» » Составные части рулевого устройства судна. Рули судов, их формы и типы

Составные части рулевого устройства судна. Рули судов, их формы и типы

Назначение : обеспечение управляемости судна, т.е. его способности двигаться по определённой траектории.

Конструкция рулевого устройства .

Общее расположение одного из вариантов рулевого устройства представлено на рисунке.

Рис. 3.1.1. Схема рулевого устройства:

1- перо руля; 2 – фланцевое соединение; 3- опоры баллера;

4 – голова баллера; 5 – рулевой привод; 6 – рулевая машина;

7- штурвал; 8 – рулевая передача; 9 – баллер; 10 – гельмпортовая труба;

11 – петля пера руля; 12 – штырь; 13 – петля рудерпоста;

14 – рудерпост; 15 – пятка ахтерштевня.

Основным элементом, создающим необходимое для маневра усилие, является перо руля 1. Для поворота пера руля на некоторый угол относительно ДП служит баллер 9 – вал переменного по длине диаметра. Участки с увеличенным по сравнению с расчётным диаметром предусматриваются в местах расположения опор баллера 3 для повышения ремонтопригодности. Для соединения баллера и пера руля чаще всего используют либо фланцевое соединение 2, изображённое на рисунке, либо конусное соединение. Баллер руля входит в кормовой подзор корпуса судна через гельмпортовую трубу 10, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор 3 по высоте. Нижняя опора располагается над гельмпортовой трубой и имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна. Верхняя опора располагается непосредственно у головы баллера, обычно она воспринимает массу баллера и руля, поэтому на баллере делают кольцевой выступ.

Необходимое для поворота руля усилие на баллере создаётся посредством рулевого привода . В состав рулевого привода входят: рулевая машина 6; средства передачи крутящего момента от рулевой машины голове баллера 4 (рулевой привод - румпель или сектор 5); рулевая передача 8; а так же система дистанционного управления рулевым приводом – устройство для передачи команд по перекладке руля с ходового мостика (от штурвала 7) на органы управления рулевой машины.

Классификация рулей .

По распределению площади пера руля относительно оси вращения выделяют следующие типы рулей (рисунок 3.1.2):

Рис. 3.1.2. Классификация рулей по распределению площади:

1 – перо руля; 2 – противоледовый выступ; 3 – баллер;

4 – рудерпост; 5- кронштейн.

- небалансирный (обычный ) (рис. 3.1.2, а), ось вращения которого близка к передней (носовой) кромке пера руля (отстоит от неё на расстояние, равное радиусу опоры руля);

- балансирный (рис. 3.1.2, б), ось вращения которого смещена ближе к центру гидродинамического давления (отстоит от передней кромки на расстояние, большее радиуса опоры руля), при этом часть площади пера, находящаяся в нос от оси вращения, называется балансирной;


- полубалансирный (рис. 3.1.2, в), у которого распределение площади в нижней части пера руля соответствует балансирному, а в верхней – обычному рулю;

- подвесной (рис. 3.1.2, г), выделяется в классификации традиционно и является тем же балансирным рулём, отличающимся тем, что непосредственно на пере руля опоры не размещаются.

Балансирные и полубалансирные рули характеризуются коэффициентом балансирности k d:

где: F d - часть площади пера руля, находящаяся между передней кромкой и осью вращения (балансирная), м 2 ; F – полная площадь пера руля, м 2 .

Для балансирных рулей обычно k d = 0,21¸0,23, для полубалансирных k d = 0,15.

Достоинство балансирных и полубалансирных рулей: вследствие меньшего отстояния центра давления от оси вращения момент на баллере требуется меньше, чем у небалансирных.

Недостаток – крепление таких рулей к судну сложнее и менее надёжно.

