на 3D-принтере детали (белые на фото) используются для фиксации крышки багажника. Фото: «Ведомости» / Nissan

Развитие технологий 3D-печати и разработка новых материалов с улучшенными физическими свойствами также позволяют внедрять радикально новые, инновационные идеи. Так, технология «безвоздушных» шин Michelin Visionary Concept с возможностью изменить рисунок протектора в зависимости от погоды исключает проколы, проблему низкого давления и другие риски при вождении.

Возможно, полностью напечатанный на 3D-принтере автомобиль – реальность не столь отдаленного будущего. Однако все вышеперечисленное – достижения западных автопроизводителей. А какова ситуация и перспективы развития аддитивных технологий в России? В этой статье мы остановимся на преимуществах 3D-печати , рассмотрим вопрос применения инноваций на отечественном авторынке, а также практические примеры внедрения.

Как 3D-печать используется в автомобилестроении

Аддитивные технологии эффективно решают следующие задачи автомобильного производства:

  • создание функциональных прототипов;
  • создание выжигаемых и выплавляемых моделей для литья ;
  • производство оснастки и пресс-форм;
  • мелкосерийное производство.

Прототипирование позволит оптимизировать производство тем предприятиям, которые занимаются выпуском автомобилей (но не сборкой готовых моделей), а также производителям автокомпонентов, поставляемых на конвейер.

Средствами топологической оптимизации проектировщик может задать практически любую необходимую геометрию детали и вносить изменения в дизайн на более поздних этапах разработки. 3D-модель передается из САПР на 3D-принтер, который в короткие сроки печатает прототипы, оснастку или пресс-формы для литья изделий . Тем самым сокращаются расходы на производство, сроки разработки продукта и его вывода на рынок. В частности, предприятие может наладить оперативное изготовление компонентов, приурочив его к выпуску автомобиля.

Благодаря 3D-печати завод Nissan в Санкт-Петербурге сэкономил в 2017 году более 1 млн рублей, не заказывая производство оснастки на стороне

Оснастку и изделия, которые отвечают необходимым прочностным характеристикам, можно выпускать непосредственно на заводе, имея всего лишь один 3D-принтер. Он будет печатать различные по номенклатуре детали, что невозможно при использовании станков и других традиционных инструментов.

Технологии, в основном применяемые для прототипирования:

  • FDM (моделирование методом послойного наплавления);
  • SLS (селективное лазерное спекание).

Оснастка и пресс-формы, которые печатаются из пластиков и фотополимерной смолы , будут в разы дешевле металлических.

Изготавливать функциональные изделия можно и на металлических 3D-принтерах (например, по SLM-технологии). 3D-печать металлом также подходит при выпуске небольших партий, в том числе при создании кастомизированных продуктов. Новейшие разработки в области металлических порошков открыли путь к изготовлению более легких, более плотных, а в отдельных случаях – более прочных деталей. Благодаря топологической оптимизации на 3D-принтере можно выращивать компоненты сложной формы и фактуры (с ячеистой структурой, внутренними каналами и т.п.), в том числе цельнометаллические, которые раньше собирались из нескольких элементов.

Западный опыт: цифры и факты

Команда Renault Sport Formula One одной из первых стала применять 3D-печать для прототипирования. Сегодня небольшой группе инженеров предоставлена возможность производить сотни деталей в неделю для испытаний в аэродинамической трубе, разрабатывать инновационные детали для проведения испытаний и установки на болиды и в целом ускорить процесс НИОКР. Благодаря технологиям SLA и SLS от 3D Systems изготовление сложных автомобильных деталей занимает не недели, а всего несколько часов.

BMW одной из первых среди автомобильных компаний напечатала на 3D-принтере партию из нескольких тысяч металлических деталей для модели BMW i8 Roadster. Мягкая складная крыша этого родстера имеет изготовленный аддитивным способом компонент из алюминиевого сплава с инновационным бионическим дизайном, повторяющим природные формы. Новое изделие имеет более высокую степень жесткости по сравнению с аналогом, который производился методом литья под давлением, а также меньший вес.

Компания Steeda Autosports , крупнейший производитель аксессуаров для Ford, использует технологию полноцветной 3D-печати для создания прототипов разнообразных компонентов – от колпачка масленки до литых труб системы холодного впуска. Результат: срок выхода продукта на рынок сокращается на несколько недель, и на каждом изделии экономится 3000 долларов за счет снижения расходов на мехобработку и создание литейных форм.

Michelin производит на металлических 3D-принтерах вставку в пресс-форму для разделителя ламелей – самых изнашиваемых элементов покрышки. Выбор новой технологии, вместо применявшихся ранее штамповки и фрезеровки, обусловлен мелкозернистой структурой металла, лучшей теплопроводностью и, как следствие, меньшим износом.

Еще больше историй внедрения - в нашем блоге!

Ждет ли Россию бум аддитивных технологий?

В конце лета – начале осени в Москве прошло несколько крупных международных мероприятий автомобильной отрасли , на которых побывали специалисты iQB Technologies . Прежде всего, это Московский автосалон, где мы увидели множество перспективных отечественных разработок. Всеобщее внимание привлекло семейство автомобилей представительского и высшего класса «Аурус» (проект «Кортеж») и новинки ВАЗа, закрывшего свою «классическую» программу и показавшего «Весту», обновленную «Гранту», а также концепт новой «Нивы 4х4». Яндекс продолжает с успехом продвигать свой проект беспилотных авто, и посетители автосалона могли совершить захватывающую поездку в такси без водителя. Но самой, пожалуй, обсуждаемой разработкой сезона стал концепт электрокара CV-1 в корпусе старого «москвича», представленный «Калашниковым» на военно-техническом форуме «Армия-2018». Можно констатировать, что российский автопром медленно, но верно движется в общемировом направлении.

