» » Как работает система запуска двигателя. Система запуска двигателя автомобиля: электрический пуск ДВС

Как работает система запуска двигателя. Система запуска двигателя автомобиля: электрический пуск ДВС

Использование: в производстве и эксплуатации машин с поршневыми двигателями внутреннего сгорания для создания системы запуска карбюраторных дизельных двигателей. Сущность изобретения: запуск двигателя внутреннего сгорания с запуском вспомогательного пускового двигателя заключается в заполнении цилиндра горючей смесью, ее сжатии и воспламенении, прокручивании вала запускаемого двигателя, в нем перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение начала рабочего хода, объем, отсекаемый поршнем заполняют горячей смесью, сжигают ее, а получаемое давление передают с поршня вспомогательного пускового двигателя на вал запускаемого с начала его рабочего хода. 1 з.п.ф-лы, 3 ил.

Изобретение относится к производству и эксплуатации машин с поршневыми двигателями внутреннего сгорания (ДВС) и может быть применено для создания системы запуска карбюраторных и дизельных двигателей автомобилей, сельскохозяйственных и других машин, а также стационарных двигателей средней мощности. В настоящее время на автомобилях в подавляющем большинстве случаев применяют электростартерный способ запуска ДВС Электростартер обеспечивает удобный запуск без применения мускульной энергии. Однако он не обеспечивает надежный запуск двигателя при низких температурах в виду недостаточно высокой скорости прокручивания вала, которая ограничена стоимостными и массогабаритными показателями стартерной аккумуляторной батареи и электродвигателя. Кроме того стартерная аккумуляторная батарея недолговечна и требует для своего изготовления остродефицитного свинца, а остальное электрооборудование стартера дорогостоящей меди. Так что при имеющихся широких масштабах производства и эксплуатации ДВС, наличие в изделиях указанных материалов уже с трудом обеспечивается природными ресурсами. Наиболее близким по технической сущности к предлагаемому является способ запуска ДВС с помощью вспомогательного пускового ДВС. Он состоит в том, что сначала запускают вспомогательный пусковой ДВС, прокручивая его вал с помощью мускульной энергии или электростартером, а затем, с помощью пускового ДВС прокручивают вал запускаемого ДВС. При этом в пусковом двигателе при пуске его совершают процессы, аналогичные процессам, происходящим при запуске в основном двигателе, а именно: заполняют горючей смесью при давлении, близком к атмосферному, цилиндр, устанавливая поршень в точку, соответствующую концу рабочего хода, сжимают горючую смесь, поднимая т.о. давление до нескольких атмосфер, зажигают горючую смесь после сжатия и совершают рабочий ход. Причем указанные действия при запуске и после запуска пускового двигателя циклически повторяют неоднократно, и уже затем, после прогрева пускового двигателя, когда он, имея сравнительно малый объем цилиндра, становится способным принять на себя нагрузку, его плавно, посредством фрикционной муфты, соединяют с валом запускаемого и увеличивают обороты до величин, требуемых условиями запуска Такой способ запуска, в виде меньшего по сравнению с электроприводом удельного веса ДВС, а также в следствие частичного подогрева масла главного двигателя при работе пускового двигателя, обеспечивает более высокую скорость прокручивания вала запускаемого двигателя в условиях низких температур при приемлемых массогабаритных показателях. Однако при этом способе проблема запуска, связанная с необходимостью прокручивания вала ДВС от постороннего источника энергии, остается. Она лишь перекладывается на двигатель меньшей мощности. И если это прокручивание осуществляется мускульной энергией, например заводным шнурком, то это обуславливает неудобство, дискомфорт и длительное время запуска, неприемлемые, например, для автомобиля и с чем приходится все же мириться при запуске тяжелых мобильных машин. А если прокручивание пускового ДВС осуществляется электростартером, то не исключается необходимость иметь на мобильном средстве стартерную аккумуляторную батарею и мощный электродвигатель со всеми вышеуказанными негативными последствиями. Кроме того, получающая при этом трехкаскадная система двигателей оказывается слишком сложной по конструкции, т.к. уже сам пусковой ДВС классической двухтактной схемы имеет почти все элементы главного запускаемого двигателя, причем часть систем дублирует системы главного двигателя (система газораспределения, кривошипно-шатунный механизм, сцепление), а часть систем является дополнительной (карбюратор, бензобак, система электрического зажигания). Целью изобретения является повышение удобства запуска ДВС путем устранения необходимости в энергичном прокручивании при запуске пускового ДВС, а также обеспечение возможности упрощения конструкции пускового устройства в целом. Предлагается способ запуска ДВС, согласно которому сначала запускают вспомогательный пусковой ДВС, с помощью которого прокручивают вал запускаемого ДВС. Цель достигается следующими отличиями. Перед запуском поршень пускового ДВС устанавливают в точку, соответствующую началу рабочего хода, а также заполняют образуемый при этом поршнем и головкой цилиндра, объем камеры сгорания горючей смесью при атмосферном давлении. Порядок совершения указанных действий не имеет значения. Несущественно также, какой в пусковом двигателе используется механизм для передачи движения поршня на вал запускаемого ДВС. Однако, если при этом используется кривошипно-шатунный механизм, то указанное положение начала рабочего хода следует выбрать после верхней мертвой точки. Затем производят зажигание горючей смеси. Образующееся при этом давление продуктов сгорания с поршня пускового двигателя передают на вал запускаемого ДВС с самого начала первого рабочего хода, и совершают один рабочий ход. При этом поршень пускового ДВС и вал запускаемого ДВС двигаются одновременно с ускорением, в результате чего запускаемый ДВС достигает скорости вращения, требуемой условиями надежного пуска, а поршень пускового ДВС в конце рабочего хода автоматически расцепляется с валом запускаемого ДВС и, имея сравнительно небольшую массу, останавливается при ударе в буферное устройство. В исходное положение поршень возвращают только для совершения следующего запуска. При этом, несмотря на использование в пусковом ДВС малоэффективного в термодинамическом отношении процесса, характеризующегося отсутствием предварительного сжатия горючей смеси, что приводит, по сравнению с известным способом, и снижению КПД и литровой мощности пускового ДВС, как двигателя, процесс запуска ДВС по всему комплексу показателей оказывается более эффективным, т. к. КПД и литровая мощность при одноходовом процессе не являются решающими. Цилиндр при этом можно сделать достаточно большого объема и одновременно тонкостенным, и это обеспечит любые потребные энергии запуска. Зато устраняется необходимость прокручивания пускового ДВС при запуске. Установка поршня на начало рабочего хода осуществляется без противодавления и может быть осуществлена возвратной пружиной. Это исключает необходимость применения мускульной энергии или электростартера. Может быть также упрощена и конструкция пускового ДВС, т.к. кривошипно-шатунный механизм может быть заменен реечным, тросовым, ленточным и т.п. Механизмы газообмена, подачи топлива и зажигания, работающие в статике, также могут быть решены более просто. Поскольку скорость воспламенения предварительно заряженной и находящейся в статическом состоянии без турбулентных потоков, горячей смеси может оказаться недостаточна велика, что может привести к тому, что рабочий ход будет совершен ранее достижения максимального давления газов, в одном из вариантов предлагаемого способа в период нарастания давления газов, начиная от момента зажигания, поршень удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимума давления газов. Этим обеспечивается наиболее полное преобразование тепловой энергии продуктов сгорания в работу по ускорению вала запускаемого ДВС. В технике известны одноходовые ДВС, т.