По форме профиля выделяют следующие типы рулей:

- плоские однослойные, из-за своей низкой эффективности применяются редко – в основном на несамоходных судах;

- профилированные двухслойные (обтекаемые ), состоящие из наружной обшивки и внутреннего набора. Набор формируется из горизонтальных рёбёр и вертикальных диафрагм, сваренных друг с другом. Гоизонтальные рёбра крепятся к основе пера руля – рудерпису, представляющему собой массивный вертикальный стержень. Рудерпис изготавливается вместе с петлями для навешивания пера руля на рудерпост. Конкретную форму профиля руля как правило подбирают экспериментально, соответственно, именуют профили по названию лабораторий, в которых они разработаны.


Рулевые приводы, их виды, конструкция и требования к ним .

Рулевой привод предназначен для непосредственного выполнения перекладки руля и контроля его положения.

В составе рулевого привода можно выделить (достаточно условно) следующие элементы:

Устройство для передачи крутящего момента от рулевой машины к баллеру (иногда называемое собственно рулевым приводом);

Рулевая машина – силовая установка, создающая необходимое усилие для поворота баллера;

Рулевая передача, осуществляющая связь между постом управления и рулевой машиной;

Система контроля.

Выделяют следующие основные виды рулевых приводов:

Механические (ручные), к которым относятся румпельно-штуртросовые, секторно-штуртросовые, секторные с валиковой проводкой, винтовые румпельные;

Имеющие источник энергии (гидравлические, электрические, электрогидравлические).

Механические приводы применяются только на малых судах и в качестве вспомогательных рулевых приводов.

Требования к рулевым приводам содержатся в Правилах классификации и постройки морских судов РМРС (том 1, раздел III «Устройства, оборудование и снабжение», п. 2 «Рулевое устройство» и том 2, раздел IX «Механизмы», п.6.2 «Рулевые приводы»). Среди основных требований можно выделить следующие:

1. Все суда должны быть снабжены главным и вспомогательным рулевыми приводами, действующими независимо один от другого.

2. Главный привод и баллер должны обеспечивать перекладку руля с 35 0 одного борта на 30 0 другого борта не более чем за 28 с при максимальной эксплуатационной осадке и скорости переднего хода.

3. Вспомогательный привод должен обеспечивать перекладку руля с 15 0 одного борта на 15 0 другого борта не более чем за 60 с при максимальной эксплуатационной осадке и скорости хода, равной половине максимальной эксплуатационной скорости переднего хода или 7 уз (в зависимости от того что больше).

4. На нефтеналивных судах, газовозах и химовозах валовой вместимостью 10000 и более, на прочих судах вместимостью 70000 и более, а также на всех атомных судах главный рулевой привод должен включать в себя два (или более) одинаковых силовых агрегата. Соответственно, для них должны быть предусмотрены две независимых системы управления с ходового мостика.

5. Управление главным приводом должно быть предусмотрено с ходового мостика и из румпельного отделения.

6. Управление вспомогательным приводом должно быть предусмотрено из румпельного отделения, а в том случае если он действует от источника энергии – должно быть предусмотрено также независимое управление с ходового мостика.

7. Конструкция рулевых приводов должна обеспечивать переход при аварии с главного привода на вспомогательный за время не более 2 мин.

8. Должен быть обеспечен контроль положения руля.

Выделяют следующие типы рулевых приводов:

Продольно-румпельный, в котором одноплечий румпель, насаженный на головку баллера, расположен в продольном направлении (рис. 3.1.3, а);

Поперечно-румпельный, в котором румпель представляет собой двуплечий рычаг (рис. 3.1.3, б) – название при этом условно, т.к. румпель может находиться как вдоль, так и поперёк ДП судна;

Секторный, в котором насаженный на головку баллера сектор поворачивается ведущей шестернёй рулевой машины (рис. 3.1.3, в).

а) б) в)

Рис. 3.1.3 Типы рулевых приводов:

а – продольно-румпельный; б – поперечно-румпельный; в секторный.

