» » Двигатель внешнего сгорания на автомобиле. Найдут ли двигатели Стирлинга применение в российской экономике? "Стирлинг" от компании GM

Двигатель внешнего сгорания на автомобиле. Найдут ли двигатели Стирлинга применение в российской экономике? "Стирлинг" от компании GM

Обострение глобальных проблем, требующих срочного решения (истощение природных ресурсов, загрязнение окружающей среды и т. д.), привело в конце XX века к необходимости принятия ряда международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, ресурсо- и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д.

Одним из перспективных путей решения этих задач является разработка и широкое внедрение энергопреобразующих систем на основе двигателей (машин) Стирлинга. Принцип работы таких двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая мощность равна максимальной мощности тепловых машин (цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа при его охлаждении. Двигатель содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно имеющей температуру окружающей среды) и «горячей» частью, которая нагревается за счет сжигания различного топлива или за счет других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания (ДВПТ). Поскольку, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура и при отсутствии газораспределительного механизма клапанов.

Необходимо отметить, что за рубежом уже начато производство двигателей Стирлинга, технические характеристики которых превосходят ДВС и газотурбинные установки (ГТУ). Так, двигатели Стирлинга фирм «Philips», «STM Inc.», «Daimler Benz», «Solo», «United Stirling» мощностью от 5 до 1200 кВт имеют к.п.д. более 42%, рабочий ресурс более 40 тыс. часов и удельную массу от 1,2 до 3,8 кг/кВт.

В мировых обзорах по энергопреобразующей технике двигатель Стирлинга рассматривается как наиболее перспективный в XXI веке. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на различных топливах, большой ресурс, хорошие характеристики крутящего момента - все это делает двигатели Стирлинга более конкурентоспособными в сравнении с ДВС.

Где могут применяться двигатели Стирлинга?

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) могут найти применение в регионах России, где нет запасов традиционных энергоносителей – нефти и газа. В качестве топлива можно использовать торф, древесину, сланцы, биогаз, уголь, отходы сельского хозяйства и лесоперерабатывающей промышленности. Соответственно, исчезает проблема с энергообеспечением многих регионов.

Такие энергетические установки экологически чисты, так как концентрация вредных веществ в продуктах сгорания почти на два порядка ниже, чем у дизельных электростанций. Поэтому стирлинг-генераторы можно устанавливать в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии. Генератор мощностью 100 кВт может обеспечить электроэнергией и теплом любой населенный пункт с населением более 30-40 человек.

Автономные энергетические установки с двигателями Стирлинга найдут широкое применение и в нефтегазовой промышленности РФ при освоении новых месторождений (особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ). В качестве топлива здесь можно использовать неочищенный природный газ, попутный нефтяной газ и газовый конденсат.

Сейчас в РФ ежегодно пропадает до 10 млрд. куб. м попутного газа. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава. Чтобы газ не загрязнял атмосферу, он попросту сжигается. В то же время его использование в качестве моторного топлива даст существенный экономический эффект.

Энергоустановки мощностью 3-5 кВт целесообразно использовать в системах автоматизации, связи и катодной защиты на магистральных газопроводах. А более мощные (от 100 до 1000 кВт) - для электро- и теплоснабжения больших вахтовых поселков газовиков и нефтяников. Установки свыше 1 тыс. кВт могут применяться на наземных и морских буровых объектах нефтегазовой промышленности.

Проблемы создания новых двигателей

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий к.п.д. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат был разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с к.п.д. до 15%. Лишь к 1953 году голландской фирмой «Филипс» были созданы первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

В России попытки создания отечественных двигателей Стирлинга предпринимались неоднократно, однако успеха не имели. Есть несколько основных проблем, сдерживающих их разработку и широкое применение.

Прежде всего это создание адекватной математической модели проектируемой машины Стирлинга и соответствующего метода расчета. Сложность расчета определяется сложностью реализации термодинамического цикла Стирлинга в реальных машинах, обусловленной нестационарностью тепломассового обмена во внутреннем контуре - вследствие непрерывного движения поршней.

Отсутствие адекватных математических моделей и методов расчета - главная причина неудач ряда зарубежных и отечественных предприятий в разработке как двигателей, так и холодильных машин Стирлинга. Без точного математического моделирования доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования.