е. такие, весь рабочий цикл которых состоит из одного рабочего хода, минуя ход предварительного сжатия горючей смеси. Особенно это касается наиболее ранних изобретений по ДВС, когда полезная роль сжатия еще не была осознана Однако при переходе к использованию ДВС в качестве пускового двигателя, т.е. в более поздний период времени, логика развития техники увела от мысли использования одноходовых ДВС в виду появления более совершенных ДВС с предварительным сжатием. Эта логика состоит в том, что совершенствуя часть системы, мы совершенствуем и саму систему в целом. Однако в данном случае это утверждение ошибочно. Парадоксальность предлагаемого технического решения, чем и доказывается его неочевидность и соответствие критерию "изобретательский уровень", несмотря на апостериорно кажущуюся очевидную простоту решения, состоит в том, что применение в данном случае в системе менее эффективного процесса в пусковом ДВС приводит к повышению эффективности системы запуска в целом. Это получается вследствие того, что критерии эффективности для двигателя вообще и для пускового двигателя в составе пусковой системы различны, например по КПД, по влиянию литровой мощности на массогабаритные показатели и др. И это не было учтено в существующей технике запуска ДВС. Изобретение поясняется описанием примеров осуществления способа и тремя фигурами. На фиг. 1 изображена схема одного из возможных вариантов пускового ДВС, приспособленного к осуществлению предлагаемого способа. На фиг. 2 показан тот же пусковой ДВС в другой проекции, а также показаны его расположение относительно запускаемого ДВС и связи управления процессом запуска. На фиг. 3 показан тот же пусковой ДВС в третьей проекции. Показаны связи управления клапанами цилиндра. Осуществление предлагаемого способа запуска ДВС рассмотрим на примере с использованием специально приспособленной более простой конструкции вспомогательного пускового ДВС, показанной на фигурах 1 3, хотя в принципе не исключена возможность использования пускового ДВС классической схемы с изменением некоторых конструктивных параметров (объем цилиндра и др.). Перед этим необходимо описать устройство примененного в способе пускового ДВС. Он состоит из цилиндра 1 с поршнем 2. К штоку 3 поршня прикреплен трос 4, намотанный на ролик 5. Последний имеет храповые зубья 6 и возвратную пружину 7. Весь пусковой двигатель выполнен в виде рычага 8, образованного цилиндром 1 и жестко с ним связанным стержнем 9. На конце этого рычага, на оси 10, установлен указанный ролик 5. Сам рычаг 8 с помощью цилиндрического шарнира 11 закреплен на неподвижном основании, общем с основанием запускаемого ДВС 12 так, что зубья 6 при отклонении рычага 8 могут быть введены в зацепление с храповиком 13 вала запускаемого двигателя. За счет сжатой пружины 14 рычаг 8 имеет два устойчивых положения прижатое к храповику 13 двигателя 12 и отведенное от храповика 13 в упор 15. Для вентиляции цилиндра 1 имеется два клапана 16, расположенных в верхней и нижней точках цилиндра и снабженных приводными рычагами 17, срабатывающими от упора в основание всей силовой установки (основание всюду изображено штриховкой около незамкнутой линии). На стержне 8 расположен фиксатор 18 для удержания поршня от преждевременного перемещения и выполненный в виде подпружиненной собачки 19, взаимодействующей со штоком 3 и имеющей регулируемый упор 20, расположенный на основании фиксатора 18. Линия, проходящая через ось 21 собачки и точку a касания собачки со штоком, образует с нормалью к поверхности штока угол, расположенный в пределах конуса трения, что является условием заклинивания штока собачкой. Для подачи горючего имеется поршневой объемный дозатор 22 с винтовой подачей поршня 23 и приводным храповиком 24 для вращения винта. Для выхода жидкости имеется трубка 25, малого внутреннего сечения, подведенная к щели одного из клапанов 16. Причем выходное отверстие трубки 25 расположено выше уровня жидкости в дозаторе 22. Собачка 26 храповика дозатора 22 установлена на рычаге 27, имеющем возвратную пружину 28 и упор 29, ограничивающий ход рычага 27 в регулируемых пределах. Рычаг 27 и рычаг 8 присоединены к концам общего балансира 30, средняя точка которого соединена с ручкой 31 дистанционного управления запуском посредством тяги. Для зажигания, в цилиндре установлен механический фрикционный воспламенитель 32, привод вращения которого также осуществляется дистанционно с помощью ручки 33. Следует также указать на наличие у поршня резинового буфера 34 и штифта 35, служащего для автоматического отключения пускового ДВС в конце рабочего хода поршня. У штока 3 имеется ограничитель хода 36, определяющий точку начала рабочего хода. В задней стенке цилиндра 1 имеется отверстие 37, служащее для воздушного демпфирования движений поршня, а в боковой стенке цилиндра имеется отверстие 38 для стравливания избыточного давления газов в конце рабочего хода. Предлагаемый способ запуска состоит в следующем. Поршень 2 вспомогательного пускового двигателя (фиг. 1) устанавливают в положение, соответствующее началу рабочего хода, как показано на фиг. 1, что осуществляется сразу после выполнения предыдущего запуска автоматически возвратной пружиной 7, наматывающей трос 4 на ролик 5. После этого осуществляют заполнение отсекаемого поршнем 2 в цилиндре 1 объема b горячей смесью. В данном варианте это делается в два этапа. На первом этапе производится вентиляция объема b через клапаны 16 воздухом. Вентиляция осуществляется за счет естественной конвективной тяги от тепла предыдущего запуска, чему способствует наличие двух клапанов 16, расположенных в верхней и нижней точках объема b. Для вентиляции используется все время между двумя очередными запусками, т. к. при нерабочем положении рычага 8, когда зубья 6 отведены от храповика 13, рычаги 17 упираются в основание (фиг. 3), и поэтому клапаны 16 открыты. В других конструктивных вариантах пускового двигателя может быть применена принудительная вентиляция объема b, в т.ч. не только воздухом, но и горячей смесью. Однако в любом случае при этом для исключения больших затрат энергии используются низконапорные средства (не более нескольких сотен Паскалей), т.е. в пределах разброса величин абсолютного давления атмосферы), что и позволяет обобщенно говорить, что заполнение объема b горючей смесью производится при атмосферном давлении. Для запуска пускового ДВС может использоваться как жидкое, так и газообразное горючее. Рассмотрим вариант с применением жидкого горючего. Для запуска лучше всего использовать такую горючую жидкость, которая имеет при температуре цилиндра 1 упругость паров не менее 15 o C 20 мм ртутного столба и не имеет при этом шлейфа трудноиспаряющихся фракций с меньшей упругостью паров. В качестве такой жидкости для запуска летом годится, например обычный бензин, этиловый или метиловый спирт, а для запуска зимой легкие фракции бензина (пентан, гексан), метиловый спирт или этиловый эфир. Возможно использование для зимнего запуска бензина и без отгонки низкокипящих фракции, если увеличить вводимую объемную дозу. Однако это потребует корректировать объем подаваемого горючего в цилиндр 1 в зависимости от температуры цилиндра. Подача горючего в цилиндр 1 производится следующим образом. Перед запуском тянут ручку 31 на себя. При этом, поскольку возвратная пружина 28 собачки 26 дозатора 22 слабее силы, необходимой для перевода рычага 8 в другое положение, то сначала движется только рычаг 27 дозатора. В процессе этого движения собачкой 26 осуществляется ввинчивание поршня 23, вытеснение расположенной под ним жидкости через трубку 25 и впрыскивание ее через щель приоткрытого клапана 16 в полость b цилиндра 1. Объем впрыскиваемой жидкости определяется ходом рычага 27, ограничиваемым упором 29, который может быть изменен в зависимости от применяемого горячего (или от температуры, если используется горячее с наличием трудно испаряющихся фракций). Когда при вытягивании ручки 31 рычага 27 дойдет до упора 29, впрыск горячего заканчивается и в движение приходит рычаг 8, который при этом скачком переводится в положение, соответствующее касанию зубьев 6 с храповиком 13. При этом одновременно под действием своих пружин закрываются клапаны 16, т.