В настоящее время на крупных судах получил распространение поперечно-румпельный привод с совмещённой с ним четырёхплунжерной гидравлической рулевой машиной.

Выделяют следующие типы рулевых передач:

Валиковая, при которой связь между постом управления и исполнительным механизмом (например, золотником гидравлической рулевой машины) осуществляется посредством системы стальных валиков (отрезков труб), соединённых между собой с помощью шарниров или конических зубчатых передач;

Гидравлическая, в которой используется объёмный гидропривод;

Электрическая, состоящая из системы самосинхронизирующихся двигателей – при вращении штурвала в роторе передающего двигателя (генератора) возбуждается ток, вызывающей вращение ротора приёмника, соединённого с исполнительным механизмом рулевой машины.

Из различных типов рулевых машин наибольшее распространение получили электрические и электрогидравлические рулевые машины.

Наиболее распространёнными на современных судах являются электрогидравлические четырёхплунжерные рулевые машины с поперечно-румпельным рулевым приводом. Конструкция такой ЭГРМ с механической обратной связью приведена на рисунке 3.1.4.


Рис. 3.1.4 Электрогидравлическая рулевая машина (ЭГРМ)

Два идентичных исполнительных механизма ИМ (приводимых в действие электродвигателями 11 от двух электрических линий управления) работают на один выходной управляющий элемент – шток 12. Перемещение штока h (являющееся заданием на перекладку руля) с помощью рычагов BD и FG, соединённых в точке С, и штанги 17 передаётся насосам регулируемой подачи 8, приводимых в действие электродвигателями 7. Насосы согласно полученным перемещениям е 1 и е 2 регулируемых органов создают подачу Q 1 и Q 2 соответственно.

При работе насосов в цилиндрах рулевой машины 6 создаётся перепад давлений р 1 – р 2 , в результате чего баллер 3 посредством плунжеров 5 и румпеля 2 поворачивается, и руль 1 перекладывается на некоторый угол a.

При этом обратная механическая связь 4 возвращает посредством рычагов DB и FG штангу 17 в исходное среднее положение, в котором суммарное перемещение регулируемых органов насосов е = 0. Давления в полостях цилиндров выравниваются, перемещение руля останавливается и поддерживается заданный угол a. Таким образом, данная ЭГРМ с механической обратной связью представляет собой автономную следящую систему, включённую последовательно замкнутому контуру электрической системы управления.

Указатели положения руля на мостике получают электрический сигнал от датчика 14, приводимого в действие рычагом 13, соединённым со штоком 12.

Для согласования нулевых положений штанги и управляемых органов насосов служит регулировочное устройство, состоящее из винтовых соединений 15 и 16 на концах штанги NL. Серьги AB и HG компенсируют взаимное перемещение рычагов.

В случае отказа дистанционной системы управления рулевая машина приводится в действие штурвалом 10, соединённым с редуктором 9.

Рулевое устройство предназначено для сохранения заданного курса или изменения его в нужном направлении. В состав рулевого устройства входят руль, рулевой привод, рулевая машина и системы дистанционного управления рулевой машиной с ходового мостика.

Руль. Основными органами управления большинства современных морских судов являются рули: обыкновенные, балансирные и полубалансирные. На некоторых судах улучшение ходкости и управляемости достигается установкой винтов с насадками, активных рулей, подруливающих устройств, крыльчатых движителей и др. Перекладка обычных и активных рулей, а также поворотных насадок с нужной скоростью на требуемый угол (от диаметральной плоскости - ДП) или удержание их в заданном положении производится рулевой машиной.

Рулевой привод . Рулевые приводы делятся на две группы: с гибкой связью (штуртросовые, цепные) и с жесткой связью (зубчатые, винтовые, гидравлические).