Еще одна проблема заключается в создании конструкций отдельных узлов, сложностях с уплотнениями, регулированием мощности и т.д. Трудности конструктивного исполнения обусловлены применяемыми рабочими телами, в качестве которых используется гелий, азот, водород и воздух. Гелий, например, обладает сверхтекучестью, что диктует повышенные требования к уплотняющим элементам рабочих поршней, и т. д.

Третья проблема - высокий уровень технологии производства, необходимость применения жаростойких сплавов и металлов, новых методов их сварки и пайки.

Отдельный вопрос - изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой - низкого гидравлического сопротивления.

Отечественные разработки машин Стирлинга

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Особое внимание в ходе исследований уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также созданию новых принципиальных схем установок различного функционального назначения. Предлагаемые технические решения с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить экономическую эффективность применения новых двигателей по сравнению с традиционными преобразователями энергии.

Производство двигателей Стирлинга является экономически целесообразным с учетом практически неограниченного спроса на экологически чистое и высокоэффективное энергетическое оборудование как в России, так и за рубежом. Однако без участия и поддержки государства и крупного бизнеса проблема их серийного производства не может быть решена в полном объеме.

Как помочь производству двигателей Стирлинга в России?

Очевидно, что инновационная деятельность (особенно освоение базисных инноваций) - сложный и рискованный вид хозяйственной деятельности. Поэтому она должна опираться на механизм государственной поддержки, особенно «на старте», с последующим переходом на обычные рыночные условия.

Механизм создания в России крупномасштабного производства машин Стирлинга и энергопреобразующих систем на их основе мог бы включать:
- прямое долевое бюджетное финансирование инновационных проектов по машинам Стирлинга;
- косвенные меры поддержки за счет освобождения продукции, выпускаемой по стирлинг-проектам, от НДС и других налогов федерального и регионального уровней в течение первых двух лет, а также предоставление налогового кредита по такой продукции на последующие 2-3 года (учитывая, что издержки освоения принципиально новой продукции нецелесообразно включать в ее цену, т.е. в расходы производителя или потребителя);
- исключение из налогооблагаемой базы по налогу на прибыль вклада предприятия в финансирование стирлинг-проектов.

В дальнейшем, на этапе устойчивого продвижения энергетического оборудования на основе машин Стирлинга на внутреннем и внешнем рынках, восполнение капиталов для расширения производства, технического переоснащения и поддержки очередных проектов по производству новых типов оборудования может осуществляться за счет прибыли и продажи акций успешно освоенного производства, кредитных ресурсов коммерческих банков, а также привлечения иностранных инвестиций.

Можно предположить, что благодаря наличию технологической базы и накопленного научного потенциала в проектировании машин Стирлинга, при разумной финансовой и технической политике Россия может уже в ближайшем будущем стать мировым лидером в области производства новых экологически чистых и высокоэффективных двигателей.



Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина - главный соперник бензинового мотора - обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и "всеядностью" паровой установки. Это - знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).

Физика процесса

Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду - цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5-7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».
Однако попытки увеличить мощность до 250 л. с. окончились полным провалом. Машина с цилиндром диаметром 4,2 метра развивала меньше 100 л. е., огневые камеры прогорели, и судно, на котором были установлены двигатели, погибло.
Инженеры без сожаления распрощались с этими слабосильными мастодонтами как только появились мощные, компактные и легкие бензомоторы и дизели. И вдруг, в 1960-е, спустя почти 80 лет о «стирлингах» и «эриксонах» (будем условно называть их так по аналогии с дизелем) заговорили как о грозных соперниках двигателей внутреннего сгорания. Разговоры эти не утихают и поныне. Чем же объясняется такой крутой поворот во взглядах?