к. их приводные рычаги 17 перестают упираться в основание (см. фиг. 3). Осуществив таким образом за счет вытягивания ручки 31 все вышеописанные необходимые операции по подготовке пускового двигателя к пуску и выждав время, необходимое для испарения впрыснутого в цилиндр 1 горючего (1 o C 3 сек), производят зажигание горючей смеси, дергая за ручку 33 и вращая т.о. колесико механического фрикционного воспламенителя 32, вырабатывающего искру. Горючая смесь воспламеняется и давление в полости b начинает возрастать. А поскольку фронт горения в условиях спокойной нетурбулизированной газовой среды распространяется со сравнительно небольшой скоростью, то период нарастания давления может составить несколько десятых долей секунды. Чтобы избежать при этом преждевременного перемещения поршня 2 и совместить по времени его движение с максимумом давления, поршень 2 удерживают после зажигания в исходном положении с помощью фиксатора 18. При этом собачка 19, прижимаемая пружиной к штоку 3, заклинивает шток. По мере возрастания давление газов сила трения и сила давления в точке a контакта собачки 19 со штоком 3 возрастают пропорционально, и результирующий вектор силы остается внутри конуса трения. Т.о. шток удерживается собачкой. Однако по мере возрастания давления собачка 19, имеющая надрез С для понижения ее жесткости, а также детали ее крепления, деформируются, что вызывает небольшое перемещение собачки по направлению к упору 20. И при достижении некоторой силы давления, величина которой может регулироваться положением упора 20, собачка дойдет до упора 20. На этом дальнейший рост силы трения и давления в кинематической цепи собачки 19 прекратится и поршень 2 выдернет шток 3. Начнется рабочий ход поршня 2. Упор 20 регулируют так, чтобы выдергивание штока происходило при силе в 1,5 3 раза меньшей максимальной силы давления газов (в зависимости от скорости распространения пламени применяемого горючего). При этом максимум силы давления буде совмещен по времени с движение поршня и работа продуктов сгорания будет максимальная. На начальном этапе рабочего хода, когда скорость еще не велика, происходит натяжение троса 4 и выбор люфта между зубьями 6 и храповиком 13. Затем ускорение передается на вал запускаемого двигателя 12. На протяжение рабочего хода поршня 2 вал запускаемого ДВС 12 совершает примерно один оборот. При этом площадь поршня 2 подобрана так, что к концу рабочего хода газами совершается работа, достаточная для прокручивания вала на один оборот и сообщения ему остаточной кинетической энергии, соответствующей числу оборотов, необходимых для надежного запуска. В данном случае при любых температурах можно получить в конце рабочего хода скорость вращения вала двигателя 12 не меньше числа оборотов холостого хода двигателя, что обеспечивает надежный запуск двигателя. В конце рабочего хода поршень 2, имея скорость порядка 2 4 м/с, ударяется буфером 34 о заднюю стенку цилиндра 1. При этом газы стравливаются через отверстие 38 до давления, определяемого силой возвратной пружины 7. При этом давление уже можно открыть клапаны 16. За счет удара штифта 35 поршня в основание силовой установки, рычаг 8 возвращается в исходное положение. При этом клапаны 16 открываются. Давление в цилиндре 1 падает до атмосферного и пружина 7 возвращает поршень 2 в исходное положение, определяемое упором 36. Спустя несколько секунд, необходимых для вентиляции цилиндра 1, пусковой двигатель готов к проведению следующего запуска. Если же пусковой двигатель не сработал, то вернуть рычаг 8 в исходное положение можно, нажав на ручку 31. Если по каким-либо причинам пусковой двигатель был запущен в холостую - при расцепленном положении зубьев 6 и храповика 13, то разрушения двигателя все равно не произойдет, т.к. сечение отверстия 37 подобрано так, что оно ограничит возрастание скорости поршня 2, если она превышает номинальную, за счет квадратичной зависимости давления в нерабочей полости цилиндра 1 от скорости истечения воздуха из этой полости при движении поршня 2. Приведем основные параметры процесса запуска и конструкции пускового ДВС, разработанного для автомобилей ВАЗ. Объем полости b 1,5 литра. Рабочий ход поршня 150 мм. Диаметр цилиндра 120 мм. Толщина цилиндра 1 мм. Масса всего пускового устройства около 5 кг. Это в 5 раз меньше массы электростартерной системы, которая может быть снята с автомобиля. Пусковой двигатель удобно размещается в моторном отсеке с левой стороны. При этом ось цилиндра 1 располагается наклонно. Тяги управления запуском выведены в салон. Расход горючего на один запуск в пусковом двигателе менее 1 г. Максимальное давление в цилиндре 1 порядка 5 6 атмосфер. При этом к храповику, расположенному на носке коленвала двигателя ВАЗ прикладывается крутящий момент не более 12 кгс/м, т.е. не более момента затяжки храповика. (Штатный храповик заменяется мелкозубчатым). При рабочем ходе поршня 2 совершается работа около 600 дж. Потребная работа запуска при нормальной температуре около 250 дж. Весь избыток энергии идет на увеличение кинематической энергии коленвала. При этом минимальная частота вращения коленвала, получаемая при низких температурах, составляет не менее 750 об/мин, т.е. не менее оборотов холостого хода двигателя. При этом уже выходит на полную мощность штатный электрогенератор двигателя. Однако для обеспечения возможности запуска двигателя совсем без помощи аккумулятора, необходимо решить проблему повышения скорости тока в обмотке возбуждения генератора. Среди других возможных вариантов осуществления способа следует указать на возможность применить вместо задержки поршня турбулизацию горючей смеси при воспламенении. Можно также повысить скорость воспламенения форкамерным зажиганием, распределением воспламенителей по объему и т.п. Таким образом, предлагаемый способ запуска ДВС исключает необходимость в прокручивании пускового ДВС от постороннего источника энергии, что повышает удобство запуска без применении электростартера. Одноходовый процесс в пусковом ДВС позволяет существенно упростить конструкцию пускового устройства по сравнению с применяемым сейчас двухтактным ДВС классической схемы, т.к. кривошипно-шатунный механизм может быть замещен более простым по типу шнурового, а карбюратор, система газораспределения и система зажигания более простыми системами вентиляции, дозированного впрыска и механическим фрикционным воспламенителем, действующим статически без регламентации по времени. Несмотря на пониженные КПД и литровую мощность, масса и габариты пускового двигателя, а также расход топлива на запуск, не только не возрастают, но также могут быть снижены, т. к. запуск проводится всего за один ход поршня. При этом цилиндр не несет практически никакой тепловой нагрузки, а по условиям механической прочности он, даже при объемах в несколько литров, может быть сделан из листовой стали при толщине стенки менее 1 мм. Причем, за счет возможности значительного увеличения объема цилиндра пускового двигателя (до объемов, превышающих суммарный объем цилиндров запускаемого двигателя), значительно возрастают энергетические возможности пускового устройства и обеспечивается надежный запуск ДВС (особенно дизелей) в любых условиях. Растянутость пресса горения по времени при проведении процесса в нетурбулизированной среде не вызывает увеличения теплоотдачи в стенки цилиндра, т.к. определяющей является конвективная теплопередача, а она, в отсутствии турбулизации, в той же мере замедляется. Предлагаемый способ запуска позволит в массовых автомобилях перейти на работу с легкими щелочными аккумуляторами, необходимыми лишь для обеспечения габаритного освещения и формирования системы зажигания при запуске. Это позволит сэкономить свинец и медь, увеличить полезную нагрузку автомобиля, а также повысить степень готовности автомобиля к использованию после длительной стоянки. Источники информации: 1. ж. Изобретатель и рационализатор, N 6, 1989, с. 12. 2. А.В Кузнецов, Устройство и эксплуатация ДВС. М. Высшая школа, 1979, пл. X, стр. 212 216. (прототип) 3. А.В. Моравский, М.А. Файн. Огонь в упряжке. М. Знание. 1990, стр. 69; 77; 78.