Пик продаж на авторынке России пришелся на 2012 год, затем начался спад, преодолеть который пока не удается. Улучшить ситуацию призвана стратегия развития автомобилестроения на 2018-2025 годы , разработанная Правительством Российской Федерации. В ней четко определены приоритетные задачи отрасли – увеличение выпуска собственных моделей автомобилей и качественных автокомпонентов, а также налаживание связей между производителями автокомпонентов. При этом локализация должна составлять не менее 70%.

Новинки Московского автосалона: Aurus «Сенат» - российский автомобиль представительского класса

Если в 1990-е годы Россия практически не выпускала автомобилей, закупая подержанные в Японии или Германии, то в начале 2000-х в стране действовало уже 15 крупных автозаводов. Понятно, что при реальной локализации в 50-70% значительная часть добавленной стоимости на детали создается за рубежом (они поставляются и собираются на конвейере в России), но сегодня мы полностью обеспечиваем свой внутренний рынок. Самые востребованные модели – такие, как Solaris, Polo, Rapid – выпускаются в России.

Согласно правительственной стратегии, процент бюджета предприятий, который закладывается в инновации и новые разработки, сейчас составляет порядка 15%. Поставлена цель довести этот показатель до общемирового показателя – 25-30%, и это открывает хорошие перспективы для внедрения 3D-технологий в российском автопроме.

Для отечественных автопроизводителей аддитивное направление – пока что почти не освоенная территория, поэтому информации о применении 3D-технологий крайне мало. Газета «Ведомости» сообщает, что группа «ГАЗ» , по словам ее представителя, использует 3D-печать для прототипирования деталей машин. По данным официального сайта Алтайского края , корпорация «КамАЗ» в этом году получила два уникальных 3D-принтера российского производства. Эти установки печатают высокоточные песчаные формы для литья стали.

Говоря о зарубежных производителях в России, приведем пример альянса Renault-Nissan : он начал внедрение аддитивных технологий со своих западноевропейских производств, теперь пришла очередь России. На заводе Nissan в Санкт-Петербурге 3D-принтеры печатают прототипы и оснастку, а также приспособления для калибровки дверей, фар и датчиков. Это позволило предприятию сэкономить за 2017 год более 1 миллиона рублей, не заказывая производство оснастки на стороне. В Москве на предприятии Renault с помощью 3D-принтеров изготавливаются защитные элементы используемых инструментов.

Потенциал 3D-печати для автомобильного рынка

Напечатанные на 3D-принтере выжигаемые литейные модели позволяют Renault Formula One быстро изготавливать крупные металлические детали большой сложности

Итак, 3D-печать позволяет получить производителям автомобилей и автокомпонентов целый ряд преимуществ:

  1. сокращение времени на этапе разработки продукта и литья ;
  2. экономия времени и расходов на изготовление оснастки и пресс-форм;
  3. отказ от услуг подрядчиков-изготовителей оснастки;
  4. проведение технологических экспериментов и функциональное тестирование;
  5. создание геометрически сложных изделий с мелкими деталями, которые невозможно изготовить традиционными методами;
  6. снижение массы детали и экономия используемых материалов за счет топологической оптимизации ;
  7. ускорение выпуска нового продукта или эксклюзивной серии на рынок.

В условиях все более жесткой конкуренции вопрос применения инноваций встает все острее. Во всем мире растет число автопроизводителей, осознавших выгоды 3D-технологий для оптимизации производственного процесса . Как мы увидели, в российской автомобильной промышленности аддитивные методы начали внедряться относительно недавно и используются всего на нескольких крупных предприятиях российских или зарубежных автогигантов.

В сегодняшних российских реалиях внедрение аддитивного производства сталкивается со многими препятствиями, среди которых – недостаточная автоматизация многих заводов и нехватка финансирования. Такие технологии 3D-печати, как селективное лазерное плавление Яков Бондарев

Менеджер уникальных отраслевых проектов по внедрению 3D-технологий в производственный цикл. Ключевое направление работы – автомобилестроение. Яков давно увлечен темой авто- и мотоспорта, коллекционирует мотоциклы, участвовал в любительских соревнованиях. Активно осваивает 3D-моделирование и 3D-печать, современные материалы и технологии в сфере производства. Свободное время Яков посвящает созданию мебели и изделий из дерева, занимается сноубордом и любит путешествовать по России. Девиз: «Учиться никогда не поздно».

Компьютерный дизайн и компьютерное производство произвели революцию в проектировании автомобилей, воздушного и наземного транспорта. Раньше проектировщики машин моделировали прототипы из глины, затем тщательно измеряли модель, чтобы получить штамповочные размеры.

В наше время, создавая модель на компьютере, дизайнеры достигают большей точности в проектировании и в производстве, чем когда-либо прежде. Вместо того чтобы помещать глиняные модели в ветряные туннели, чтобы оценить их аэродинамические характеристики, проектировщики могут подвергнуть модель компьютерному тестированию и удостовериться в ее устойчивости. Точно так же прочность машины может быть проверена без затрат на разрушение автомобиля. Компьютеры могут тестировать машины и на такие факторы, как вибрация, теплопроводность, видимость. Даже внутреннее строение машины может быть спроектировано на компьютере, что позволяет достичь более эффективного дизайна двигателя и пассажирского салона.