Выбор типа рулевого привода обусловливается расположением рулевой машины на судне. На большинстве судов, особенно маломерных, рулевая машина располагается в рулевой рубке или под ней на уровне верхней палубы. При таком расположении рулевой машины ее связь с баллером руля осуществляется обычно через гибкую цепную или тросовую передачу. Охватывающую тяговый барабан рулевой машины цепь направляют через ролики вдоль бортов и присоединяют концами к сектору или румпелю, закрепленному на баллере руля. На. прямолинейных участках цепь часто заменяют стальными штангами. В бортовую проводку включают талрепные стяжки для выборки слабины и амортизирующие буферные пружины, работающие на сжатие.

На рис. 4.1 схематически изображен штуртросовый привод с рычажным румпелем.

Рис. 4.1. Схема штуртросового привода с рычажным румпелем

Румпель 5 представляет собой рычаг, один конец которого жестко насажен на головку баллера руля О. Ко второму концу румпеля присоединен штуртрос 4, выполненный из цепи или стального троса. Штуртрос проходит по направляющим блокам 2 и навивается на барабан 1. При вращении барабана один конец штуртроса навивается и тянет за собой румпель, который поворачивает руль, а второй конец в это время сматывается с барабана. Для смягчения толчков от ударов волн о перо руля в системе штуртроса предусмотрены пружинные амортизаторы 3.

Недостатком описанного рулевого привода является появление неизбежной слабины в штуртросах. Это приводит к неточности перекладки руля, так как при перемене направления вращения штуртросового барабана сначала будет выбираться слабина, т. е. будет мертвый ход.

Провисание штуртроса устранено в штуртросовых приводах с секторным румпелем (рис. 4.2). Замена румпеля сектором позволяет уравнять длины сбегающего и набегающего тросов при перекладке пера руля.


Рис. 4.2. Схема секторного штуртросового привода


Рис. 4.3, Схема секторного зубчатого привода

На внешней стороне сектора 3 имеются две канавки, в которых размещены два противоположных конца штуртроса, закрепленные на ступице в точках 1 и 2. Трос к проушинам крепят через амортизирующие пружины, работающие на сжатие. Провисание штуртроса исключается, так как последний не сходит полностью с сектора при его повороте на углы перекладки руля и обеспечивает постоянство плеча, создающего момент на баллере.

Секторный зубчатый рулевой привод показан на рис. 4.3.

Он состоит из зубчатого сектора 2, свободно сидящего на голове баллера 1 руля, и румпеля 3, жестко укрепленного на баллере. Связь между сектором и румпелем осуществляется с помощью буферных пружин 4, которые предохраняют зубчатую передачу от поломки при ударе волн о перо руля. Зубчатый сектор находится в зацеплении с цилиндрической шестерней 5, вал 6 которой вращается рулевой машиной. Секторный зубчатый привод позволяет осуществлять точную перекладку руля.

Расположение рулевой машины на корме в специальном румпельном отделении обеспечивает надежную связь машины с румпелем, однако при этом требуется довольно длинная кинематическая связь рулевой машины с ходовым мостиком.

В современном судостроении более широко применяются рулевые приводы с жесткой связью. Рулевые машины расположены в непосредственной близости от рулевого привода.

На рис. 4.4 изображен винтовой привод, который может приводиться в действие электродвигателем или ручным штурвалом.


Рис. 4.4. Винтовой привод

Привод состоит из вала 12 с правой и левой резьбами, по которому при вращении движутся в разные стороны ползуны 11 и 4, скользящие вдоль неподвижных направляющих 5 и 10. Тягами 3 и 13 ползуны соединены с концами румпеля 1, насаженного на баллер руля 2. Винтовой вал приводится во вращение червяком 8, сидящим на валу двигателя и находящимся в зацеплении с червячным колесом 7 и парой цилиндрических шестерен 9 и 6. Если при вращении вала ползун 11 пойдет вправо, а ползун 4 - влево, то руль будет перекладываться на правый борт. При обратном движении вала ползуны 11 и 4 будут расходиться и руль будет перекладываться на левый борт.