Формула изобретения

1. Способ запуска двигателя внутреннего сгорания, включающий запуск вспомогательного пускового двигателя, с помощью которого прокручивают вал запускаемого двигателя внутреннего сгорания, отличающийся тем, что перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение, соответствующее началу рабочего хода, объем, отсекаемый поршнем, заполняют горючей смесью при атмосферном давлении, сжигают горючую смесь, а получаемое давление передают с поршня вспомогательного пускового двигателя внутреннего сгорания на вал запускаемого двигателя внутреннего сгорания с начала его рабочего хода. 2. Способ по п.1, отличающийся тем, что при нарастании давления газов во вспомогательном пусковом двигателе внутреннего сгорания поршень вспомогательного пускового двигателя внутреннего сгорания удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимального давления газов.

Здесь будет предпринята попытка рассказать, как без лишней нервотрепки запустить не новый бензиновый двигатель машины с впрыском топлива.
Начнем издалека. Многие водители, наверное, замечали, что карбюраторные машины по утрам, если они исправны, естественно, заводятся с «пол тыка». А , даже вроде бы и вполне исправные, увы, нет. С «пол-тыка» не получается. Почему такая не справедливость? Попытаемся объяснить, как мы понимаем это безобразие.

У карбюраторных машин приготовляется в карбюраторе и потом по впускному коллектору уже поступает к впускным клапанам и дальше, при открытии клапанов, в цилиндры. При этом значительная часть топлива конденсируется на внутренних стенках впускного коллектора. С этим борются (подогревают коллектор), это вызывает перерасход топлива (при сбросе газа разрежение во впускном коллекторе увеличивается и часть бензина срывается со своего места, обогащая топливную смесь), но при этом есть одна особенность. Утром, перед запуском, весь впускной коллектор заполнен парами бензина. И, следовательно, после начала вращения коленчатого вала, в камеры сгорания сразу станет поступать обогащенная топливная смесь. Вот двигатель сразу и «хватает».

С впрысковыми двигателями сложнее. У них бензина на стенках во впускном коллекторе нет, поскольку топливо подается сразу на впускной клапан и тут же засасывается в цилиндр. Таким образом «запаса» на будущий утренний запуск не создается. И поэтому утром происходит следующее. «видит», что вы запускаете двигатель (пришел сигнал от стартера и датчика оборотов) и что на улице холодно (сигналы с датчиков температуры) и он тут же «понимает», что происходит «холодный запуск». Поэтому по его команде тут же все импульсы управления инжекторами увеличивает по ширине, с тем, чтобы в цилиндры подалось больше бензина, т.е. чтобы двигатель завелся. Как говорят наши автомеханики, включается программа « ». Эта программа может быть (на старых машинах) реализована автономно (тогда будет отдельный инжектор холодного пуска и еще один датчик температуры, называемый датчиком холодного пуска) или программно (в этом случае при запуске компьютер через рабочие инжекторы подает дополнительный объем бензина). Время работы программы холодного пуска (время подачи дополнительного бензина) зависит от температуры двигателя. Но речь идет о секундах. Так вот, что получается. Двигатель уже запускается, широкие импульсы на инжекторы пошли, а бензин в цилиндры не поступает. По той простой причине, что его давления в топливной рейке пока еще нет. И все из-за того, что весь бензин за ночь слился обратно в топливный бак. Это давление в топливной рейке уже через секунду топливный насос поднимет, но к тому времени программа холодного пуска может уже и окончится. Она ведь, чтобы не «залить» свечи зажигания и соблюсти все экологические нормы, длится буквально чуть–чуть, лишь бы обогатить смесь для запуска. Таким образом получается, что двигатель с впрыском топлива, заводящийся сразу же с первой попытки, скорее исключение из общего правила. Есть, конечно, экземпляры, у которых обратный клапан в топливном насосе в отличном состоянии и давление бензина в топливной рейке за ночь почти не падает. Но для наших «пожилых» машин это такая редкость. Большинство же машин заводятся только после нескольких оборотов двигателя. А если аккумуляторная батарея слабая?

