» » Ось турбины низкого давления авиадвигателя. Двухконтурный турбореактивный двигатель

Ось турбины низкого давления авиадвигателя. Двухконтурный турбореактивный двигатель

Впервые самолет с турбореактивным двигателем (ТРД ) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Вконтакте

Двухконтурный турбореактивный двигатель (ТРДД) – это «усовершенствованный» турбореактивный двигатель, конструкция которого дает возможность уменьшить расход топлива, что является главным недостатком ТРД, за счет улучшенной работы компрессора и соответственно увеличения объема прохождения воздушных масс через ТРДД.

Впервые конструкцию и принцип работы ТРДД разработал авиаконструктор А.М. Люлька еще в 1939 году, но тогда на его разработку не обратили особого внимания. Только в 50-хх годах, когда турбореактивные двигатели стали массово использоваться в авиации, а их «прожорливость» стала настоящей проблемой, его труд был замечен и оценен по достоинству. С тех пор ТРДД постоянно усовершенствуется и успешно используется во всех сферах авиации.

По сути, двухконтурный турбореактивный двигатель – это тот же ТРД, корпус которого «обволакивает» еще один, внешний, корпус. Зазор между этими корпусами формирует второй контур, ну а первый – это внутренняя полость ТРД. Конечно, масса и габариты при этом увеличиваются, но положительный результат от использования такой конструкции оправдывает все сложности и дополнительные затраты.

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней (от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Принцип работы

Принцип работы ТВРД заключается в следующем. Поток воздуха захватывается вентилятором и, частично сжимаясь, направляется по двум направлениям: в первый контур к компрессору и во второй на неподвижные лопатки. Вентилятор при этом играет роль не винта, создающего тягу, а компрессора низкого давления, увеличивающего количество воздуха, проходящего через двигатель. В первом контуре поток сжимается и нагревается при проходе через компрессор высокого давления и попадает в камеру сгорания. Здесь он смешивается с впрыснутым топливом и воспламеняется, в результате чего образуются газы с большим запасом энергии. Поток расширяющихся горячих газов направляется на турбину высокого давления и вращает ее лопатки. Эта турбина вращает компрессор высокого давления, который закреплен с ней на одном валу. Далее газы вращают турбину низкого давления, приводящую в движение вентилятор, после чего попадают в сопло и вырываются наружу, создавая реактивную тягу.

В это же время во втором контуре поток воздуха, захваченный и сжатый вентилятором, попадает на неподвижные лопатки, выпрямляющие направление его движения так, чтобы он перемещался в осевом направлении. При этом воздух дополнительно сжимается во втором контуре и выходит наружу, создавая дополнительную тягу. Так же на тягу влияет сжигание кислорода воздуха второго контура в форсажной камере.

Применение

Сфера применения двухконтурных турбореактивных двигателей очень широкая. Они смогли охватить практически всю авиацию, потеснив собой ТРД и ТВД. Главный недостаток реактивных моторов – их неэкономичность – удалось частично победить, так что сейчас большинство гражданских и практически все военные самолеты оснащены ТРДД. Для военной авиации, где важны компактность, мощность и легкость моторов, используются ТРДД с малой степенью двухконтурности (к<1) и форсажными камерами. На пассажирских и грузовых самолетах устанавливаются ТРДД со степенью двухконтурности к>2, что позволяет сэкономить немало топлива на дозвуковых скоростях и снизить стоимость перелетов.

Двухконтурные турбореактивные двигатели с малой степенью двухконтурности на военном самолете.

СУ-35 с установленными на нем 2мя двигателями АЛ-41Ф1С

Преимущества и недостатки

Двухконтурные турбореактивные двигатели имеют огромное преимущество в сравнении с ТРД в виде значительного сокращения расхода топлива без потерь мощности. Но при этом их конструкция более сложная, а вес намного больше. Понятно, что чем больше значение степени двухконтурности, тем экономичнее мотор, но это значение можно увеличить только одним способом – за счет увеличения диаметра второго контура, что даст возможность пропустить через него больше воздуха. Это и есть основным недостатком ТРДД. Достаточно посмотреть на некоторые ТВРД, устанавливаемые на крупные гражданские самолеты, чтобы понять, как они утяжеляют общую конструкцию. Диаметр их второго контура может достигать нескольких метров, а в целях экономии материалов и снижения их массы он выполняются более коротким, чем первый контур. Еще один минус крупных конструкций – высокое лобовое сопротивление во время полета, что в некоторой степени снижает скорость полета. Использование ТРДД в целях экономии топлива оправдано на дозвуковых скоростях, при преодолении звукового барьера реактивная тяга второго контура становится малоэффективной.