Рулевой привод такой конструкции часто применяют в качестве запасного ручного привода. Его недостатками являются косвенное влияние конечной длины тяг на точность перемещения ползуна, низкий механический КПД и жесткость соединений.

Назначение технических средств управления

На судах ВВП и их типы.

Основные требования к технических средствам управления для судов внутреннего и смешанного (река-море) плавания определяются правилами Российского речного Регистра (РРР), Федерального органа классификации судов внутреннего и смешанного (река-море) плавания. В этих требованиях учитывается тип и класс судов.

Технических средства управления предназначены для обеспечения движения, управления и удержания судна на заданной линии пути. К ним относятся:

Система управления двигательно–движетельной установкой;

Рулевое устройство;

Якорное и швартовое устройства.

Одним из основных элементов технических средств управления является рулевое устройство.

Рулевое устройство служит для изменения направления движения судна и удержания судна на линии заданного пути.

Оно состоит:

Из органа управления (штурвал, джойстик);

Системой передачи;

Исполнительных элементов.

Управляемость судов обеспечивается с помощью исполнительных элементов рулевых устройств. В качестве исполнительных элементов рулевых устройств на судах ВВП могут применяться:

Рули различных типов;

Поворотные винтовые насадки;

Водометные движетельно-рулевые устройства.

Кроме того на некоторых типах судов могут применяться:

Подрулевающие устройства;

Крыльчатые движетельно-рулевые устройства;

Активные и фланкирующие рули.

Рули судов, их формы и типы.

Наибольшее распространение в качестве исполнительного элемента получили рули различных типов.

В состав руля может входить: перо руля, опоры, подвесы, баллер, румпель и др. вспомогательные устройства (сорлинь, гельмпорт, рудерпис).

Р у л и в зависимости от его формы и расположения оси вращения подразделяют на простые, полубалансирные и балансирные; по количеству опор – на подвесные, одноопорные и многоопорные. У простого руля все перо расположено сзади от оси баллера, у полубалансирного и балансирного рулей часть пера расположена впереди от оси баллера, образуя полубалансирную и балансирую части (рис.4.1).

По форме профиля рули подразделяются на пластичные и обтекаемые (профилированные). Наибольшее распространение на судах внутреннего плавания нашли балансирные обтекаемые прямоугольные рули.

Руль характеризуется: высотой h p – расстоянием, измеренным по оси баллера, между нижней кромкой руля и точкой пересечения оси баллера с верхней частью контура руля; длиной l p руля; смещением Δ l p части площади руля вперед относительно оси баллера (у полубалансирных рулей обычно Δ l p до 1/3 l p , у балансирных Δ l p до 1/2 l p ).

Рис.4.1 Рули

Важнейшей характеристикой пера руля является его суммарная площадь ∑S p . Фактическая площадь руля характеризуется выражением

S p ф = h p · l p (4.1)

Суммарная требуемая площадь руля, обеспечивающая управляемость судна выражается уравнением

S p т = LT (4.2)

где - коэффициент пропорциональности;

L – длина судна;

Т – наибольшая осадку судна.

Для обеспечения управляемости судна требуемая суммарная площадь руля должна быть равна фактической площади руля, т.е.

Рулевое устройство служит для изменения направления движения судна или удерживать его на заданном курсе. В последнем случае задачей рулевого устройства является противодействие внешним силам, таким как ветер или течение, которые могут привести к отклонению судна от заданного курса.

Рулевые устройства известны с момента возникновения первых плавучих средств. В древности рулевые устройства представляли собой большие распашные весла, укрепленные на корме, на одном борту или на обоих бортах судна. Во времена средневековья их стали заменять шарнирным рулем, который помещался на ахтерштевне в диаметральной плоскости судна. В таком виде он и сохранился до наших дней. Рулевое устройство состоит из руля, баллера, рулевого привода, рулевой передачи, рулевой машины и поста управления (рис. 6.1).