Исходя из вышесказанного, рекомендуется следующий порядок запуска двигателей с впрыском топлива. Особенно в утреннее, т.е. наиболее холодное время. Включается зажигание и только на пол секунды включается стартер. В принципе достаточно только «цокнуть» стартером. Дальше надо подождать секунды три, четыре. Дело в том, что каждый раз после выключения стартера (или остановки двигателя), компьютер, согласно встроенной в него программе, заставляет работать мотор топливного насоса еще несколько секунд. И вся топливная система автомобиля при этом прокачивается. И если в этой системе нет давления, оно тут же появится. «Цокнув» стартером, вы заставите топливный насос включиться на несколько секунд и поднять давление в топливной рейке. Включив же стартер, уже с целью запуска, во второй раз, вы снова включите программу «холодного пуска», но давление в топливной рейке уже будет. И холодный двигатель сразу (или почти сразу) запустится. Таким образом, запуская двигатель в два (или в три) приема, вы сэкономите и и свои нервы. И не надо будет «доставать» мастеров в автосервисе своими просьбами отремонтировать двигателю систему холодного запуска. Не нравится? Тогда покупайте или мощный аккумулятор или карбюраторную машину. Или дизельную. Те тоже заводятся лучше, чем впрысковые. Если исправные, конечно.

3.1. Назначение и требования к системам пуска двигателя

Для запуска ДВС необходимо сообщить коленчатому валу вращение с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и горения топлива. Пусковая частота вращения карбюраторных двигателей составляет 40...50 мин -1 . У дизелей частота вращения коленчатого вала должна быть не менее 100... 150 мин -1 , так как при более медленном вращении сжимаемый воздух не нагревается до необходимой температуры.

При пуске необходимо преодолеть момент сопротивления на трение, момент, создаваемый при сжатии рабочей смеси в цилиндрах, и момент инерции вращающихся частей двигателя.

Развиваемый стартером крутящий момент зависит от мощности и конструкции двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения двигателя стартера. Момент сопротивления зависит от окружающей температуры. Изменение температуры влияет на физико-механические свойства материалов (топлива, масла, охлаждающей жидкости). Наибольшие трудности вызывает пуск двигателя при низких температурах вследствие повышения вязкости масла и топлива, снижения его испаряемости. Ухудшение условий для воспламенения и сгорания топливно-воздушной смеси, а также характеристик системы зажигания обусловлено падением напряжения на зажимах аккумуляторной батареи при работе ее в стартерном режиме.

Электрический стартер - машина кратковременного действия. Продолжительность пуска карбюраторного двигателя составляет 10 с, дизеля- 15. В связи с этим тепловые и электромагнитные нагрузки, допускаемые для стартера, значительно выше (в 2 раза), чем для машин, работающих в длительном режиме. Стартер должен обладать большим крутящим моментом для преодоления момента сопротивления двигателя поэтому применяется электродвигатель с последовательным возбуждением. При запуске он развивает больший крутящий момент на валу якоря, чем двигатель с параллельным возбуждением. Вместе с тем, электродвигатель с последовательным возбуждением при холостом ходе увеличивает частоту вращения ротора теоретически до бесконечности. Практически возрастание частоты вращения ротора в этом случае ограничивается наличием механических потерь на трение в подшипниках, щеток на коллекторе и т.п.

В стартерах большой мощности КПД выше, потери на трение относительно меньше, поэтому частота вращения ротора значительно возрастает. Так как диаметр якоря стартера большой мощности также большой, то создается опасность "разноса" якоря при холостом ходе, т.е. вырывания его обмотки из пазов центробежной силой. Поэтому в мощных стартерах для ограничения числа оборотов холостого хода применяют добавочную параллельную обмотку, т.е. смешанное возбуждение. Магнитный поток параллельной обмотки составляет только 4...5% общего магнитного потока, поэтому она мало влияет на характеристики двигателя.

В зависимости от конструкции и принципа действия различают стартеры с инерционным и с принудительным электромеханическим перемещением шестерни привода, с принудительным вводом шестерни в зацепление и с самовыключением ее после пуска двигателя.

Наибольшее распространение получили в настоящее время стартеры с принудительным вводом шестерни и самовыключением ее посла пуска двигателя.

3.2. Устройство стартера

На рис. 3.1 показан разрез автомобильного стартера с электро- магнитным реле и дистанционным управлением.

На одном из концов вала имеется муфта свободного хода 9 с ведущей шестерней 8. Тяговое электромагнитное реле 3 с помощью рычага перемещает шестерню и вводит ее в зацепление с зубчатым венцом маховика двигателя. Одновременно с перемещением шестерни контактным диском 2 замыкается электрическая цепь стартера. Обмотка электромагнитного реле состоит из двух обмоток - втягивающей и удерживающей. Кроме тягового реле стартер имеет реле включения, обмотка которого включена на разность напряжения между батареей и генератором. После пуска, когда генератор начнет работать и разность напряжений между аккумулятором и генератором начнет уменьшаться, реле включения отключает удерживающую обмотку и электромагнит. Тяговое реле стартера 4 выключается, а возвратная пружина 6 выводит шестерню из зацепления с зубчатым венцом маховика двигателя. Одновременно происходит электрическое отключение стартера от батареи.

Корпус стартера и полюсные наконечники изготавливаются из листовой электротехнической стали. Обмотки якоря статора и полюсов из голой медной прямоугольной шины с небольшим количеством витков, изолированных друг от друга бумагой и покрытых лаком.

Рис.3.1. Схема стартера с электромагнитным тяговым реле и дистанционным управлением: 1-контакт зажима; 5-якорь реле; 10-корпус стартера; 11-якорь; 12-обмотка возбуждения; 13-щетка; 14-коллектор; (остальные позиции указаны в тексте)

3.3. Устройство и работа приводных механизмов

Приводной механизм - устройство, обеспечивающее ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска ДВС, передачу необходимого вращающего момента коленчатому валу и предохранение якоря электродвигателя от разноса вращающимся маховиком после пуска двигателя.

Приводные механизмы электростартера с принудительным механическим или электромеханическим перемещением шестерни имеют роликовые фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу двигателя во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска.

Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых ролики заклиниваются в связи с возникновением сил трения в сопряженных деталях.

Муфта свободного хода (рис. 3.2) обеспечивает передачу вращающего момента только с вала якоря на венец маховика и предотвращает вращение якоря от маховика после пуска двигателя.

На шлице во и втулке жестко укреплена ведущая обойма 4. В ней имеются четыре клинообразных паза, в которых установлены ролики 3, отжимаемые в сторону узкой части паза усилием пружины 10 плунжеров 9. Пружина надета на упоры II плунжеров. Шестерня 7 выполнена вместе с ведомой обоймой. Упорные шайбы 5 и 6 ограничивают осевое перемещение роликов 3.