Цена методичности

Когда узнаешь о старой технической идее, возродившейся в современной технике, сразу же возникает вопрос: что же препятствовало ее осуществлению раньше? В чем состояла та проблема, та «зацепка», без решения которой она не могла проложить себе дорогу в жизнь? И почти всегда выясняется, что своим возрождением старая идея обязана либо новому технологическому методу, либо новой конструкции, до которой не додумались предшественники, либо новому материалу. Двигатель внешнего сгорания можно считать редчайшим исключением.
Теоретические расчеты показывают, что к.п.д. «стирлингов» и «эриксонов» могут достигать 70 процентов - больше, чем у любого другого двигателя. А это значит, что неудачи предшественников объяснялись второстепенными, в принципе устранимыми факторами. Правильный выбор параметров и областей применения, скрупулезное исследование работы каждого узла, тщательная обработка и доводка каждой детали позволили реализовать преимущества цикла. Уже первые экспериментальные образцы дали КПД 39 процентов! (к.п.д. бензиновых двигателей и дизелей, которые отрабатывались годами, соответственно 28-30 и 32-35 процентов.) Какие же возможности «просмотрели» в свое время и Стирлинг и Эриксон?
той самой емкости, в которой попеременно то запасается, то отдается тепло. Расчет регенератора в те времена был просто невозможен: науки о теплопередаче не существовало. Его размеры принимались на глазок, а как показывают расчеты, КПД двигателей внешнего сгорания очень сильно зависит от качества регенератора. Правда, его плохую работу можно в определенной степени компенсировать повышением давления.
Вторая причина неуспеха была в том, что первые установки работали на воздухе при атмосферном давлении: их размеры получались огромными, а мощности - малыми.
Доведя к.п.д. регенератора до 98 процентов и заполнив замкнутый контур сжатым до 100 атмосфер водородом или гелием, инженеры наших дней увеличили экономичность и мощность «стирлингов», которые даже в таком виде показали к.п.д. более высокий, чем у двигателей внутреннего сгорания.
Уже одного этого было бы достаточно, чтобы говорить об установке двигателей внешнего сгорания на автомобилях. Но только высокой экономичностью отнюдь еще не исчерпываются достоинства этих возрожденных из забвения машин.

Как работает Стирлинг



Принципиальная схема двигателя внешнего сгорания :
1 - топливная форсунка;
2 - выпускной патрубок;
3 - элементы воздухоподогревателя;
4 - подогреватель воздуха;
5 - горячие газы;
6 - горячее пространство цилиндра;
7 - регенератор;
8 - цилиндр;
9 - ребра охладителя;
10 - холодное пространство;
11 - рабочий поршень;
12 - ромбический привод;
13 - шатун рабочего поршня;
14 - синхронизирующие шестерни;
15 - камера сгорания;
16 - трубки нагревателя;
17 - горячий воздух;
18 - поршень-вытеснитель;
19 - воздухоприемник;
20 - подвод охлаждающей воды;
21 - уплотнение;
22 - буферный объем;
23 - уплотнение;
24 - толкатель поршня-вытеснителя;
25 - толкатель рабочего поршня;
26 - ярмо рабочего поршня;
27 - палец ярма рабочего поршня;
28 - шатун поршня-вытеснителя;
29 - ярмо поршня-вытеснителя;
30 - коленчатые валы.
Красный фон - контур нагрева ;
точечный фон - контур охлаждения