Различные конструкции и использование дополнительных конструктивных элементов в каждом отдельном случае позволяет получить нужный вариант ТРДД. Если важна экономия, устанавливаются турбовентиляторные двигатели с большим диаметром и высокой степенью двухконтурности. Если нужен компактный и мощный мотор, используются обычные ТРДД с форсажной камерой или без нее. Главное здесь найти компромисс и понять, какие приоритеты должны быть у конкретной модели. Военные истребители и бомбардировщики не могут оснащаться двигателями с трехметровым диаметром, да им это и не нужно, ведь в их случае приоритетны не столько экономия, сколько скорость и маневренность. Здесь же чаще используются и ТРДД с форсажными камерами (ТРДДФ) для увеличения тяги на сверхзвуковых скоростях или при запуске. А для гражданской авиации, где сами самолеты имеют большие размеры, вполне приемлемы крупные и тяжелые моторы с высокой степенью двухконтурности.

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения. Турбина низкого давления газотурбинного двигателя включает ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами на задней опоре статора. Лабиринтное уплотнение турбины выполнено двухъярусным. Внутренний ярус образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины. Внешний ярус образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины. Уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо. Внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью. Между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора. Рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы отношение внутреннего диаметра на выходе из проточной части турбины к диаметру рабочей поверхности внутреннего фланца лабиринтного уплотнения составляло 1,05 1,5. Изобретение позволяет повысить надежность турбины низкого давления газотурбинного двигателя. 3 ил.

Рисунки к патенту РФ 2507401

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения.

Известна турбина низкого давления газотурбинного двигателя с задней опорой, в которой лабиринтное уплотнение, отделяющее заднюю разгрузочную полость турбины от проточной части на выходе из турбины, выполнено в виде одного яруса. (С.А.Вьюнов, «Конструкция и проектирование авиационных газотурбинных двигателей», Москва, «Машиностроение», 1981 г., стр.209).

Недостатком известной конструкции является низкая стабильность давления в разгрузочной полости турбины из-за нестабильной величины радиальных зазоров в лабиринтном уплотнении, особенно на переменных режимах работы двигателя.

Наиболее близкой к заявляемой конструкции является турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами лабиринта, установленными на задней опоре статора (патент US № 7905083, F02K 3/02, 15.03.2011).

Недостатком известной конструкции, принятой за прототип, является повышенная величина осевой силы ротора турбины, что снижает надежность турбины и двигателя в целом из-за низкой надежности радиально-упорного подшипника, воспринимающего повышенную осевую силу ротора турбины.

Технический результат заявленного изобретения заключается в повышении надежности турбины низкого давления газотурбинного двигателя за счет снижения величины осевой силы ротора турбины и обеспечения стабильности осевой силы при работе на переходных режимах.

Указанный технический результат достигается тем, что в турбине низкого давления газотурбинного двигателя, включающей ротор, статор с задней опорой, лабиринтное уплотнение, выполненное с внутренним и внешним фланцами, установленными на задней опоре статора, лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхностью внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр на выходе из проточной части турбины,

Выполнение лабиринтного уплотнения на выходе из турбины низкого давления двухъярусным, располагая ярусы уплотнения таким образом, что внутренний ярус образован двумя направленными к оси турбины уплотнительными гребешками лабиринта и направленной к проточной части турбины рабочей поверхностью внутреннего фланца лабиринтного уплотнения, а внешний ярус образован направленными к проточной части турбины уплотнительными гребешками лабиринта и направленными к оси турбины рабочими поверхностями внешнего фланца лабиринтного уплотнения, позволяет обеспечить надежную работу лабиринтного уплотнения на переходных режимах работы турбины, что обеспечивает стабильность осевой силы, действующей на ротор турбины, и повышает ее надежность.

Выполнение уплотнительных гребешков лабиринта внутреннего яруса уплотнения с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, обеспечивает снижение вибронапряжений в лабиринте и уменьшение радиальных зазоров между гребешками лабиринта и фланцами лабиринтного уплотнения.

Выполнение внешнего фланца лабиринтного уплотнения с наружной замкнутой воздушной полостью, а также размещение между проточной частью турбины и внешним фланцем лабиринтного уплотнения кольцевой заградительной стенки, установленной на задней опоре статора, позволяет существенно снизить темп нагрева и охлаждения внешнего фланца лабиринтного уплотнения на переходных режимах, приблизив его таким образом к темпу нагрева и охлаждения внешнего яруса лабиринтного уплотнения, что обеспечивает стабильность радиальных зазоров между статором и ротором в уплотнении и повышает надежность турбины низкого давления за счет поддержания стабильного давления в разгрузочной затурбинной полости.

Выбор соотношения D/d=1,05 1,5 обусловлен тем, что при D/d<1,05 снижается надежность работы лабиринтного уплотнения из-за воздействия на уплотнение высокотемпературного газа, выходящего из турбины низкого давления.

При D/d>1,5 снижается надежность газотурбинного двигателя за счет снижения осевой разгрузочной силы, действующей на ротор турбины низкого давления.

На фиг.1 изображен продольный разрез турбины низкого давления газотурбинного двигателя.

На фиг.2 - элемент I на фиг.1 в увеличенном виде.

На фиг.3 - элемент II на фиг.2 в увеличенном виде.

Турбина 1 низкого давления газотурбинного двигателя состоит из ротора 2 и статора 3 с задней опорой 4. Для уменьшения осевых усилий от газовых сил, действующих на ротор 2 на его выходе, между диском последней ступени 5 ротора 2 и задней опорой 4 выполнена разгрузочная полость 6 повышенного давления, которая надувается воздухом из-за промежуточной ступени компрессора (не показано) и отделена от проточной части 7 турбины 1 двухъярусным лабиринтным уплотнением, причем лабиринт 8 уплотнения зафиксирован резьбовым соединением 9 на диске последней ступени 5 ротора 2, а внутренний фланец 10 и внешний фланец 11 лабиринтного уплотнения закреплены на задней опоре 4 статора 3. Внутренний ярус лабиринтного уплотнения образован рабочей поверхностью 12 внутреннего фланца 10, направленной (обращенной) в сторону проточной части 7 турбины 1, и двумя уплотнительными гребешками 13, 14 лабиринта 8, направленными к оси 15 турбины 1. Внутренние стенки 16,17 соответственно гребешков 13, 14 выполнены параллельными между собой. Между внутренними стенками 16 и 17 установлено демпфирующее кольцо 18, способствующее снижению вибронапряжений в лабиринте 8 и уменьшению радиальных зазоров 19 и 20, соответственно, между лабиринтом 8 ротора 2 и фланцами 10, 11. Внешний ярус лабиринтного уплотнения образован рабочей поверхностью 21 внешнего фланца 11, направленной (обращенной) в сторону оси 15 турбины 1, и уплотнительными гребешками 22 лабиринта 8, направленными к проточной части 7 турбины 1. Внешний фланец 11 лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью 23, ограниченной с внешней стороны стенкой 24 внешнего фланца 11. Между стенкой 24 внешнего фланца 11 лабиринтного уплотнения и проточной частью 7 турбины 1 размещена кольцевая заградительная стенка 25, установленная на задней опоре 4 статора 3 и предохраняющая внешний фланец 11 от высокотемпературного газового потока 26, протекающего в проточной части 7 турбины 1.

Рабочая поверхность 12 внутреннего фланца 10 лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр проточной части 7 турбины 1 (на выходе из проточной части 7);

d - диаметр рабочей поверхности 12 внутреннего фланца 10 лабиринтного уплотнения.

Работает устройство следующим образом.

При работе турбины 1 низкого давления на температурное состояние внешнего фланца 11 лабиринтного уплотнения может оказывать влияние изменение температуры газового потока 26 в проточной части 7 турбины 1, что могло бы существенно изменить радиальный зазор 19 и действующую на ротор 2 осевую силу вследствие изменения давления воздуха в разгрузочной полости 6. Однако этого не происходит, так как внутренний фланец 10 внутреннего яруса лабиринтного уплотнения недоступен воздействию газового потока 26, что способствует стабильности радиального зазора 20 между внутренним фланцем 10 и лабиринтными гребешками 13, 14, а также стабильности давления в полости 6 и стабильности осевой силы, действующей на ротор 2 турбины 1.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами, установленными на задней опоре статора, отличающаяся тем, что лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

D/d=1,05 1,5, где

D - внутренний диаметр на выходе из проточной части турбины,

d - диаметр рабочей поверхности внутреннего фланца лабиринтного уплотнения.

Турбина

Турбина предназначена для привода компрессора и вспомогательных агрегатов двигателя. Турбина двигателя - осевая, реактивная, двухступенчатая, охлаждаемая, двухроторная.

Узел турбины включает последовательно расположенные одноступенчатые осевые турбины высокого и низкого давления, а также опору турбины. Опора - элемент силовой схемы двигателя.

Турбина высокого давления

СА ТВД состоит из наружного кольца, внутреннего кольца, крышки, аппарата закрутки, блоков сопловых лопаток, лабиринтных уплотнений, уплотнений стыков сопловых лопаток, проставок с сотовыми вставками и крепёжных деталей.

Наружное кольцо имеет фланец для соединений с фланцем обода соплового аппарата ТНД и корпуса ВВТ. Кольцо телескопически соединено с корпусом ВВТ и имеет полость для подвода вторичного воздуха из ОКС на охлаждение наружных полок сопловых лопаток.

Внутреннее кольцо имеет фланец для соединения с крышкой и внутренним корпусом ОКС.

СА ТВД имеет сорок пять лопаток, объединенные в пятнадцать литых трёхлопаточных блоков. Блочная конструкция лопаток СА позволяет уменьшить число стыков и перетекания газа.

Сопловая лопатка - пустотелая, охлаждаемая двуполостная. Каждая лопатка имеет перо, наружную и внутреннюю полки, образующие с пером и полками соседних лопаток проточную часть СА ТВД.

Ротор ТВД предназначен для преобразования энергии газового потока в механическую работу на валу ротора. Ротор состоит из диска, цапфы с лабиринтными и маслоуплотнительными кольцами. Диск имеет девяносто три паза для крепления рабочих лопаток ТВД в “ёлочных” замках, отверстия для призонных болтов стягивающих диск, цапфу и вал ТВД, а также наклонные отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - литая, полая, охлаждаемая. Во внутренней полости лопатки для организации процесса охлаждения имеются продольная перегородка, турбулизирующие штырьки и рёбра. Хвостовик лопатки имеет удлинённую ножку и замок “ёлочного” типа. В хвостовике имеются каналы для подвода охлаждающего воздуха к перу лопатки, а в выходной кромке - щель для выхода воздуха.

В хвостовике цапфы размещены масляное уплотнение и обойма радиального роликового подшипника задней опоры ротора высокого давления.

Турбина низкого давления

СА ТНД состоит из обода, блоков сопловых лопаток, внутреннего кольца, диафрагмы, сотовых вставок.

Обод имеет фланец для соединения с корпусом ВВТ и наружным кольцом ТВД, а также фланец для соединения с корпусом опоры турбины.

СА ТНД имеет пятьдесят одну лопатку спаянные в двенадцать четырёхлопаточные блоки и один трёхлопаточный блок. Сопловая лопатка - литая, полая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть СА.

Во внутренней части полости пера лопатки размещён перфорированный дефлектор. На внутренней поверхности пера имеется поперечные рёбра и турбулизирующие штырьки.

Диафрагма предназначена для разделения полостей между рабочими колёсами ТВД и ТНД.

Ротор ТНД состоит из диска с рабочими лопатками, цапфы, вала и напорного диска.

Диск ТНД имеет пятьдесят девять паза для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уплотнение радиального зазора между статором и ротором.

От осевых перемещений в диске лопатки зафиксированы разрезным кольцом со вставкой, которая, в свою очередь, зафиксирована штифтом на ободе диска.

Цапфа имеет в передней части внутренние шлицы, для передачи крутящего момента на вал ТНД. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника задней опоры ТВД, лабиринт и набор уплотнительных колец, образующей вместе с крышкой, установленной в цапфе, переднее уплотнение масляной полости опоры ТВД.

На цилиндрическом поясе в задней части установлен набор уплотнительных колец, образующих вместе с крышкой уплотнение масляной полости опоры ТНД.

Вал ТНД состоит из трёх частей. Соединение частей вала между собой - вильчатое. Крутящий момент в местах соединения передаётся радиальными штифтами. В задней части вала имеется откачивающий маслонасос опоры турбины.

В передней части ТНД имеются шлицы, передающие крутящий момент на ротор компрессора низкого давления через рессору.

Напорный диск предназначен для создания дополнительного подпора и обеспечивает увеличение давление охлаждающего воздуха на входе в рабочие лопатки ТНД.

Опора турбины включает в себя корпус опоры и корпус подшипника. Корпус опоры состоит из наружного корпуса и внутреннего кольца, соединённых силовыми стойками и образующие силовую схему опоры турбины. В состав опоры входят также экран с обтекателями, пеногасящая сетка и крепёжные детали. Внутри стоек размещены трубопроводы подвода и откачки масла, суфлирования масляных полостей и слива масла. Через полости стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости опоры. Стойки закрыты обтекателями. На корпусе подшипника установленымаслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещён упруго-масляный демпфер.

На опоре турбины закреплён конус-обтекатель, профиль которого обеспечивает вход газа в форсажную камеру сгорания с минимальными потерями.