Рулевое устройство должно иметь два привода: главный и вспомогательный.
Главный рулевой привод - это механизмы, исполнительные приводы перекладки руля, силовые агрегаты рулевого привода, а также вспомогательное оборудование и средства приложения крутящего момента к баллеру (например, румпель или сектор), необходимые для перекладки руля с целью управления судном в нормальных условиях эксплуатации.
Вспомогательный рулевой привод – это оборудование необходимое для управления судном в случае выхода из строя главного рулевого привода, за исключением румпеля, сектора или других элементов, предназначенных для той же цели.
Главный рулевой привод должен обеспечивать перекладку руля с 350 одного борта на 350 другого борта при максимальной эксплуатационной осадке и скорости переднего хода судна не более чем за 28 секунд.
Вспомогательный рулевой привод должен обеспечивать перекладку руля с 150 одного борта на 150 другого борта не более чем за 60 секунд при максимальной эксплуатационной осадке судна и скорости, равной половине его максимальной эксплуатационной скорости переднего хода.
Управление вспомогательным рулевым приводом должно быть предусмотрено из румпельного отделения. Переход с главного на вспомогательный привод должен выполняться за время, не превышающее 2 минуты.
Руль – основная часть рулевого устройства. Он располагается в кормовой части и действует только на ходу судна. Основной элемент руля – перо, которое по форме может быть плоским (пластинчатым) или обтекаемым (профилированным).
По положению пера руля относительно оси вращения баллера различают (рис. 6.2):
- обыкновенный руль – плоскость пера руля расположена за осью вращения;
- полубалансирный руль – только большая часть пера руля находится позади оси вращения, за счет чего возникает уменьшенный момент вращения при перекладке руля;
- балансирный руль – перо руля так расположено по обеим сторонам оси вращения, что при перекладке руля не возникают какие-либо значительные моменты.

В зависимости от принципа действия различают пассивные и активные рули. Пассивными называются рулевые устройства, позволяющие производить поворот судна только во время хода, точнее сказать, во время движения воды относительно корпуса судна.
Винторулевой комплекс судов не обеспечивает их необходимую маневренность при движении на малых скоростях. Поэтому на многих судах для улучшения маневренных характеристик используются средства активного управления, которые позволяют создавать силу тяги в направлениях, отличных от направления диаметральной плоскости судна. К ним относятся: активные рули, подруливающие
устройства, поворотные винтовые колонки и раздельные поворотные насадки.


Активный руль
– это руль с установленным на нем вспомогательным винтом, расположенным на задней кромке пера руля (рис. 6.3). В перо руля встроен электродвигатель, приводящий во вращение гребной винт, который для защиты от повреждений помещен в насадку. За счет поворота пера руля вместе с гребным винтом на определенный угол возникает поперечный упор, обусловливающий поворот судна. Активный руль используется на малых скоростях до 5 узлов. При маневрировании на стесненных акваториях активный руль может использоваться в качестве основного движителя, что обеспечивает высокие маневренные качества судна. При больших скоростях винт активного руля отключается, и перекладка руля осуществляется в обычном режиме.

Раздельные поворотные насадки
(рис. 6.4). Поворотная насадка – это стальное кольцо, профиль которого представляет элемент крыла. Площадь входного отверстия насадки больше площади выходного. Гребной винт располагается в наиболее узком ее сечении. Поворотная насадка устанавливается на баллере и поворачивается до 40° на каждый борт, заменяя руль. Раздельные поворотные насадки установлены на многих транспортных судах, главным образом речных и смешанного плавания, и обеспечивают их высокие маневренные характеристики.


Подруливающие устройства
(рис. 6.5). Необходимость создания эффективных средств управления носовой оконечностью судна привела к оборудованию судов подруливающими устройствами. ПУ создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства. Подруливающими устройствами оборудовано большое количество судов самого разного назначения. В сочетании с винтом и рулем ПУ обеспечивает высокую маневренность судна, возможность разворота на месте при отсутствии хода, отход или подход к причалу практически лагом.

В последнее время получила распространение электродвижущаяся система AZIPOD (Azimuthing Electric Propulsion Drive), которая включает в себя дизельгенератор, электромотор и винт (рис. 6.6).

Дизель-генератор, расположенный в машинном отделении судна, вырабатывает электроэнергию, которая по кабельным соединениям передается на электромотор. Элетромотор, обеспечивающий вращение винта, расположен в специальной гондоле. Винт находится на горизонтальной оси, уменьшается количество механических передач. Винторулевая колонка имеет угол разворота до 3600, что значительно повышает управляемость судна.
Достоинства AZIPOD:
– экономия времени и средств при постройке;
– великолепная маневренность;
– уменьшается расход топлива на 10 – 20 %;
– уменьшается вибрация корпуса судна;
– из-за того, что диаметр гребного винта меньше – эффект кавитации снижен;
– отсутствует эффект резонанса гребного винта.

Один из примеров использования AZIPOD – танкер двойного действия (рис.6.7), который на открытой воде двигается как обычное судно, а во льдах двигается кормой вперёд как ледокол. Для ледового плавания кормовая часть DAT оснащена ледовым подкреплением для ломки льда и AZIPOD.

На рис. 6.8. показана схема расположения приборов и пультов управления: один пульт для управления судном при движении вперед, второй пульт для управления судном при движении кормой вперед и два пульта управления на крыльях мостика.

Рулевое устройство служит для изменения направления движения судна, обеспечивая перекладку пера руля на некоторый угол в заданный промежуток времени. Основными его частями являются:

· Пост управления;

· Рулевая передача от поста управления к рулевому двигателю:

· Рулевой двигатель;

· Рулевой привод от рулевого двигателя к баллеру руля;

· Руль или поворотная насадка, непосредственно обеспечивающие управляемость судна.

Основные элементы рулевого устройства показаны на рис. 3.10.

Руль - основной орган, обеспечивающий работу устройства. Он действует только на ходу судна и в большинстве случаев располагается в кормовой части. Обычно на судне один руль. Но иногда для упрощения конструкции руля (но не рулевого устройства, которое при этом усложняется) ставят несколько рулей, сумма площадей которых должна быть равной расчетной площади пера руля.

Основной элемент руля - перо. По форме поперечного сечения перо руля может быть: а) пластинчатым или плоским, б) обтекаемым или профилированным.

Рис.3.10 Рулевое устройство

1 – перо руля; 2 – баллер; - 3 – румпель; 4 – рулевая машина с рулевым приводом; 5 – гельмпортовая труба; 6 – фланцевое соединение; 7 – ручной привод.

Преимущество профилированного пера руля в том, что сила давления на него превосходит (на 30% и более) давление на пластинчатый руль, что улучшает поворотливость судна. Отстояние центра давления такого руля от входящей (передней) кромки руля меньше, и момент, необходимый для поворота профилированного руля, также меньше, чем у пластинчатого руля. Следовательно, потребуется и менее мощная рулевая машина. Кроме того, профилированный (обтекаемый) руль улучшает работу винта и создает меньшее сопротивление движению судна.

Форма проекции пера руля на ДП зависит от формы кормового образования корпуса, а площадь - от длины и осадки судна (L и d), У морских судов площадь пера руля выбирается в пределах 1,7-2,5% от погруженной части площади диаметральной плоскости судна. Ось баллера является осью вращения пера руля. Баллер руля в кормовой подзор корпуса входит через гельмпортовую трубу. На верхней части баллера (голове) крепится на шпонке рычаг, называемый румпелем, служащий для передачи вращательного момента от привода через баллер на перо руля.

Судовые рули принято классифицировать по следующим признакам:

По способу крепления пера руля с корпусом судна различают рули:

а) простые - с опорой на нижнем торце руля или со многими опорами на рудерпосте;

б) полуподвесные – с опорой на специальном кронштейне в одной промежуточной точке по высоте руля;

в) подвесные – висящие на баллере.