В современной конструкции «стирлинга», работающего на жидком топливе, - три контура, имеющих между собой лишь тепловой контакт. Это контур рабочего тела (обычно водорода или гелия), контур нагрева и контур охлаждения. Главное назначение контура нагрева - поддерживать высокую температуру в верхней части рабочего контура. Контур охлаждения поддерживает низкую температуру в нижней части рабочего контура. Сам контур рабочего тела замкнут.
Контур рабочего тела . В цилиндре 8 движутся два поршня - рабочий 11 и поршень-вытеснитель 18. Движение рабочего поршня вверх приводит к сжатию рабочего тела, движение его вниз вызывается расширением газа и сопровождается совершением полезной работы. Движение поршня-вытеснителя вверх выжимает газ в нижнюю, охлаждаемую полость цилиндра. Движение же его вниз соответствует нагреванию газа. Ромбический привод 12 сообщает поршням перемещение, соответствующее четырем тактам цикла ({на схеме показаны эти такты).
Такт I - охлаждение рабочего тела. Поршень-вытеснитель 18 движется вверх, выжимая рабочее тело через регенератор 7, в котором запасается тепло нагретого газа, в нижнюю, охлаждаемую часть цилиндра. Рабочий поршень 11 находится в НМТ.
Такт II - сжатие рабочего тела. Энергия, запасенная в сжатом газе буферного объема 22, сообщает рабочему поршню 11 движение вверх, сопровождающееся сжатием холодного рабочего тела.
Такт III - нагревание рабочего тела. Поршень-вытеснитель 18, почти примкнув к рабочему поршню 11, вытесняет газ в горячее пространство через регенератор 7, в котором к газу возвращается тепло, запасенное при охлаждении.
Такт IV - расширение рабочего тела - рабочий такт. Нагреваясь в горячем пространстве, газ расширяется и совершает полезную работу. Часть ее запасается в сжатом газе буферного объема 22 для последующего сжатия холодного рабочего тела. Остальное снимается с валов двигателя.
Контур нагрева . Воздух вентилятором нагнетается в воздухоприемник 19, проходит через элементы 3 подогревателя, нагревается и попадает в топливные форсунки. Получившиеся горячие газы нагревают трубки 16 нагревателя рабочего тела, обтекают элементы 3 подогревателя и, отдав свое тепло воздуху, идущему на сжигание топлива, выбрасываются через выпускной патрубок 2 в атмосферу.
Контур охлаждения . Вода через патрубки 20 подается в нижнюю часть цилиндра и, обтекая ребра 9 охладителя, непрерывно охлаждает их.

"Стирлинги" вместо ДВС

Первые же испытания, проведенные пол-века назад, показали, что «стирлинг» почти идеально бесшумен. У него нет карбюратора, форсунок с высоким давлением, системы зажигания, клапанов, свечей. Давление в цилиндре, хотя и повышается почти до 200 атм, но не взрывом, как в двигателе внутреннего сгорания, а плавно. На двигателе не нужны глушители. Ромбовидный кинематический привод поршней полностью уравновешен. Никаких вибраций, никакого дребезжания.
Говорят, что, даже приложив руку к двигателю, не всегда удается определить, работает он или нет. Эти качества автомобильного двигателя особенно важны, ибо в крупных городах остро стоит проблема снижения шума.
А вот другое качество - «всеядность». По сути дела, нет такого источника тепла, который не годился бы для привода «стирлинга». Автомобиль с таким двигателем может работать на дровах, на соломе, на угле, на керосине, на ядерном горючем, даже на солнечных лучах. Он может работать на теплоте, запасенной в расплаве какой-нибудь соли или окисла. Например, расплав 7 литров окиси алюминия заменяет 1 литр бензина. Подобная универсальность не только сможет всегда выручить водителя, попавшего в беду. Она разрешит остро стоящую проблему задымления городов. Подъезжая к городу, водитель включает горелку и расплавляет соль в баке. В черте города топливо не сжигается: двигатель работает на расплаве.
А регулирование? Чтобы сбавить мощность, достаточно выпустить из замкнутого контура двигателя в стальной баллон нужное количество газа. Автоматика сразу же уменьшает подачу топлива так, чтобы температура оставалась постоянной независимо от количества газа. Для повышения мощности газ нагнетается из баллона снова в контур.
Вот только по стоимости и по весу «стирлинги» пока уступают двигателям внутреннего сгорания. На 1 л. с. у них приходится 5 кг, что намного больше, чем у бензинового и дизельного моторов. Но не следует забывать, что это еще первые, не доведенные до высокой степени совершенства модели.
Теоретические расчеты показывают, что при прочих равных условиях "стирлинги" требуют меньших давлений. Это - важное достоинство. И если у них найдутся еще и конструктивные преимущества, то не исключено, что именно они окажутся самым грозным соперником двигателей внутреннего сгорания в автомобилестроении. А вовсе не турбины.