Дизайн корпуса

Основная роль в дизайне автомобиля принадлежит компьютеру. Графика предоставляет дизайнерам большую подвижность и точность по сравнению со старыми глиняными моделями.

Компьютеризированный дизайн автодвигателя

Терминал автоматизированного проектирования


Компьютер может вычислить и показать поле видимости с места водителя.

Устойчивость машины, экономия горючего и некоторые другие показатели зависят от того, как воздух обтекает корпус машины во время движения. Линии, обозначающие потоки воздуха справа и внизу, показывают области высокого и низкого давления. Чтобы проанализировать сложные водовороты воздушных потоков, требуется суперкомпьютер .

Части и компоненты

После того как разработан внешний стиль машины, необходимо определить место для внутренних узлов и компонентов. Раньше эта задача осуществлялась при помощи двухмерных чертежей, однако компьютер может тестировать различные устройства, передвигать компоненты и исследовать взаимосвязь между ними в трех измерениях.

Министерство образования и науки

Республики Казахстан

Второй раздел «Основы ремонта автомобилей» является основным по назначению и содержанию дисциплины. В этом разделе излагаются методы обнаружения скрытых дефектов деталей, технологии их восстановления, контроля при комплектации, мтоды сборки и испытания узлов и автомобиля в целом.

Целью написания конспекта лекций является изложение курса в объеме программы дисциплины наиболее кратко и обеспечение студентов учебным пособием , позволяющим им выполнять самостоятельную работу в соответствии с программой дисциплины «Основы технологии производства и ремонта автомобилей» для студентов.

1 Основы технологии автомобилестроения

1.1 Основные понятия и определения

1.1.1 Автомобилестроение как отрасль массового

машиностроения

Автомобилестроение относится к массовому производству – наиболее эффективному. Производственный процесс автозавода охватывает все этапы производства автомобилей : изготовление заготовок деталей, все виды их механической, тепловой, гальванической и других обработок, сборку узлов, агрегатов и машины, испытание и окраску, технический контроль на всех стадиях производства, транспортировку материалов, заготовок, деталей, узлов и агрегатов на хранение на складах.

Производственный процесс автозавода осуществляется в различных цехах, которые по своему назначению делятся на заготовительные, обрабатывающие и вспомогательные. Заготовительные – литейные, кузнечные, прессовые. Обрабатывающие – механические, термические, сварочные, окрасочные. Заготовительные и обрабатывающие цехи относятся к основным цехам. К основным цехам относятся также модельный, ремонтно-механический, инструментальный и т. п. Цехи, занятые обслуживанием основных цехов, являются вспомогательными: электроцех, цех безрельсового транспорта.

1.1.2 Этапы развития автомобилестроения

Первый этап – до Великой отечественной войны. Строительство

автомобильных заводов с технической помощью иностранных фирм и постановка на производство автомобилей зарубежных марок: АМО (ЗИЛ) – форд, ГАЗ-АА – форд. Первый легковой автомобиль ЗИС-101 в качестве аналога был использован американский Бьюик (1934г.).

Завод имени Коммунистического интернационала молодежи (Москвич) выпускал легковые автомобили КИМ-10 на базе английского «Форда Префект». В 1944 году были получены чертежи, оборудование и оснастка для изготовления автомобиля «Опель».

Второй этап – после окончания войны и до распада СССР (1991) Строятся новые заводы: Минский, Кременчугский, Кутаисский, Уральский, Камский, Волжский, Львовский, Ликинский.

Разрабатываются отечественные конструкции и осваивается производство новых машин: ЗИЛ-130, ГАЗ-53, КрАЗ-257, КамАЗ-5320, Урал-4320, МАЗ-5335, Москвич-2140, УАЗ -469 (Ульяновский завод), ЛАЗ-4202, микроавтобус РАФ (Рижский завод), автобус КАВЗ (Курганский завод) и другие.

Третий этап – после распада СССР.

Заводы распределились по разным странам – бывшим республикам СССР. Нарушились производственные связи. Многие заводы прекратили производство автомобилей или резко сократили объемы. Крупнейшие заводы ЗИЛ, ГАЗ освоили малотоннажные грузовики ГАЗель, Бычок и их модификации. На заводах начали разрабатывать и осваивать типоразмерный ряд автомобилей разных назначений и разной грузоподъемности.

В Усть-Каменогорске освоено производство автомобилей «Нива» Волжского автозавода.

1.1.3 Краткий исторический очерк развития науки

о технологии машиностроения.

В первый период развития автомобилестроения производство автомобилей носило мелкосерийный характер, технологические процессы выполнялись рабочими высокой квалификации, трудоемкость изготовления автомобилей была высокой.

Оборудование, технология и организация производства на автомобильных заводах были для того времени передовыми в отечественном машиностроении. В заготовительных цехах использовались машинная формовка и конвейерная заливка опок, паровоздушные молоты, горизонтально-ковочные машины и другое оборудование. В механосборочных цехах применялись поточные линии, специальные и агрегатные станки, оснащенные высокопроизводительными приспособлениями и специальным режущим инструментом. Общая и узловая сборка производилась поточным методом на конвейерах.

В годы второй пятилетки развитие технологии автостроения характеризуется дальнейшим освоением принципов поточно-автоматизированного производства и увеличением выпуска автомобилей.

Научные основы технологии автостроения включают выбор метода получения заготовок и базирование их при обработке резанием с обеспечением высокой точности и качества, методику определения эффективности разработанного технологического процесса, методы расчета высокопроизводительных приспособлений, повышающих эффективность процесса и облегчающих труд станочника.

Решение проблемы повышения эффективности производственных процессов потребовало внедрения новых автоматических систем и комплексов, более рационального использования исходных материалов, приспособлений и инструментов, что является основным направлением работы ученых научно-исследовательских организаций и учебных заведений.

1.1.4 Основные понятия и определения изделия, производственного и технологических процессов, элементов операции

Изделие характеризуется большим разнообразием свойств: конструктивных, технологических и эксплуатационных.

Для оценки качества изделий машиностроения используют восемь видов показателей качества: показатели назначения, надежности, уровня стандартизации и унификации, технологичности, эстетические, эргономические, патентно-правовые и экономические.

Совокупность показателей можно разделить на две категории:

Показатели технического характера, отражающие степень пригодности изделия к использованию его по прямому назначению (надежность, эргономика и т. д.);

Показатели экономического характера, показывающие непосредственно или косвенно уровень материальных, трудовых и финансовых затрат на достижение и реализацию показателей первой категории, во всех возможных сферах проявления (создания, производства и эксплуатации) качества изделия; показатели второй категории включают в основном показатели технологичности.

Как объект проектирования изделие проходит ряд стадий по ГОСТ 2.103-68.

Как объект производства изделие рассматривается с позиций технологической подготовки производства, методов получения заготовок, обработки, сборки, испытания и контроля.

Как объект эксплуатации изделие анализируется по соответствию эксплуатационных параметров техническому заданию ; удобству и сокращению трудоемкости подготовки изделия к функционированию и контролю его работоспособности, удобству и сокращению трудоемкости профилактических и ремонтных работ , требуемых для повышения срока службы и восстановления работоспособности изделия, по сохранению технических параметров изделия в период длительного хранения.

Изделие состоит из деталей и узлов. Детали и узлы могут соединяться в группы. Различают изделия основного производства и изделия вспомогательного производства .

Деталь – элементарная часть машины, изготовленная без применения сборочных приспособлений.

Узел (сборочная единица) – разъемное или неразъемное соединение деталей.

Группа – соединение узлов и деталей, являющихся одной из основных составных частей машин, а также совокупность узлов и деталей, объединенных общностью выполняемых функций.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования для выполнения определенной части операции.

Технологический переход – законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке.

Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и чистоты поверхности, но необходимы для выполнения технологического перехода, например, установка заготовки, смена инструмента.

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, чистоты поверхности или свойств заготовки.

Вспомогательный ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, чистоты поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

Технологический процесс может быть выполнен в виде типового, маршрутного и операционного.

Типовой технологический процесс характеризуется единством содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструктивными признаками.

Маршрутный технологический процесс выполняется по документации, в которой содержание операции излагается без указания переходов и режимов обработки.

Операционный технологический процесс выполняется по документации, в которой содержание операции излагается с указанием переходов и режимов обработки.

1.1.5 Задачи, решаемые при разработке технологического

процесса

Основной задачей разработки технологических процессов является обеспечение при заданной программе выпуска деталей высокого качества при минимальной себестоимости. При этом производится:

Выбор способа изготовления и заготовки;

Выбор оборудования с учетом имеющегося на предприятии;

Разработка операций обработки;

Разработка приспособлений для обработки и контроля;

Выбор режущего инструмента.

Технологический процесс оформляется в соответствии с Единой системой технологической документации (ЕСТД) – ГОСТ 3.1102-81

1.1.6 Виды машиностроительных производств.

В машиностроении различают три типа производств: единичное, серийное и массовое.

Единичное производство характеризуется изготовлением небольших количеств изделий разнообразных по конструкции, применением универсального оборудования, высокой квалификацией рабочих и более высокой себестоимостью продукции по сравнению с другими типами производства. К единичному производству на автозаводах относятся изготовление опытных образцов автомобилей в экспериментальном цехе, в тяжелом машиностроении – производство крупных гидротурбин, прокатных станов и т. п.

В серийном производстве изготовление деталей осуществляется партиями, изделий сериями, повторяющимися через определенные промежутки времени. После изготовления данной партии деталей производится переналадка станков на выполнение операций той же или другой партии. Серийное производство характеризуется применением как универсального, так и специального оборудования и приспособлений, расстановкой оборудования как по типам станков, так и по технологическому процессу.

В зависимости от величины партии заготовок или изделий в серии различают мелкосерийное, средне - и крупносерийное производства. К серийному производству относятся станкостроение, производство стационарных двигателей внутреннего сгорания, компрессоров.

Массовым производством называется производство, при котором изготовление однотипных деталей и изделий ведется непрерывно и в большом количестве в течении длительного времени (несколько лет). Массовое производство характеризуется специализацией рабочих на выполнение отдельных операций, применением высокопроизводительного оборудования, специальных приспособлений и инструмента, расположением оборудования в последовательности, соответствующей выполнению операции, т. е. по потоку, высокой степенью механизации и автоматизации технологических процессов. В технико-экономическом отношении массовое производство является наиболее эффективным. К массовому производству относятся автомобилестроение и тракторостроение.

Приведенное деление машиностроительного производства по типам является в известной мере условным. Провести резкую грань между массовым и крупносерийным производствами или между единичным и мелкосерийным затруднительно, поскольку принцип поточно-массового производства в той или иной мере осуществляется в крупносерийном и даже в среднесерийном производстве, а характерные особенности единичного производства свойственны мелкосерийному производству.

Унификация и стандартизация изделий машиностроения способствует специализации производства, сокращению номенклатуры изделий и увеличению объемов их выпуска, а это позволяет шире применять поточные методы и автоматизацию производства.

1.2 Основы точности механической обработки

1.2.1 Понятие точности обработки. Понятие о случайных и систематических погрешностях. Определение суммарной ошибки

Под точностью изготовления детали понимается степень соответствия ее параметров параметрам, заданным конструктором в рабочем чертеже детали.

Соответствие деталей – реальной и заданной конструктором – определяется следующими параметрами:

Точностью формы детали или ее рабочих поверхностей, характеризуемой обычно овальностью, конусностью, прямолинейностью и другими;

Точностью размеров деталей, определяемой отклонением размеров от номинальных;

Точностью взаимного расположения поверхностей, задаваемой параллельностью, перпендикулярностью, концентричностью;

Качеством поверхности, определяемым шероховатостью и физико-механическими свойствами (материалом, термообработкой, поверхностной твердостью и другими).

Точность обработки может быть обеспечена двумя методами:

Установкой инструмента на размер способом пробных проходов и промеров и автоматическим получением размеров;

Наладкой станка (установка инструмента в определенное положение относительно станка один раз при его наладке на операцию) и автоматическим получением размеров.

Точность обработки в процессе выполнения операции достигается автоматически контролем и подналадкой инструмента или станка при выходе деталей из поля допуска.

Точность находится в обратной зависимости от производительности труда и стоимости обработки. Стоимость обработки резко возрастает при высоких точностях (рисунок 1.2.1, участок А), а при низких – медленно (участок В).

Экономическая точность обработки обуславливается отклонениями от номинальных размеров обрабатываемой поверхности, полученных в нормальных условиях при использовании исправного оборудования, стандартного инструмента, средней квалификации рабочего и при затратах времени и средств, не превышающих эти затраты при других сопоставимых способах обработки. Она зависит также от материала детали и припуска на обработку.

Рисунок 1.2.1 – Зависимость стоимости обработки от точности

Отклонения параметров реальной детали от заданных параметров называются погрешностью.

Причины возникновения погрешностей при обработке:

Неточность изготовления и износ станка и приспособлений;

Неточность изготовления и износ режущего инструмента;

Упругие деформации системы СПИД;

Температурные деформации системы СПИД;

Деформации деталей под влиянием внутренних напряжений;

Неточность настройки станка на размер;

Неточность установки, базирования и измерения.

Жесткостью https://pandia.ru/text/79/487/images/image003_84.gif" width="19" height="25">, направленной по нормали к обрабатываемой поверхности, к смещению лезвия инструмента, измеренному в направлении действия этой силы (Н/мкм).

Величина обратная жесткости называется податливостью системы (мкм/Н)

Деформация системы (мкм)

Температурные деформации.

Теплота, образующаяся в зоне резания распределяется между стружкой, обрабатываемой заготовкой, инструментом и частично рассеивается в окружающую среду. Например, при токарной обработке в стружку отходит 50…90% теплоты, в резец 10…40%, в заготовку 3…9%, в окружающую среду 1%.

Из-за нагрева резца в процессе обработки удлинение его достигает 30…50 мкм.

Деформация от внутреннего напряжения.

Внутренние напряжения возникают при изготовлении заготовок и в процессе их механической обработки. В литых заготовках, штамповках и поковках возникновение внутренних напряжений происходит из-за неравномерного охлаждения, а при термической обработке деталей - по причине неравномерного нагрева и охлаждения и структурных превращений. Для полного или частичного снятия внутренних напряжений в литых заготовках их подвергают естественному или искусственному старению. Естественное старение происходит при длительной выдержке заготовки на воздухе. Искусственное старение осуществляется путем медленного нагрева заготовок до 500…600font-size:14.0pt">Для снятия внутренних напряжений в штамповках и поковках их подвергают нормализации.

Неточность настройки станка на заданный размер связана с тем, что при установке режущего инструмента на размер с помощью измерительных средств или по готовой детали возникают погрешности, влияющие на точность обработки. На точность обработки оказывает влияние большое число разнообразных причин, вызывающих систематические и случайные погрешности.

Суммирование погрешностей производится по следующим основным правилам:

Систематические погрешности суммируются с учетом их знака, т. е. алгебраически;

Суммирование систематических и случайных погрешностей производится арифметически, поскольку знак случайной погрешности заранее неизвестен (наиболее неблагоприятный результат);

- случайные погрешности суммируются по формуле:

Font-size:14.0pt">где - коэффициенты, зависящие от вида кривой

распределения составляющих погрешностей.

Если погрешности подчиняются одному закону распределения, то .

Тогда font-size:14.0pt">1.2.2 Различные виды установочных поверхностей деталей и

правило шести точек. Базы конструкторские, сборочные,

технологические. Погрешности базирования

Рисунок 1.2.2 – Положение детали в системе координат

Для лишения шести степеней свободы заготовки требуется шесть неподвижных опорных точек, расположенных в трех перпендикулярных плоскостях. Точность базирования заготовки зависит от выбранной схемы базирования, т. е. схемы расположения опорных точек на базах заготовки. Опорные точки на схеме базирования изображают условными знаками и нумеруют порядковыми номерами, начиная с базы, на которой располагается наибольшее количество опорных точек. В этом случае число проекций заготовки на схеме базирования должно быть достаточным для четкого представления о размещении опорных точек.

Базой называется совокупность поверхностей, линий или точек детали (заготовки), по отношению к которым ориентируют другие поверхности детали при обработке или измерении, или по отношению к которым ориентируют другие детали узла, агрегата при сборке.

Конструкторским базами называют поверхности, линии или точки, относительно которых на рабочем чертеже детали конструктор задает взаимное положение других поверхностей, линий или точек.

Сборочными базами называют поверхности детали, определяющие ее положение относительно другой детали в собранном изделии.

Установочными базами называют поверхности детали, с помощью которых ее ориентируют при установке в приспособлении или непосредственно на станке.

Измерительными базами называют поверхности, линии или точки, относительно которых производят отсчет размеров при обработке детали.

Установочные и измерительные базы используются в технологическом процессе обработки детали и называются технологическими базами.

Основными установочными базами называют поверхности, используемые для установки детали при обработке, которыми детали ориентируются в собранном узле или агрегате относительно других деталей.

Вспомогательными установочными базами называют поверхности, которые для работы детали в изделии не нужны, но специально обрабатываются для установки детали при обработке.

По месту расположения в технологическом процессе установочные базы делятся на черновые (первичные), промежуточные и чистовые (окончательные).

При выборе чистовых баз следует по возможности руководствоваться принципом совмещения баз. При совмещении установочной базы с конструкторской базой погрешность базирования равна нулю.

Принцип единства баз – данную поверхность и поверхность, являющуюся по отношению к ней конструкторской базой, обрабатывают, пользуясь одной и той же базой (установочной).

Принцип постоянства установочной базы состоит в том, что на всех технологических операциях обработки используют одну и ту же (постоянную) установочную базу.

Рисунок 1.2.3 – Совмещение баз

Погрешностью базирования называется разность предельных расстояний измерительной базы относительно установленного на размер инструмента. Погрешность базирования имеет место при несовмещении измерительной и установочной баз заготовки. В этом случае положение измерительных баз отдельных заготовок в партии будет различным относительно обрабатываемой поверхности.

Как погрешность положения, погрешность базирования влияет на точность выполнения размеров (кроме диаметральных и связывающих единовременно обрабатываемые поверхности одним инструментом или одной инструментальной наладкой), на точность взаимного положения поверхностей и не влияет на точность их форм.

Погрешность установки заготовки:

,

где - неточность базирования заготовки;

Неточность формы базирующих поверхностей и зазоров меж -

ду ними и опорными элементами приспособлений;

Погрешность закрепления заготовки;

Погрешность положения установочных элементов приспособ -

ления на станке.

1.2.3 Статистические методы регулирования качества

технологического процесса

Статистические методы исследования позволяют оценивать точность обработки по кривым распределения действительных размеров деталей, входящих в партию. При этом различают три вида погрешностей обработки:

Систематические постоянно действующие;

Систематические закономерно изменяющиеся;

Случайные.

Систематические постоянные погрешности легко обнаруживаются и устраняются подналадкой станка.

Погрешность называется систематической закономерно изменяющейся, если в процессе обработки наблюдается закономерность в изменении погрешности детали, например под влиянием износа лезвия режущего инструмента.

Случайные погрешности возникают под действием многих причин, не связанных между собой какой-либо зависимостью, поэтому заранее нельзя установить закономерность изменения и величину погрешности. Случайные погрешности вызывают рассеивание размеров в партии деталей, обрабатываемых в одинаковых условиях. Размах (поле) рассеивания и характер распределения размеров деталей определяют по кривым распределения. Для построения кривых распределения производят измерение размеров всех деталей, обрабатываемых в данной партии, и разбивают их на интервалы. Затем определяют количество деталей в каждом интервале (частость) и строят гистограмму . Соединив средние значения величин интервалов прямыми линиями, получаем эмпирическую (практическую) кривую распределения.

Рисунок 1.2.4 – Построение кривой распределения размеров

При автоматическом получении размеров деталей, обрабатываемых на предварительно настроенных станках, распределение размеров подчиняется закону Гаусса – закону нормального распределения.

Дифференциальная функция (плотность вероятности) кривой нормального распределения имеет вид:

,

гле - переменная случайная величина;

Среднее квадратическое отклонение случайной величины https://pandia.ru/text/79/487/images/image025_22.gif" width="25" height="27">;

Среднее значение (математическое ожидание) случайной ве

Основание натуральных логарифмов.

Рисунок 1.2.5 – Кривая нормального распределения

Среднее значение значение случайной величины:

Среднеквадратическое значение:

Другие законы распределения:

Закон равной вероятности с кривой распределения, имеющей

вид прямоугольника;

Закон треугольника (закон Симпсона);

Закон Максвелла (рассеивание величин биения, дисбаланса, эксцентриситета и т. п.);

Закон модуля разности (распределение овальности цилиндрических поверхностей, непараллельности осей, отклонение шага резьбы).

Кривые распределения не дают представления об изменении рассеивания размеров деталей во времени, т. е. в последовательности их обработки. Для регулирования технологического процесса и контроля качества применяется метод медиан и индивидуальных значений и метод средних арифметических значений и размеров https://pandia.ru/text/79/487/images/image031_21.gif" width="53" height="24">, который по своему назначению больше, чем метод shortcodes">

2.1. Базирование корпусных деталей при механической обработке, структура технологического процесса при обработке корпусных деталей.

Служебное назначение и конструктивное исполнение

Корпусные детали в сборочных единицах являются базовыми или несущими элементами, предназначенными для монтажа на них других деталей и сборочных единиц. Таким образом, при конструировании и изготовлении корпусных деталей необходимо обеспечить требуемую точность размеров, формы и расположения поверхностей, а также прочность, жесткость, виброустойчивость, сопротивление деформациям при изменении температуры, герметичность, удобство монтажа конструкции.

В конструктивном отношении корпусные детали можно разделить пять основных групп:

Рис. 2.1 Классификация корпусных деталей

а - коробчатого типа - неразъемные и разъемные; б - с гладкими внутренними цилиндрическими поверхностями; в - со сложной пространственной геометрической формой; г - с направляющими поверхностями; д - типа кронштейнов, угольников

Первая группа - корпусные детали коробчатой формы в виде параллелепипеда, габариты которого имеют одинаковый порядок. К этой группе относятся корпуса редукторов, коробки скоростей металлорежущих станков, шпиндельные бабки и пр., которые предназначены для установки подшипниковых узлов.

Вторая группа - корпусные детали с внутренними цилиндрическими поверхностями, протяженность которых превышает их диамтральные размеры. К этой группе относятся блоки цилиндров двигателей внутреннего сгорания, компрессоров, корпуса пневмо- и гидроаппаратуры: цилиндров, золотников и пр. Здесь внутренние цилиндрические поверхности являются на­правляющими для перемещения поршня или плунжера.

Третья группа - корпусные детали сложной пространственной формы. К этой группе относятся корпуса паровых и газовых турбин, арматуры водо- и газопроводов: вентилей, тройников, коллекторов и пр. Конфигурация этих деталей формирует потоки жидкости или газа.

Четвертая группа - корпусные детали с направляющими поверхностями. К этой группе относятся столы, каретки, суппорты, ползуны и пр., которые в процессе работы совершают возвратно-поступательное или вращательные движения.

Пятая группа - корпусные детали типа кронштейнов, угольников, стоек и пр., которые выполняют функции дополнительных опор.

Элементами корпусных деталей являются плоские, фасонные, цилиндрические и другие поверхности, которые могут быть обрабатываемыми или необрабатываемыми. Плоские поверхности в основном обрабатываются и служат для присоединения по ним других деталей и узлов или самих корпусных деталей к другим изделиям. При механической обработке эти поверхности являются технологическими базами. Фасонные поверхности, как правило, не обрабатываются. Конфигурация этих поверхностей определена их служебным назначением.

Цилиндрические поверхности в виде отверстий делятся на основные и вспомогательные отверстия. Основные отверстия являются посадочными поверхностями для тел вращения: подшипников, осей и валов. Вспомогательные отверстия предназначены для монтажа болтов, маслоуказателей и пр. Они бывают гладкими и резьбовыми. Эти поверхности также могут быть базами при механической обработке.

Требования к точности

В зависимости от назначения и конструктивного исполнения к корпусным деталям предъявляют следующие требования к точности изготовления.

1 . Точность геометрической формы плоских поверхностей . В данном случае регламентируются отклонения от прямолинейности и плоскостности поверхности на определенной длине или в пределах ее габаритов.

2. Точность относительного расположения плоских поверхностей .

В данном случае регламентируются отклонения от параллельности, перпендикулярности и отклонение наклона.

3. Точность диаметральных размеров и геометрической формы отверстий . Точность основных отверстий, предназначенных, в основном, для посадки подшипников. Отклонения геометрической формы отверстий от цилиндричности, крутости и профиля продольного сечения: конусообразности, бочкообразности и седлообразности.

4. Точность расположения осей отверстий .

Отклонения от параллельности и перпендикулярности осей главных отверстий относительно плоских поверхностей. Отклоне­ния от параллельности и перпендикулярности оси одного отверстия относительно оси другого составляют.

Шероховатость плоских базирующих поверхностей составляет 0,63- 2,5 мкм, а шероховатость поверхностей главных отверстий 0,16 - 1,25 мкм, а для ответственных деталей - не более 0,08 мкм.

Приведенные требования к точности корпусных деталей являются усредненными. Точное их значение устанавливается отдельно в каждом конкретном случае.

Методы получения заготовок и материалы

Основными методами получения заготовок для корпусных деталей являются литьё и сварка. Литые заготовки получают литьем в песчано-глинистые формы, в кокиль, под давлением, в оболочковые формы, по выплавляемым моделям.

Сварные заготовки для корпусных деталей применяют в мелкосерийном производстве, когда использование литья из-за высокой стоимости оснастки нецелесообразно. Кроме того, рекомендуется применять сварные конструкции для деталей, на которые действуют ударные нагрузки.

Базирование корпусных деталей при механической обработке

Основными принципами базирования являются принцип совмещения и принцип постоянства баз.

Первый принцип заключается в совмещении при механической обработке технологической базы с конструкторской и измерительной базами.

Суть второго принципа заключается в использовании одних и тех же баз на всех или большинстве операций технологического процесса. На первых операциях базирование осуществляется по необработанным (черным) поверхностям, которые называются черновыми базами. Поверхности обработанные на этих операциях используются затем как чистовые базы. Поверхности для чистовых баз необходимо выбирать так, чтобы соблюдались вышеуказанные принципы.

Базирование призматических деталей с отверстиями по обработанным поверхностям (чистовым базам) осуществляется двумя способами: по трем взаимно перпендикулярным поверхностям, но плоскости и двум отверстиям па этой плоскости (рис. 2.2, а; б).

Рис. 2.2 Схемы базирования корпусных деталей

а – по трем взаимно перпендикулярным плоскостям; б – по плоскости и двум вспомогательным отверстиям; в – по плоскости, основному и вспомогательному отверстию; г – установочные пальцы: ромбический и цилиндрический

В первом случае на первых операциях обрабатываются три взаимно перпендикулярные плоскости. Во втором случае обрабатываются плоскость и два отверстия на ней, причем эти отверстия обрабатываются более точно, чем остальные. В качестве установочных элементов для отверстий используются два пальца: цилиндрический и ромбический (срезанный) (рис. 2.2, г).

Для корпусных деталей с фланцами в качестве баз используют торец фланца, центральное основное, отверстие или выточку на торце и вспомогательное отверстие на фланце (рис. 2.2, в).

Если надо снимать равномерный припуск на сторону при обработке основных отверстий, то в качестве черновых баз для обработки плоскости и двух вспомогательных отверстий используют основные отверстия. В эти отверстия, еще необработанные, вставляют конические или самоцентрирующие оправки. Еще одной базой является боковая плоскость заготовки (рис. 2.3, а).

При обработке основных отверстий, чтобы выдержать одинаковое расстоя­ние от осей этих отверстий до внутренних стенок корпуса, базирование осуществляют по внутренним стенкам (рис. 2.3, б). Базированием по внутренним "поверхностям обеспечивается также заданная толщина стенки при обработке ее снаружи. Применение самоцентрирующих устройств исключает образование разностенности.

Если конфигурация детали не позволяет надежно её установить и закрепить, то обработку целесообразно вести в приспособлении-спутнике. При установке заготовки в спутнике используются черновые или искусственные базы, причем заготовка обрабатывается на различных операциях при постоянной установке в приспособлении, но положение приспособления на разных операциях меняется.

Структура технологического процесса при обработке корпусных деталей

Структура технологического процесса обработки корпусной детали зависит от ее конструктивного исполнения, геометрической формы, размеров, массы, метода получения технических требований к ней, оснащенности производствам методов его работы. В то же время структура технологического процесса обработки корпусных деталей, как и любых других, имеет общие закономерности. Эти закономерности относятся к определению последовательности обработки поверхностей в соответствии с намеченными технологическими базами, к определению необходимого числа переходов по обработке поверхностей, к выбору оборудования и пр. Независимо от вышеуказанных особенностей корпусной детали технологический процесс ее обработки включает следующие основные операции:

Черновая и чистовая обработка плоских поверхностей, плоскости и двух отверстий или других поверхностей, используемых в дальнейшем в качестве технологических баз; - черновая и чистовая обработка других плоских поверхностей;

Черновая и чистовая обработка основных отверстий;

Обработка вспомогательных отверстий - гладких и резьбовых;

- отделочная обработка плоских поверхностей и основных отверстий;

Контроль точности обработанной детали.

Кроме того, между этапами черновой и чистовой обработки может быть предусмотрено естественное или искусственное старение для снятия внутрен­них напряжений.

За последние несколько лет, как повсеместно известно, компьютерные технологии сделали громадный шаг вперед, и используются практически во всех сферах жизни человека. Таким образом, это явление не могло обойти стороной такую распространенную и широко используемую сферу, как автомобилестроение. Автомобили, как привычный предмет ежедневного обихода человека, давно активно интегрируются с цифровыми технологиями, компьютерами. В последнее время в нашу обращаются клиенты не только с вопросами по ремонту компьютерной техники, но так же и по вопросам установки охранных комплексов, gps-систем, вопросам перепрошивки "-мозгов"- автомобиля, руссификации и установки систем компьютерного мониторинга и защиты автомобилей.

На ряду с управлением автомобильными процессами, воспроизведением видео и аудио информации, на сегодняшний день бортовой компьютер может брать на себя множество различных функций. Компьютерные технологии сегодня не только позволяют подключаться к интернету и цифровому телевидению прямо в автомобиле, но и, к примеру, установить соединение со спутником, что гарантирует высокую безопасность Вашего автомобиля. Также обеспечить безопасность автомобиля можно другими эффективными способами, например, оформив страховку КАСКО (что такое КАСКО ?).

Цифровые технологии и электроника, использованные в автомобилях, позволяют использовать системы GPS, системы аварийного обнаружения, парктроники, выводящие на экран визуальную информацию о положении автомобиля, различные бортовые компьютеры с интеллектуальными возможностями. Производители стараются изо всех сил при создании технологий, наиболее близких человеку, интуитивно понятных, максимально удобных в использовании.

Наиболее благоприятно компьютерные технологии сказываются на управлении транспортным средством и безопасности движения. Технические устройства и электроника помогают контролировать техническое состояние автомобиля, что позволяет избежать возможных аварий. Если Вы все-таки опасаетесь такого рода происшествий, советуем Вам использовать каско калькулятор , для просчета платежей за страховку.

Цифровые компьютерные технологии в авто бизнесе

Также компьютерные технологии в автомобильном бизнесе приходят на помощь при защите окружающей среды. При передвижении по местности (а особенно &ndash- в городском режиме), тратиться большое количество топлива, а двигатель внутреннего сгорания при увеличении срока использования &ndash- потребляет все больше и больше. Этот вопрос был решен с помощью изобретения гибридных автомашин. В них устанавливается электромотор, который помогает работе двигателя на подъемах, в пробках, при включении красного света, а в пассивном режиме &ndash- запасает электричество (в качестве генератора). Всеми этими процессами руководит бортовой компьютер. Специальное программное обеспечение координирует время работы двигателя внутреннего сгорания и электромотора, а также обеспечивает безопасность транспортного средства.