По положению оси вращения относительно пера руля различают рули:

а) небалансирные – с осью, размещенной у передней (входящей) кромке пера;

б) балансирные – с осью, расположенной на некотором расстоянии от передней кромки руля.

Рис.3.11 Простой небалансирный руль.

Рис.3.12 Полуподвесной небалансирный руль.

Рис.3.13 Подвесной небалансирный руль.

Рис.3.14 Простой балансирный руль.

Рис.3.15 Полуподвесной балансирный руль (полуподвесной)

Рис.3.16 Подвесной балансирный руль.

Рулевой привод предназначается для передачи команд от штурмана из рулевой рубки к рулевой машине в румпельном отделение. Наибольшее применение находят электрическая или гидравлическая передачи. На малых судах применяются валиковые или тросовые приводы, в последнем случае этот привод называют - штуртросовым.

Контрольные приборы следят за положением рулей и -исправным действием всего устройства.

Приборы управления передают приказания рулевому при управлении рулем вручную.

Рулевое устройство - одно из самых важных устройств, обеспечивающих живучесть судна. На случай аварии рулевое устройство имеет дублирующий пост управления рулем, состоящий из штурвала и ручного при­вода, расположенных в румпельном отделении или вблизи от него.

При малых скоростях судна рулевые устройства становятся недостаточно эффективными и порой делают судно совершенно неуправляемым. Для повышения маневренности на современных судах некоторых типов (промысловых, буксирах, пассажирских и специальных судах) устанавливают активные рули, поворотные насадки, подруливающие устройства или крыльчатые движители. Эти устройства позволяют судам самостоятельно выполнять сложные маневры в открытом море, а также проходить без вспомогательных буксиров узкости, входить на акваторию рейда и гавани и подходить к причалам, разворачиваться и отходить от них, экономя на этом время и средства.

Активный руль (рис.3.17) представляет собой перо обтекаемого руля, на задней кромке которого установлена насадка с гребным винтом, приводящимся в движение от валиковой конической передачи, проходящей через пустотелый баллер и вращающийся от электродвигателя, установленного на голове баллера. Существует тип активного руля с вращением винта от электродвигателя водяного исполнения (работающего в воде) вмонтированного в перо руля. При перекладке активного руля на борт, работающий в нем винт создает упор, разворачивающий корму относительно оси поворота судна. При работе гребного винта активного руля на ходу судна скорость судна увеличивается на 2-3 узла. При остановленных главных двигателях от работы гребного винта активного руля судну сообщается малый ход до 5 узл.

Рис.3.17 Активный руль с конической передачей на винт .

Поворотная насадка , установленная вместо руля, при перекладке на борт отклоняет отбрасываемую гребным винтом струю воды, реакция которой вызывает разворот кормовой оконечности судна. Поворотные насадки представляют собой направляющую насадку гребного винта, укрепленную на вертикальном баллере, ось которого пересекается с осью гребного винта в плоскости диска винта (рис.29). Поворотная направляющая насадка является частью движительного комплекса и одновременно служит органом управления, заменяя руль. Выведенная из ДП насадка работает как кольцевое крыло, на котором возникает боковая подъемная сила, вызывающая поворот судна. Возникающий на баллере насадки гидродинамический момент (как на переднем, так и нa заднем ходу) стремится увеличить угол ее перекладки. Чтобы снизить влияние этого отрицательного момента, в хвостовой части насадки устанавливается стабилизатор с симметричным профилем. Угол поворота насадки относительно ДП корабля составляет, как правило, 30-35°.

Рис.3.18. Поворотная насадка.

Подруливающие устройства выполняются обычно ввиде туннелей, проходящих через корпус, в плоскости шпангоута в кормовой и

Рис.3.19 Принципиальная схема подруливающего устройства