"Стирлинг" от компании GM

Серьезная работа по усовершенствованию двигателя внешнего сгорания, начавшаяся через 150 лет после его изобретения, уже принесла свои плоды. Предложены различные конструктивные варианты двигателя, работающего по циклу Стирлинга. Есть проекты моторов с наклонной шайбой для регулирования хода поршней, запатентован роторный двигатель, в одной из роторных секций которого происходит сжатие, в другой - расширение, а подвод и отвод тепла осуществляется в соединяющих полости каналах. Максимальное давление в цилиндрах отдельных образцов доходит до 220 кГ/см 2 , а среднее эффективное давление - до 22 и 27 кГ/см 2 и более. Экономичность доведена до 150 г/л.с./час.
Наибольшего прогресса достигла компания General Motors, которая в 1970-е годы построила V-образный «стирлинг» с обычным кривошипно-шатунным механизмом. Один цилиндр у него рабочий, другой - компрессионный. В рабочем находится только рабочий поршень, а поршень-вытеснитель - в компрессионном цилиндре. Между цилиндрами расположены подогреватель, регенератор и охладитель. Угол сдвига фаз, иначе говоря угол отставания одного цилиндра от другого, у этого «стирлинга» равен 90°. Скорость одного поршня должна быть максимальной в тот момент, когда скорость другого равна нулю (в верхней и нижней мертвых точках). Смещение фаз в движении поршней достигается расположением цилиндров под углом 90°. Конструктивно это самый простой «стирлинг». Но он уступает двигателю с ромбическим кривошипным механизмом в уравновешенности. Для полного уравновешивания сил инерции в V-образном двигателе число его цилиндров должно быть увеличено с двух до восьми.


Принципиальная схема V-образного «стирлинга» :
1 - рабочий цилиндр;
2 - рабочий поршень;
3 - подогреватель;
4 - регенератор;
5 - теплоизолирующая муфта;
6 - охладитель;
7 - компрессионный цилиндр.

Рабочий цикл в таком двигателе протекает следующим образом.
В рабочем цилиндре 1 газ (водород или гелий) нагрет, в другом, компрессионном 7 - охлажден. При движении поршня в цилиндре 7 вверх газ сжимается - такт сжатия. В это время начинает двигаться вниз поршень 2 в цилиндре 1. Газ из холодного цилиндра 7 перетекает в горячий 1, проходя последовательно через охладитель 6, регенератор 4 и подогреватель 3 - такт нагревания. Горячий газ расширяется в цилиндре 1, совершая работу, - такт расширения. При движении поршня 2 в цилиндре 1 вверх газ перекачивается через регенератор 4 и охладитель 6 в цилиндр 7 - такт охлаждения.
Такая схема «стирлинга» наиболее удобна для реверсирования. В объединенном корпусе подогревателя, регенератора и охладителя (об их устройстве речь пойдет позже) для этого сделаны заслонки. Если перевести их из одного крайнего положения в другое, то холодный цилиндр станет горячим, а горячий - холодным, и двигатель будет вращаться в обратную сторону.
Подогреватель представляет собой набор трубок из жаростойкой нержавеющей стали, по которым проходит рабочий газ. Трубки нагреваются пламенем горелки, приспособленной для сжигания различных жидких топлив. Тепло от нагретого газа запасается в регенераторе. Этот узел имеет большое значение для получения высокого КПД. Он выполнит свое назначение, если будет передавать примерно в три раза больше тепла, чем в подогревателе, и процесс займет меньше 0,001 секунды. Словом, это быстродействующий аккумулятор тепла, причем скорость теплопередачи между регенератором и газом составляет 30 000 градусов в секунду. Регенератор, КПД которого равен 0,98 единицы, состоит из цилиндрического корпуса, в котором последовательно расположены несколько шайб, изготовленных из проволочной путанки (диаметр проволоки 0,2 мм). Чтобы тепло от него не передавалось холодильнику, между этими агрегатами установлена теплоизолирующая муфта. И наконец, охладитель. Он выполнен в виде водяной рубашки на трубопроводе.
Мощность «стирлинга» регулируется изменением давления рабочего газа. Для этой цели двигатель оборудуется газовым баллоном и специальным компрессором.