Рис. 3.2. Муфта свободного хода: 1 - кожух, 2- уплотнитель; 8 - пружины (остальные позиции указаны в тексте)

3.4. Принцип работы системы пуска двигателя

Система пуска (рис. 3.3) содержит стартер 1, аккумуляторную батарею 2 и выключатель стартера 3. Стартер состоит из электродвигателя постоянного тока 4, тягового реле 5 и механизма привода 10. Тяговое реле обеспечивает ввод шестерни 12 привода 8 зацепления с венцом маховика 13, а также подключение электрической цепи электродвигателя стартера к аккумуляторной батарее. Механизм привода 10 передает вращение от вала якоря на венец маховика 13 двигателя и предотвращает передачу вращения от маховика на вал якоря после начала работы двигателя.

Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. После пуска частота вращения коленчатого вала достигает порядка 1000 мин -1 . Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000... 15000 мин -1 . Даже при кратковременном увеличении частоты вращения до такого значения возможен разнос якоря. Для предотвращения этого, усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода, которая обеспечивает передачу крутящего момента только в одном направлении от вала якоря к маховику. Шестерня в современных стартерах перемещается электромагнитным включением и дистанционным управлением. Для увеличения крутящего момента на коленчатом валу используется пониженная передача с передаточным числом 10...15.

При замыкании контактов выключателя по обмотке электромагнита протекает ток, и якорь электромагнита 8 втягивается, а соединенный с ним рычаг II перемещает шестерню 12. Одновременно якорь давит на пластину 6, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты.

Рис. 3.3. Принципиальная схема системы пуска

Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться. После пуска двигателя водитель выключает цепь обмотки электромагнита, и шестерня возвращается в исходное положение.

Для обеспечения длительной работоспособности привода и стартера в целом важное значение имеет своевременное отключение стартера. При задержке отключения увеличивается продолжительность работы муфты свободного хода привода, она нагревается, смазка разжижается и вытекает, что приводит к быстрому износу муфты.

Пусковой двигатель, или "пускач", представляет собой двигатель внутреннего сгорания карбюраторного типа мощностью 10 лошадиных сил, который используется для облегчения запуска дизельных тракторов и спецтехники. Подобные устройства ранее устанавливались на все тракторы, однако сегодня на их место пришел стартер.

Устройство пускового двигателя

Конструкция ПД состоит из:

  • Системы питания.
  • Редуктора пускового двигателя.
  • Кривошипно-шатунного механизма.
  • Остова.
  • Системы зажигания.
  • Регулятора.

Остов двигателя состоит из цилиндра, картера и головки цилиндров. Части картера соединены между собой болтами. Штифты очерчивают центр пускового двигателя. Передаточные шестерни защищены специальной крышкой и располагаются в передней части картера, цилиндр - в верхней части. Удвоенные литые стенки создают рубашку, в которую подается вода через патрубок. Колодцы, соединенные двумя продувочными окнами, позволяют смеси поступать в картер.

По своему устройству пусковые двигатели являются двухтактными стартовыми двигателями, идущими в паре с модифицированными дизелями. Двигатели оснащаются однорежимным центробежным регулятором, напрямую подключаемым к карбюратору. Стабильность работы коленвала, как и открытие и закрытие дроссельной заслонки, регулируются в автоматическом режиме. Несмотря на малую мощность (всего 10 лошадиных сил), ПД может вращать коленвал со скоростью 3500 оборотов в минуту.

Принцип работы пускового двигателя

Пускач, как и большинство одноцилиндровых двухтактных двигателей, работает на бензине. ПД оснащается свечами зажигания, и электрическим стартером.

Регулировка и настройка ПД

Стабильная и корректная работа пускача возможна только при правильной настройке всех механизмов и деталей. Сначала настраивается карбюратор посредством установки длины тяги, объединяющей рычаг дроссельной заслонки и регулятор. Регулировка карбюратора осуществляется на низких оборотах.

Следующий этап - настройка оборотов коленчатого вала при помощи пружины. Изменение уровня ее сжатия позволяет отрегулировать количество оборотов. Последними регулируются система зажигания и механизм выключения приводной шестерни.

Двигатель ПД-10

Основной деталью конструкции ПД-10 является чугунный картер, собранный из двух половин. К картеру посредством четырех шпилек крепится чугунный цилиндр, к передней стенке которого прикреплен карбюратор, к задней - глушитель. Чугунная головка закрывает цилиндр сверху, зажигательная искровая свеча ввернута в центральное отверстие. Наклонное отверстие, или краник, предназначается для продувки цилиндра и заливки топлива.

Размещен на шарикоподшипниках и роликовых подшипниках во внутренней полости картера. Шестерня крепится на переднем конце коленчатого вала, а на заднем - маховик. Самоподжимные сальники уплотняют места выхода коленчатого вала из картера. Сам коленчатый вал обладает составной конструкцией.

Система питания представлена воздухоочистителем, топливным баком, карбюратором, фильтром-отстойником, топливопроводом, который соединяет карбюратор и отстойник бачка.

В качестве топлива для однофазного двигателя с пусковой обмоткой используется смесь из дизельного масла и бензина в соотношении 1:15. Одновременно с этим смесь применяется для смазки поверхностей трущихся деталей двигателя.

Система охлаждения двигателя общая с дизелем и является водяной термосифонной.

Система зажигания представлена магнето правого вращения, проводами и свечами. Шестерни коленчатого вала приводятся в действие магнето.

Электрический стартер провоцирует пусковой момент двигателя ПД-10. Маховик соединяется с шестерней стартера специальным венцом и имеет канавку, предназначенную для ручного запуска двигателя.

После запуска двигатель с пусковой обмоткой соединяется посредством механизма передачи с основным двигателем трактора. Механизм передачи состоит из фрикционного многодискового сцепления, автомата включения, обгонной муфты и понижающей шестеренной передачи. В пусковой момент асинхронного двигателя автомат включения цепляет шестерню с зубчатым маховиком, приводя в движение Частота вращения коленчатого вала основного двигателя набирается до тех пор, пока он не начнет самостоятельно работать. После этого активируются сцепление и автомат включения. Пускач останавливается после разрыва электрической цепи.

Для обеспечения корректного пускового момента асинхронного двигателя топливная смесь подается к цилиндрам карбюраторных двигателей системой питания, от которой зависят основные показатели двигателя - экономичность, мощность, токсичность отработанных газов. Система должна содержаться в отличном техническом состоянии при эксплуатации пускачей.

Преимущества пусковых ДВС и предъявляемые к ним требования

Среди достоинств двигателей отмечают возможность подогрева моторного масла в картере при помощи отработанных газов и прогрева охлаждающей системы посредством циркуляции охлаждающей жидкости через рубашку охлаждения.

Карбюраторные двигатели принципиально отличаются от других моторов системой питания, включающей топливную систему и устройства, обеспечивающее его питание воздухом.

Основные требования, предъявляемые к карбюраторам:

  • Быстрый и надежный пуск двигателя.
  • Тонкое распыление топлива.
  • Обеспечение быстрого и надежного запуска двигателя.
  • Точное дозирование горючего для обеспечения отличных мощностных и экономических показателей во всех режимах работы двигателя.
  • Возможность плавного и быстрого изменения режима работы двигателя.

Техническое обслуживание ПД

Техническое обслуживание пускача заключается в регулировке зазоров между контактами прерывателя магнето и электродами свечи зажигания. А также в диагностике и осмотре пусковой рабочей обмотки двигателя.

Проверка зазоров между электродами

Свечу зажигания выкручивают, отверстие закрывают заглушкой. Нагар на свече устраняют ее помещением на несколько минут в ванночку с бензином. Изолятор очищают специальной щеткой, корпус и электроды - металлическим скребком. Зазор между электродами проверяют щупом: его величина должна быть в пределах 0,5-0,75 миллиметра. Регулировка зазора осуществляется подгибанием бокового электрода в случае необходимости.

Исправность свечи проверяется посредством ее подключения к магнето проводами и прокручиванием коленчатого вала до появления искры. После проверки и обслуживания свеча возвращается на место и закручивается.

Проверка зазора между контактами прерывателя

Детали прерывателя протираются мягкой тканью, смоченной в бензине. Нагар, образовавшийся на поверхности контактов, зачищается надфилем. Коленчатый вал двигателя прокручивается до максимального размыкания контактов. Измерение зазора осуществляется специальным щупом. Если возникает необходимость в регулировке зазора, то при помощи отвертки ослабляется затяжка винта и крепления стойки. Фитиль кулачка смачивается несколькими каплями чистого моторного масла.

Регулировка момента зажигания

Момент зажигания пускового двигателя регулируется после выкручивания свечи зажигания. В отверстие цилиндра опускается глубомер штангенциркуля. Минимальное расстояние до днища поршня показывается глубомером в момент поворота коленчатого вала и поднятия поршня в верхнюю мертвую точку. После этого коленвал проворачивается в обратную сторону, а поршень опускается ниже мертвой точки на 5,8 миллиметра. Контакты прерывателя магнето должны при этом размыкаться кулачком ротора. Если этого не происходит, то магнето поворачивается до размыкания контактов и фиксируется в данном положении.

Регулировка редуктора

Техническое обслуживание редуктора пускача заключается в его регулярном смазывании и настройке механизма включения. Муфта редуктора начинает пробуксовывать при регулировке механизма включения в случае чрезмерного износа дисков. Признаками этого является перегрев муфты и слишком медленное вращение коленчатого вала при запуске.

Механизм включения редуктора регулируется при запуске пусковой шестерни посредством поворота рычага вправо и снятия пружины. Под действием пружины рычаг возвращается в крайнее левое положение и включает сцепление редуктора. При этом угол между вертикалью и рычагом должен составлять 15-20 градусов.

Рычаг переставляется на шлицах валика в случае, если угол не соответствует указанной норме. Он перемещается из крайнего левого в крайнее правое положение под действием оттяжной пружины. Положение рычага регулируется вилками тяги таким образом, чтобы он располагался в горизонтальном положении, после чего устанавливается пружина. Левый конец прорези серьги при правильной регулировке должен соприкасаться с пальцем рычага, а сам палец - с правым концом прорези серьги с небольшим зазором. На серьге метками ограничена зона, в пределах которой должен находиться палец рычага при включенной муфте редуктора.

Правильно отрегулированный привод обеспечивает включение пусковой шестерни при поднятии рычага в верхнее крайнее положение и включении муфты редуктора при переходе в крайнее нижнее положение. При включении шестерни должна включаться муфта редуктора, что является обязательным условием.

Регулировка механизма включения редуктора

Механизм включения редуктора регулируется посредством перевода рычага управления муфтой во включенное положение его поворотом до упора против часовой стрелки. Отклонение рычага от вертикали не должно превышать 45-55 градусов.

Для регулировки угла без изменения валика выкручивают болты, рычаг снимают со шлицев и устанавливают в требуемом положении, после чего болты закручивают. Пусковая шестерня, или бендикс, должна находиться в выключенном положении, для чего рычаг проворачивается против часовой стрелки без перемещений.

Длина тяги регулируется резьбовой вилкой таким образом, чтобы она надевалась на рычаги. Палец рычага пусковой шестерни при этом должен занимать крайнее левое положение прорези. Максимальный зазор между пальцем и прорезью не должен превышать 2 миллиметров. Пальцы шплинтуют после установки тяги, затем затягивают контргайки вилки. Рычаг возвращают в вертикальное положение и соединяют с тягой. Муфта регулирует длину тяги.

После регулировки механизма необходимо убедиться в том, что рычаг перемещается без заедания. Работа механизма проверяется при запуске. Пусковая шестерня не должна скрежетать во время работы пускового двигателя.

При правильной регулировке и настройке всех механизмов и деталей обеспечивается стабильная работа двигателя.

Система запуска двигателя автомобиля осуществляет первичное вращение ДВС, в результате чего происходит воспламенение топливно-воздушной смеси в цилиндрах и силовой агрегат начинает работать самостоятельно.

Далее коленчатый вал начинает вращаться самостоятельно, то есть двигатель запускается, обороты коленвала увеличиваются, вращение вала становится возможным благодаря преобразованию тепловой энергии сгорания топлива в механическую работу. Как только обороты коленвала достигают определенной частоты, происходит автоматическое отключение системы запуска.

В этой статье мы рассмотрим, как работает электрическая система пуска двигателя, из каких какие основных элементов она состоит, а также поговорим о том, какие еще бывают системы запуска , кроме электрических решений.

Читайте в этой статье

Система пуска двигателя: конструктивные особенности и принцип действия электрического запуска ДВС

Начнем с того, что на раннем этапе двигатели автомобиля запускались вручную. Для этого использовалась особая заводная рукоятка, которая вставлялась в специальное отверстие, после чего водитель самостоятельно проворачивал коленчатый вал.

В дальнейшем появилась система электрического пуска, которая в самом начале была не совсем надежной. По этой причине на многих моделях электрический пуск комбинировали с возможностью ручного запуска, что давало возможность запустить двигатель в случае возникновения проблем с электрозапуском. Затем от такой схемы полностью отказались, так как общая надежность электрических систем значительно возросла.

Итак, система запуска (часто называется стартерная система пуска двигателя) состоит из механических и электрических узлов и агрегатов. Как уже было сказано, главной задачей является проворачивание двигателя для запуска.

Основными элементами в схеме электрического пуска двигателя выступают:

  • стартерная цепь;
  • стартер;
  • аккумулятор;

В двух словах, стартерная цепь фактически является электроцепью, по которой электрический ток подается от к стартеру. В такую цепь входит провод, который соединяет аккумулятор и стартер, «масса» на кузов автомобиля, а также различные клеммы и соединения, по которым идет пусковой ток.

Что касается аккумулятора, основной задачей является обеспечение необходимого напряжения для работы стартера. Важно, чтобы , что позволяет стартеру прокручивать коленвал ДВС с необходимой для запуска частотой.

Стартер представляет собой электромотор. На валу стартера установлена шестерня, которая после подачи напряжения на стартер входит в зацепление с зубчатым венцом на . Так реализована передача крутящего момента от стартера на коленвал двигателя.

Еще отметим, что стартер потребляет большой пусковой ток. При этом для включения и выключения стартера используется слаботочный переключатель, более известный как замок зажигания. Данный элемент осуществляет управление специальным реле, а также блокировочными выключателями стартера (при наличии).

Вернемся к общему устройству элементов системы. Как уже говорилось, стартер с тяговым реле представляет собой электродвигатель постоянного тока. Стартер состоит из статора, который является корпусом, ротора (якорь), а также щеток со щеткодержателем, тягового реле и механизма привода.

Тяговое реле обеспечивает питание обмоток стартера, а также позволяет работать механизму привода. Указанное тяговое реле включает в себя обмотку, якорь, контактную пластину. Электрический ток подается на тяговое реле через специальные контактные болты.

Механизм привода нужен для передачи крутящего момента от стартера на коленвал. Основными элементами конструкции является рычаг привода или вилка, которая имеет поводковую муфту, демпферная пружина, а также обгонная муфта и ведущая шестерня. Указанная шестерня входит в зацепление с зубчатым венцом маховика, который установлен на коленвалу. Замок зажигания после поворота ключа в положение «старт» отвечает за подачу постоянного тока от АКБ на тяговое реле стартера.

Принцип работы системы электрического запуска ДВС

Система электрического запуска стоит на различных типах двигателей ( , бензиновые, дизельные, роторно-поршневые, газовые и т.д.)

Общий принцип работы заключается в следующем:

После того, как водитель поворачивает ключ в замке зажигания, электрический ток от АКБ подается на контакты тягового реле (на втягивающее стартера). В то время, когда ток начинает проходить по обмоткам тягового реле, осуществляется втягивание якоря. Указанный якорь перемещает рычаг механизма привода, в результате осуществляется зацепление ведущей шестерни и зубчатого венца маховика.

Параллельно якорь замыкает контакты реле, благодаря чему реализуется питание электрическим током обмоток статора и якоря. Это позволяет стартеру вращаться, передавая крутящий момент на коленчатый вал.

После запуска двигателя обороты коленвала увеличиваются. В этот момент срабатывает обгонная муфта, отсоединяющая стартер от двигателя, при этом стартер еще продолжает свое вращение. Затем при помощи возвратной пружины тягового реле происходит обратное перемещение якоря. Это позволяет вернуть механизм привода в обратное положение.

Кстати, если говорить о различных штатных блокировках стартера при запуске двигателя, такие решения встречаются, однако не на всех моделях авто. Основной задачей является повышение комфорта эксплуатации и безопасности. Если просто, стартер не будет работать, пока водитель не выжмет сцепление или не включит нейтральную передачу перед запуском двигателя.

Наличие такой блокировки позволяет избежать рывков и случайного перемещения ТС, что часто случается, когда водитель начинает заводить двигатель от стартера с включенной передачей.

Система воздушного пуска двигателя

Система воздушного пуска является еще одним решением, которое позволяет прокручивать коленчатый вал ДВС. Для запуска мотора используется сжатый воздух. При этом такое пневматическое оборудование, как правило, на автомобилях и другой технике не используется, однако пусковые системы данного типа можно встретить на стационарных двигателях внутреннего сгорания.

Если говорить о конструкции, устройство системы воздушного пуска двигателя предполагает наличие следующих элементов:

  • воздушный баллон;
  • электроклапаны;
  • маслоотстойник;
  • обратный клапан;
  • воздухораспределитель;
  • пусковые клапаны;
  • трубопроводы;

Принцип работы системы воздушного запуска ДВС основан на том, что сжатый в воздушном баллоне воздух под давлением подается в коробку-распределитель, далее проходит через фильтры в редуктор и поступает к электропневмоклапану.

Далее необходимо нажать кнопку «пуск», после чего клапан открывается, затем воздух из воздухораспределителя проходит через пусковые клапаны и попадает в цилиндры двигателя, создавая давление и раскручивая коленвал. Когда обороты достигают нужной частоты, двигатель запускается.

Добавим, что такие силовые установки дополнительно оснащены электрической системой пуска от стартера, что позволяет завести агрегат в том случае, если с воздушным пуском, который является основным способом, имеются какие-либо проблемы или произошла поломка.

Необходимо учитывать, что электрическая система пуска двигателей обычно предполагает то, что мощность АКБ и стартера будут практически одинаковыми. Это значит, что напряжение аккумулятора в значительной степени меняется с учетом того тока, который потребляет стартер.

Простыми словами, на эффективность и легкость запуска ДВС сильно влияет общее состояние АКБ, температура аккумулятора, уровень заряда, а также исправность стартера и стартерной цепи. Диагностировать некоторые проблемы на раннем этапе позволяют такие признаки, как явное затухание габаритов и подсветки панели приборов в момент пуска двигателя.

Как известно, яркость ламп зависит от напряжения в бортовой сети. При этом нормально работающая система пуска не должна сильно «просаживать» напряжение. Отметим, что в норме допускается снижение яркости приборной панели и, в ряде случаев, перезапуск магнитолы, однако яркость не должна сильно понижаться.

Если же яркость освещения не меняется, при этом коленвал также не крутится, зачастую уместно говорить об обрыве в цепи. Если стартер крутит медленно и освещение практически гаснет, тогда , так и с электроцепями или АКБ.

Еще отметим, что в случае проблем с запуском, которые связаны со стартером, некоторые водители привыкли стучать по данному устройству. Дело в том, что такие постукивания на старых моделях стартеров (например, на «классике» ВАЗ) в некоторых случаях позволяли сместить щетки стартера, ротора и т.д. В результате удавалось на короткое время восстановить работоспособность устройства.

При этом важно понимать, что современные стартеры в своем устройстве имеют постоянные магниты. Указанный магниты весьма хрупкие, то есть после удара по стартеру происходит их раскалывание.

В конечном итоге цельный магнит разрушается. Более того, такие магниты на некоторых моделях стартеров могут быть просто приклеены к корпусу. Соответственно, если ударять по корпусу сильно, отколовшиеся части магнита попадают на ротор или в область установки подшипников, полностью выводя стартер из строя.

Читайте также

Почему стартер может не работать после поврота ключа в замке зажигания. Основные причины неисправностей стартера: бендикс, тяговое реле, щетки, обмотка.

  • Как быстро завести двигатель при разряженной АКБ. Особенности и преимущества использования автономного пускозарядного устройства. Советы при выборе бустера.


  •