Достоинства и недостатки

Чтобы оценить перспективы применения «стирлинга» на автомобилях, проанализируем его достоинства и недостатки. Начнем с одного из важнейших для теплового двигателя параметров, так называемого теоретического КПД Для «стирлинга» он определяется следующей формулой:

η = 1 - Тх/Тг

Где η - КПД, Тх - температура «холодного» объема и Тг - температура «горячего» объема. Количественно этот параметр у «стирлинга» - 0,50. Это значительно больше, чем у самых лучших газовых турбин, бензиновых и дизельных двигателей, у которых теоретический КПД соответственно равен 0,28; 0,30; 0,40.
Как двигатель внешнего сгорания. стирлинг» может работать на различных топливах: бензине, керосине, дизельном, газообразном и даже на твердом. Такие характеристики топлива, как цетановое и октановое числа, зольность, температура выкипания при горении вне цилиндра двигателя, для «стирлинга» не имеют значения. Чтобы он работал на разных топливах, не требуется больших переделок - достаточно лишь заменить горелку.
Двигатель внешнего сгорания, в котором горение протекает стабильно с постоянным коэффициентом избытка воздуха, равным 1.3. выделяет значительно меньше, чем двигатель внутреннего сгорания, окиси углерода, углеводородов и окислов азота.
Малая шумность «стирлинга» объясняется низкой степенью сжатия (от 1,3 до 1,5). Давление в цилиндре повышается плавно, а не взрывом, как в бензиновом или дизельном двигателе. Отсутствие колебаний столба газов в выпускном тракте определяет бесшумность выхлопа, что подтверждено испытаниями двигателя, разработанного фирмой «Филлипс» совместно с фирмой Ford для автобуса.
«Стирлинг» отличается малым расходом масла и высокой износостойкостью благодаря отсутствию в цилиндре активных веществ и относительно низкой температуре рабочего газа, а надежность его выше, чем у известных нам двигателей внутреннего сгорания, так как в нем нет и сложного газораспределительного механизма.
Важное преимущество «стирлинга» как автомобильного двигателя - повышенная приспособляемость к изменениям нагрузки. Она, например, на 50 процентов выше, чем у карбюраторного мотора, за счет чего можно уменьшить число ступеней в коробке передач. Однако совсем отказаться от сцепления и коробки передач, как в паровом автомобиле, нельзя.
Но почему же двигатель с такими очевидными достоинствами до сих пор не нашел практического применения? Причина проста - у него немало еще неустраненных недостатков. Главнейшие среди них - большая сложность в управлении и регулировке. Существуют и другие «рифы», которые не так просто обойти и конструкторам и производственникам.- в частности, поршням нужны очень эффективные уплотнения, которые должны выдерживать высокое давление (до 200 кГ/см2) и препятствовать попаданию масла в рабочую полость. Во всяком случае, 25-летняя работа фирмы «Филлипс» по доводке своего двигателя пока не смогла сделать его пригодным для массового применения на автомобилях. Немаловажное значение имеет характерная особенность «стирлинга» - необходимость отводить с охлаждающей водой большое количество тепла. В двигателях внутреннего сгорания значительная часть тепла выбрасывается в атмосферу вместе с отработавшими газами. В «стерлинге» же в выхлоп уходит только 9 процентов тепла, получаемого при сгорании топлива. Если в бензиновом двигателе внутреннего сгорания с охлаждающей водой отводится от 20 до 25 процентов тепла, то в «стирлинге» - до 50 процентов. Это значит, что автомобиль с таким двигателем должен иметь радиатор примерно в 2-2.5 раза больше, чем у аналогичного бензинового мотора. Недостатком «стирлинга» является и его высокий удельный вес по сравнению с распространенным ДВС. Еще довольно существенный минус - трудность повышения быстроходности: уже при 3600 об/мин значительно возрастают гидравлические потери и ухудшается теплообмен. И наконец. «стирлинг» уступает обычному двигателю внутреннего сгорания в приемистости.
Работы по созданию и доводке автомобильных «стирлингов», в том числе для легковых машин, продолжаются. Можно считать, что в настоящее время принципиальные вопросы решены. Однако еще много дел по доводке. Применением легких сплавов можно понизить удельный вес двигателя, но он все равно будет выше. чем у мотора внутреннего сгорания, из-за более высокого давления рабочего газа. Вероятно, двигатель внешнего сгорания найдет применение в первую очередь на грузовых автомобилях, особенно военных - благодаря своей нетребовательности к топливу.

1. Введение……………………………………………………………………………… 3

2. История ……………………………………………………………………………… 4

3. Описание …………………………………………………………………………… 4

4. Конфигурация ……………………………………………………………………. 6

5. Недостатки ………………………………………………………………………….. 7

6. Преимущества …………………………………………………………………… 7

7. Применение ………………………………………………………………………. 8

8. Заключение ………………………………………………………………………. 11

9. Список литературы ………………………………………………………….. 12

Введение

В начале XXI века человечество смотрит в будущее с оптимизмом. На это есть самые веские доводы. Ученая мысль не стоит на месте. Сегодня нам предлагаются все новые и новые разработки. Идет внедрение в нашу жизнь все более экономичных, экологически безопасных и перспективных технологий

Это касается, прежде всего, альтернативного двигателестроения и использования так называемых "новых" альтернативных видов топлива: ветра, солнца, воды и других источников энергии

Благодаря двигателям всевозможных типов человек получает энергию, свет, тепло и информацию. Двигатели являются сердцем, которое бьется в такт с развитием современной цивилизации. Они обеспечивают рост производства, сокращают расстояния. Распространенные в настоящее время двигатели внутреннего сгорания имеют целый ряд недостатков: их работа сопровождается шумом, вибрациями, они выделяют вредные отработавшие газы, загрязняю тем самым нашу природу, и потребляют много топлива. Но на сегодняшний день альтернатива им уже существует. Класс двигателей, вред от которых минимален, - двигатели Стирлинга. Они работают по замкнутому циклу, без непрерывных микро взрывов в рабочих цилиндрах, практически без выделения вредных газов, да и топлива им требуется гораздо меньше

Изобретенные задолго до двигателя внутреннего сгорания и дизеля, двигатель Стирлинга был незаслуженно забыт

Возрождение интереса к двигателям Стирлинга обычно ассоциируется с деятельностью фирмы Philips. Работы по конструированию двигателей Стирлинга небольшой мощности начались в фирме в середине 30-х годов ХХ века. Целью работ было создание небольшого электрического генератора с низким уровнем шума и тепловым приводом для питания радиоаппаратуры в районах мира с отсутствием регулярных источников электроснабжения. В 1958 году компания General Motors заключила лицензионное соглашение с фирмой Philips, и их сотрудничество продолжалось до 1970 года. Разработки были связаны с использованием двигателей Стирлинга для космических и подводных энергетических установок, автомобилей и судов, а также для систем стационарного энергоснабжения. Шведская фирма United Stirling, сконцентрировавшая свои усилия в основном на двигателях для транспортных средств большой грузоподъемности, распространили свои интересы на область двигателей для легковых машин. Настоящий же интерес к двигателю Стирлинга возродился только во времена так называемого “энергетического кризиса”. Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономического потребления обычного жидкого топлива, что представлялось весьма важным в связи с ростом цен на топливо

История

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал «эконом». В современной научной литературе этот очиститель называется « регенератор » (теплообменник). Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма « Филипс » инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

Описание

Дви́гатель Сти́рлинга - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления. Существует также стирлинг с двухфазным рабочим телом. Он тоже характеризуется высокой удельной мощностью, высоким рабочим давлением.

Из термодинамики известно, что давление, температура и объём газа взаимосвязаны и следуют закону идеальных газов

, где:
  • P - давление газа;
  • V - объём газа;
  • n - количество молей газа;
  • R - универсальная газовая константа;
  • Т - температура газа в кельвинах.

Это означает, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга.

Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. Рабочий цикл двигателя Стирлинга beta-типа:

1 2 3 4

где: a - вытеснительный поршень; b - рабочий поршень; с - маховик; d - огонь (область нагревания); e - охлаждающие ребра (область охлаждения).

  1. Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам).
  2. Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
  3. Воздух остывает и сжимается, поршень опускается вниз.
  4. Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.

В машине Стирлинга движение рабочего поршня сдвинуто на 90° относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При сдвиге 0 машина не производит никакой работы (кроме потерь на трение) и не вырабатывает её.

Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, частью теплообменника, или совмещённым с поршнем-вытеснителем.

Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром.

Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей - тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА

Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.

Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПДна 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.


Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано

Доктор технических наук В. НИСКОВСКИХ (г. Екатеринбург).

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии.

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F =∆p (S б -S м ), где ∆p - разность давлений в ветвях высокого и низкого давлений; S б - рабочая площадь большого ротора; S м - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему