» » Порядок диагностирования тормозной системы. Диагностика тормозной системы автомобиля на стенде Выполнение работ по диагностике тормозной системы

Порядок диагностирования тормозной системы. Диагностика тормозной системы автомобиля на стенде Выполнение работ по диагностике тормозной системы

Методы и средства диагностирования тормозных систем разрабатываются применительно к диагностическим параметрам и требованиям технологических процессов технического обслуживания и ремонта автомобиля. Соответственно этому существуют средства для общего диагностирования тормозов в дорожных условиях, для общего стационарного диагностирования перед обслуживанием или ремонтом, для поэлементного диагностирования в процессе технического обслуживания и ремонта или же после их выполнения.

Существующие средства технической диагностики тормозов (СТДТ) могут быть классифицированы по пяти признакам:

1. по использованию сил сцепления колеса с опорной поверхностью;

2. по месту установки;

3. по способу нагружения;

4. по режиму движения колеса;

5. по конструкции опорного устройства.

Рис. 2.1. Средства технического диагностирования тормозов.

2.1. Стенды технической диагностики тормозов автомобиля.

Все стенды технического диагностирования тормозов (СТДТ) подразделяют на две большие группы. Первая, к которой относят основную часть стендов, является более многочисленной. Эта группа СТДТ работает с использованием сил сцепления колеса с опорной поверхностью. В данных стендах реализуемый тормозной момент ограничен силой сцепления колеса с опорной поверхностью стенда, поэтому в большинстве из них невозможно реализовать полный тормозной момент автомобиля. Вторая группа стендов, работающих без использования сил сцепления колеса с опорной поверхностью, конструктивно отличается тем, что тормозной момент передается непосредственно через колесо или через ступицу. Эта группа стендов не нашла широкого применения из-за сложности конструкции и нетехнологичности проведения испытаний.

Стенды, в свою очередь, по способу нагружения бывают силовые и инерционные. Силовые стенды первой группы по режиму движения колеса на стенде могут быть: с частичным проворачиванием колеса и с полным проворачиванием колеса. Первый режим, как правило, характерен для платформенных стендов, а второй – для всех остальных стендов.

По конструкции опорных устройств стенды подразделяются на: площадочные, роликовые и ленточные (первая группа); с вывешиванием осей колес и без вывешивания осей колес (вторая группа).

В силовых платформенных стендах колеса автомобиля неподвижны, поэтому при нажатии на тормозную педаль изменяется лишь усилие сдвига (срыва) заблокированных колес с места, т.е. сила трения между тормозными накладками и барабаном (диском). Существуют стенды с одной общей площадкой под все колеса и с площадками под каждое колесо автомобиля.

Силовые платформенные стенды обладают целым рядом существенных недостатков, исключающих их широкое применение. Например, при испытании не учитываются влияние скорости движения на коэффициент трения скольжения и динамические воздействия в тормозной системе. Результаты измерений во многом зависят от положения колес на площадке стенда, от состояния опорной поверхности и протекторов колес. Измеряется лишь усилие страгивания с места заторможенных колес.


Платформенные инерционные стенды , имеющие подвижные (одну общую на каждую сторону или под каждое колесо) площадки, по сравнению с силовыми платформенными стендами более совершенны, т. к. более полно учитывают динамику действия тормозных сил в реальных условиях. Однако эти стенды обладают рядом существенных недостатков: потребность в территории для разгона автомобиля, снижение уровня безопасности работ при диагностировании, не достаточна точность и достоверность диагностической информации.

Инерционные нагрузочные ленточные стенды воспроизводят дорожные условия взаимодействия шины с опорными поверхностями. Однако они имеют значительные габариты и не обеспечивают достаточную устойчивость автомобиля при диагностировании, а такие конструктивные недостатки, как проскальзывание ленты и большие механические потери в парах трения.

Роликовые тормозные стенды . Из их числа в преобладающем большинстве используют стенды, основанные на силовом методе диагностирования. Силовой метод позволяет определить тормозные силы каждого колеса при задаваемом усилии нажатия на педаль, время срабатывания тормозного привода, оценивать состояние рабочих поверхностей тормозных накладок и барабана, эллипсность барабанов и т.п. В подавляющем большинстве этих стендов при принудительном прокручивании заторможенных колес автомобиля имитируется скорость движения 2-5 км/ч, редко до 10км/ч,

Наиболее достоверным является инерционный метод диагностирования на роликовых инерционных стендах. На них измеряют тормозной путь по каждому отдельному колесу, время срабатывания тормозного привода и замедление (максимальное и по каждому колесу в отдельности), но из-за сложности, высокой стоимости и более низкой технологичности в эксплуатации эти стенды применяют крайне ограниченно.

Для диагностирования тормозов в стесненных условиях, а также с целью локализации неисправностей и углубленного диагностирования наиболее эффективны переносные СТДТ. Суть метода работы этих устройств заключается в том, что колесо автомобиля принудительно раскручивают, и когда скорость вращения достигает заданного значения, срабатывает устройство нажатия на тормозную педаль; происходит торможение колеса, в процессе которого регистрируется время срабатывания тормозного привода, время нарастания замедления в заданном интервале частот вращения колеса и тормозной путь при установившемся значении тормозной силы.

В связи с малой инерционной массой вывешенных колес процесс торможения существенно отличается от реального. Приведение результатов диагностирования тормозов к реальным условиям осуществляют через переводные коэффициенты для тормозного пути и замедления.

Общее диагностирование автомобиля в дорожных условиях осуществляют следующими методами; визуально по тормозному пути и синхронности начала торможения всеми колесами; при помощи переносных приборов; по максимальному замедлению автомобиля; при помощи встроенных приборов; по автоматической сигнализации о достижении диагностическим параметром предельной величины.

Диагностирование по тормозному пути на динамометрической дороге заключается в наблюдении за автомобилем при резком однократном нажатии на педаль (сцепление выключено) и измерении тормозного пути. Одновременно наблюдают за синхронностью торможения по следам шин, оставленным на дороге. Испытательный участок должен быть ровным, сухим и горизонтальным. Нормативный тормозной путь (при скорости перед торможением, равной 30км/ч) составляет для легковых автомобилей не менее 7,2м, а для грузовых и автобусов в зависимости от грузоподъемности 9,5-11м. Этот способ не дает достоверных результатов, а пользование им затруднено в связи с необходимостью иметь достаточно большой участок горизонтальной дороги с твердым, сухим и ровным покрытием.

Диагностирование тормозов по замедлению автомобилей при помощи переносных приборов- деселерометров осуществляется также на ровном горизонтальном участке дороги. Автомобиль разгоняют до скорости 10-20км/ч и резко тормозят однократным нажатием на педаль при выключенном сцеплении. При этом измеряют Ј max . Нормативное замедление (оно не зависит от скорости автомобиля) для легковых автомобилей составляет не менее 5,8м/с 2 , а для грузовых в зависимости от грузоподъемности – от 5,0 до 4,2м/с 2 . Для ручных тормозов замедление должно быть в пределах 1,5- 2,5м/c 2 .

Рис. 2.2. Принципиальная схема деселерометра с поступательно движущейся массой.

1 – инерционная масса;
2 – сигнальная лампа;
3 – пластинчатая пружина;
4- регулировочный винт;
5 – батарея.

Принцип работы деселерометра заключается в фиксации пути перемещения подвижной инерционной массы прибора относительно его корпуса, неподвижно закрепленного на автомобиле. Это перемещение происходит под действием силы инерции, возникающей при торможении автомобиля и пропорциональной его замедлению. Инерционной массой деселерометра может служить поступательно движущийся груз, маятник, жидкость или датчик ускорения, а измерителем- стрелочное устройство, шкала, сигнальная лампа, самописец, компостер и др. Для обеспечения устойчивости показаний деселерометр снабжают демпфером (жидкостным, воздушным, пружинным), а для удобства измерений – механизмом фиксирующим максимальное замедление.

Для диагностирования тормозов автомобилей при помощи конструктивно встроенных приспособлений, применяют системы, обеспечивающие информацию об изношенности тормозных колодок, уровне тормозной жидкости, о давлении в пневмо – или гидроприводе, работе ручного тормоза, неисправности противоблокировочного устройства и др.

Система состоит из встроенных датчиков и щитковых указателей или аварийных сигнализаторов. Встроенное диагностирование обеспечивает возможность непрерывного слежения за состоянием тормозов. С этой точки зрения оно идеально. Ограниченность применения встроенного диагностирования обусловлена значительной его стоимостью. Развитие современного приборостроения и электроники позволяет ожидать быстрого развития средств встроенного диагностирования современных автомобилей.

Общее стационарное экспресс- диагностирование выполняют на специализированных постах и линиях, применяя быстродействующие платформенные стенды инерционного или силового типа. Для общего диагностирования с регулировочными работами применяют также и тормозные стенды роликового типа.

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс автомобиля), возникающих при его торможении и приложенных в местах контакта колес с динамометрическими платформами.

Платформенный инерционный стенд состоит из четырех подвижных платформ с рифленой поверхностью, на которые автомобиль наезжает колесами со скоростью 6-12км/ч и останавливается при резком торможении. Возникающие при этом силы инерции автомобиля соответствуют тормозным силам. Они воздействуют на платформы стенда, воспринимаются жидкостными, механическими или электронными датчиками и фиксируются измерительными приборами, расположенными на пульте.

К недостаткам стендов платформенного инерционного типа относятся: большая занимаемая ими производственная площадь (с учетом необходимости предварительного разгона автомобиля); нестабильность коэффициента сцепления шин, зависящая от их загрязненности, влажности и температуры.

Платформенный тормозной стенд силового типа по принципу действия отличается от инерционного тем, что тормозные силы, возникающие при торможении в местах контакта колес с динамометрическими платформами, получаются не вследствие инерции автомобиля, а в результате его принудительного перемещения через платформы при помощи тягового конвейера.

Для поэлементного диагностирования на постах и линиях технического обслуживания и ремонта автомобилей применяют инерционные стенды с беговыми барабанами и силовые стенды с роликами. Они подразделяются два класса: с использованием для прокручивания заторможенных колес сил сцепления и без использования этих сил.

В первом случае заторможенное колесо проворачивают при помощи сил сцепления, возникающих в местах контакта колеса с барабаном (роликом), к которому приложен инерционный крутящий момент или момент электродвигателя непосредственно к колесу автомобиля. В практике диагностирования автомобилей в основном применяют стенды первого типа, так как они дешевле и технологичней.

Инерционные стенды с беговым или ленточным опорно-приводным устройством с использованием сил сцепления могут быть с приводом от колес работающего автомобиля или с приводом от электродвигателей. Стенд с приводом от колес автомобиля состоит из двух опорно-приводных агрегатов, кинематически связанных между собой и обеспечивающих одновременную проверку тормозов обеих осей автомобиля. Каждый опорно-приводной агрегат барабанного стенда состоит из рамы и двух пар беговых барабанов, на которые опираются колеса автомобиля. Беговые барабаны связаны с маховыми массами.

Стенд с электроприводом состоит из одного агрегата и как правило предназначен для поочередной проверки тормозов автомобилей с двумя ведущими осями опорно-приводной агрегат снабжают дополнительными опорными барабанами.

Принцип работы всех инерционных стендов с использованием сил сцепления одинаков. Если стенд имеет электропривод, то колеса автомобиля приводятся во вращение от роликов стенда, а если не имеет, то от автомобильного двигателя. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них при помощи механической передачи и передние, ведомые, колеса.

После установки автомобиля на инерционный стенд доводят окружную скорость колес до 50-70км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт (заданная сила нажатия на педаль тормоза обеспечивается автоматом или месдозой с указателем, устанавливаемой на педаль тормоза). При этом в местах контакта колес с роликами стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время, или угловое замедление барабана будут эквивалентны их тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром. На инерционном стенде возможно и прямое измерение тормозного момента по величине реактивного крутящего момента, возникающего на валу стенда между маховиком барабаном. Для достоверности полученных результатов необходимо, чтобы условия торможения колес автомобиля на стенде соответствовали реальным условиям торможения автомобиля на дороге. Это означает, что поглощаемая тормозами автомобиля кинетическая энергия при их испытании на стенде должна быть такой же, как и на дороге.

Силовые стенды с использованием сил сцепления колеса позволяют измерять тормозные силы в процессе его вращения с некоторой скоростью V=2…10км/ч. При этом тормозную силу каждого из колес автомобиля, установленного на стенде, измеряют, затормаживая их в процессе вращения. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по величине крутящего момента, возникающего на роликах при торможении колес.

При диагностировании тормозов с гидравлическим приводом этим методом определяют зависимость измерения тормозной силы Рт на каждом из колес автомобиля от силы давления на педаль тормоза Рн. Эта зависимость, называемая тормозной диаграммой, дает достаточно полную характеристику работоспособности тормозной системы. При силовом методе диагностирования тормозов общим параметром эффективности является удельная тормозная сила ∑Р т /G a ·100%. Для большинства автомобилей эта сила равна 45-80%, последняя цифра является показателем отличного состояния тормозов. Разность тормозных сил на колесах одной оси автомобиля, обеспечивающая отсутствие заноса, не должна быть больше 10-15%.

Диагностирование тормозов при помощи силовых стендов наиболее распространено. Это объясняется большой приспособленностью силовых стендов к поэлементному диагностированию при совмещении диагностических работ с регулировочными, относительно небольшой их стоимостью, малой занимаемой или производственной площадью и экономичным расходом электроэнергии.

Несомненным преимуществом инерционных тормозных стендов является возможность диагностирования тормозов на высоких скоростях движения. Именно этот фактор является основополагающим для испытания тормозных систем с АБС, т.к. эта система начинает свою работу со скорости примерно в 20…30км/ч.

Согласно действующим стандартам применяют два основных метода диагностирования тормозных систем - дорожный и стендовый. Для них установлены следующие контролируемые параметры:

  • при проведении дорожных испытаний - тормозной путь; установившееся замедление; устойчивость при торможении; время срабатывания тормозной системы; уклон дороги, на котором должно неподвижно удерживаться транспортное средство
  • при проведении стендовых испытаний - общая удельная тормозная сила; коэффициент неравномерности (относительная неравномерность) тормозных сил колес оси, а для автопоезда еще дополнительно коэффициент совместимости звеньев автопоезда и асинхронность времени срабатывания тормозного привода

Существует несколько видов стендов и приборов, использующих различные методы и способы измерения тормозных качеств:

Статические силовые стенды

Статические силовые стенды для диагностирования тормозов автомобиля представляют собой роликовые или платформенные устройства, предназначенные для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Такие стенды могут иметь гидравлический, пневматический или механический привод. Измерение тормозной силы возможно при вывешенном колесе или при его опоре на гладкие беговые барабаны. Недостатком статического способа диагностирования тормозов является неточность результатов, вследствие чего не воспроизводятся условия реального динамического процесса торможения.

Инерционные платформенные стенды

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс), возникающих при торможении автомобиля и приложенных в местах контакта колес с динамометрическими платформами. Такие стенды иногда используются на предприятиях автотехобслуживания для входного контроля тормозных систем или экспресс-диагностирования транспортных средств.

Инерционные роликовые стенды

Инерционные роликовые стенды имеют ролики, которые могут иметь привод от электродвигателя или от двигателя автомобиля. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них с помощью механической передачи - и передние (ведомые) колеса.

После установки автомобиля на инерционный стенд линейную скорость колес доводят до 50…70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром.

Метод, реализуемый инерционным роликовым стендом, создает условия торможения автомобиля, максимально приближенные к реальным. Но в силу высокой стоимости стенда, недостаточной безопасности, трудоемкости и больших затрат времени, необходимого для диагностирования, стенды такого типа нерационально использовать при проведении диагностирования на автопредприятиях и при гостехосмотре.

Силовые роликовые стенды

Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерять тормозные силы в процессе его вращения со скоростью 2.10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор-редуктра стенда при торможении колес.

Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» - оценка неравномерности тормозных сил за один оборот колеса, т.е. исследуется вся поверхность торможения.

При испытании на роликовых тормозных стендах, когда усилие передается извне (от тормозного стенда), физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию даже несмотря на то, что автомобиль не обладает кинетической энергией.

Есть еще одно важное условие - безопасность испытаний. Самые безопасные испытания - на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на площадочных тормозных стендах вероятность аварийной ситуации очень высока.

Следует отметить, что по совокупности своих свойств именно силовые роликовые стенды являются наиболее оптимальным решением как для диагностических линий станций техобслуживания, так и для диагностических станций, проводящих гостехосмотр.

Современные силовые роликовые стенды для проверки тормозных систем могут определять следующие параметры:

  • по общим параметрам транспортного средства и состоянию тормозной системы - сопротивление вращению незаторможенных колес; неравномерность тормозной силы за один оборот колеса; массу, приходящуюся на колесо; массу, приходящуюся на ось
  • по рабочей и стояночной тормозным системам - наибольшую тормозную силу; время срабатывания тормозной системы; коэффициент неравномерности (относительную неравномерность) тормозных сил колес оси; удельную тормозную силу; усилие на органе управления

Данные контроля выводятся на дисплей в виде цифровой или графической информации. Результаты диагностирования могут выводиться на печать и храниться в памяти компьютера в базе данных диагностируемых автомобилей.

Рис. Данные контроля тормозной системы автомобиля: 1 - индикация проверяемой оси; ПО - рабочий тормоз передней оси; СТ - стояночная тормозная система; ЗО - рабочий тормоз задней оси

Результаты проверки тормозных систем могут выводиться также на приборную стойку.

Динамику процесса торможения можно наблюдать в графической интерпретации. График показывает тормозные силы (по вертикали) относительно усилия на педали тормоза (по горизонтали). На нем отражены зависимости тормозных сил от усилия нажатия на педаль тормоза как для левого колеса (верхняя кривая), так и для правого (нижняя кривая).

Рис. Приборная стойка тормозного стенда

Рис. Графическое отображение динамики процесса торможения

С помощью графической информации можно наблюдать также разницу в тормозных силах левого и правого колес. На графике показано соотношение тормозных сил левого и правого колес. Кривая торможения не должна выходить за границы нормативного коридора, которые зависят от конкретных нормативных требований. Наблюдая характер изменения графика, оператор-диагност может сделать заключение о состоянии тормозной системы.

Рис. Значения тормозных сил левого и правого колес

Диагностические параметры, свойства тормозных систем автомобилей и факторы, влияющие на торможение, описаны в работе .

Для определения технического состояния тормозов используют три метода:

  • в дорожных условиях ходовые испытания;
  • в процессе эксплуатации за счет встроенных средств диагностики;
  • в стационарных условиях с использованием тормозных стендов.

Перечень параметров диагностирования и локализации неисправностей в

тормозах устанавливает ГОСТ 26048-83. Эти параметры подразделяются на две группы. Первая группа включает интегральные параметры общего диагностирования, а вторая - дополнительные (частные) параметры поэлементного диагностирования для поиска неисправностей в отдельных системах и устройствах.

Диагностические параметры первой группы: тормозной путь автомобиля и колеса, отклонение от коридора движения, замедление (установившаяся тормозная сила) автомобиля и колеса, удельная тормозная сила, уклон дороги (на котором удерживается автомобиль в заторможенном состоянии), коэффициент неравномерности тормозных сил колес оси, осевой коэффициент распределения тормозной силы, время срабатывания (или растормаживания) тормозного привода, давление и скорость изменения его в контурах тормозного привода и др.

Диагностические параметры второй группы: полный и свободный ход педали, уровень тормозной жидкости в резервуаре, сила сопротивления вращению незаторможенного колеса, путь и замедление выбега колеса, овальность и толщина стенки тормозного барабана, деформации стенки тормозного барабана, толщина тормозной накладки, ход штока тормозного цилиндра, зазор во фрикционной паре, давление в приводе, при котором колодки касаются барабана, и др.

Из числа этих параметров в соответствии с ГОСТ 254780-82 при стендовых испытаниях тормозов обязательно определяются тормозные силы на отдельных колесах, общая удельная тормозная сила, коэффициент осевой неравномерности тормозных сил, время срабатывания тормозов. При этом показатели общей удельной тормозной силы и коэффициент осевой неравномерности являются расчетными.

Дорожные испытания применяют, как правило, для «грубой» оценки тормозных качеств автомобиля. При этом результаты испытаний могут определяться визуально по тормозному пути и синхронности начала торможения колес при резком однократном нажатии на педаль тормоза (сцепление выключено), а также с использованием переносных приборов - деселерометров (или десел ерографов).

На дорожные испытания часто возлагают надежды дать ответ о тяговых, экономических, тормозных качествах автомобиля. При этом для тяговых, экономических, тормозных свойствах автомобиля, об управляемости и устойчивости его движения, поведении на разных скоростях, при разной загруженности, в установившихся и неустановившихся режимах, в разных дорожных и климатических условиях и т. д. Однако дорожные испытания имеют ряд недостатков. Диагностирование по тормозному пути должно проводиться на ровном, сухом, горизонтальном участке дороги с твердым покрытием, свободном от движущегося транспорта.

Этот способ испытаний все еще имеет довольно широкое распространение, хотя и имеет следующие довольно существенные недостатки:

  • 1. При торможении невозможно обеспечить стабильное нажатие на педаль тормоза с одинаковым усилием, вследствие чего результаты измерений значительно различаются на каждом из торможений.
  • 2. Тормозной путь в значительной степени зависит от опыта водителя автомобиля, состояния покрытия дороги и условий движения.
  • 3. Определяется только общее замедление автомобиля. Нельзя дифференцированно определить отклонение тормозных усилий на отдельных колесах, что определяет устойчивость движения автомобиля при торможении.
  • 4. При испытаниях вероятна опасность возникновения несчастных случаев.
  • 5. Значительны затраты времени на испытания при большом износе шин и подвески вследствие блокировки колес.
  • 6. При плохих климатических условиях (дождь, снег, гололед) проводить измерения вообще невозможно.

По перечисленным причинам контроль тормозов на дороге по тормозному пути совершенно не удовлетворяет современным требованиям.

Диагностирование тормозов автомобилей на дороге по замедлению автомобилей производится с помощью деселерометров (деселерографов) также на ровном, сухом, горизонтальном участке дороги. При скорости 10...20 км/ч водитель резко тормозит однократным нажатием на педаль тормоза при выключенном сцеплении. При этом замеряется замедление автомобиля, не зависящее от скорости испытаний.

Для легковых автомобилей замедление должно составлять не менее 5,8 м/с 2 , а для грузовых (в зависимости от грузоподъемности) - от 5,0 до 4,2 м/с 2 . Для ручных тормозов замедление должно быть в пределах 1,5...2 м/с 2 . Принцип работы деселерометра (деселерографа) состоит в перемещении подвижной инерционной массы прибора относительно его корпуса, неподвижно закрепленного на автомобиле. Это перемещение обусловливается действием силы инерции, возникающей при торможении автомобиля и пропорциональной его замедлению.

Инерционной массой диселерометра (деселерографа) может быть поступательно движущийся груз, маятник (табл. 9.1), жидкость или датчик ускорения, а измерителем предельного замедления - стрелочное устройство, шкала, сигнальная лампа, самописец и т. д.

Деселерометр предназначен для оценки эффективности действия автомобильных тормозов путем замера величины максимального замедления движения автомобиля при торможении.

Тип прибора - ручной, инерционного действия, маятниковый.

Таблица 9.1

Технические характеристики деселерометра мод. 1155М

Основой прибора является маятник, который под влиянием инерционных сил, возникающих при торможении, отклоняется от нулевого положения на определенный угол, зависящий от величины замедления. Отклонение маятника регистрируется стрелкой, самофиксирующейся на делении шкалы, соответствующем максимальной достигнутой величине замедления. Показания прибора сравнивают с данными справочной таблицы (помещенной на задней крышке корпуса прибора) и судят о качестве работы тормозной системы.

Измерение замедления производят при торможении автомобиля, разогнанного до скорости 30 км/ч, на сухом ровном горизонтальном участке дороги с асфальтовом или цементобетонным покрытием.

Прибор с помощью резиновых присосов крепят на внутренней стороне ветрового стекла автомобиля.

Использование многоконтурных тормозных систем, оснащение их дополнительными устройствами (антиблокировочными устройствами, гидровакуумными усилителями, устройствами автоматической регулировки во фрикционной паре и т. д.) и ужесточение требований к тормозным качествам автомобилей делают неэффективными дорожные испытания.

В Украине с 01.01.1999 введен в действие стандарт ДСТУ 3649-97 «Средства транспортные дорожные. Эксплуатационные требования безопасности к техническому состоянию и методы контроля» взамен действовавшего ранее межгосударственного стандарта ГОСТ 25478-91. Этим документом предусмотрены два вида контроля рабочей тормозной системы (РТС): дорожные испытания и стендовые испытания. Ниже приводятся расчетные методы контроля тормозных систем, заимствованные из работы и Nj и 686 Н для ДТС остальных категорий. В процессе торможения не допускается корректировка водителем траектории движения ДТС, если это не требуется для обеспечения безопасности движения. В случае, когда потребовалась корректировка траектории, результат испытаний не засчитывается.

Состояние РТС оценивается по фактическому значению тормозного пути, который не должен превышать норматив, указанный в табл. 9.1.

Согласно ДСТУ допускается оценивать работоспособность РТС по критерию значения установившегося замедления ДТС (j ycT ), которое должно быть не менее 5,8 м/с 2 для ДТС категории Mj и 5,0 м/с 2 для всех прочих (с учетом автопоездов на базе ДТС категории МД. При этом необходимо контролировать время срабатывания тормозной системы, которое для ДТС с гидравлическим приводом должно быть не более 0,5 с и для ДТС с другим приводом - не более 0,8 с.

Время срабатывания тормозной системы (т с) определяется стандартом Украины ДСТУ 2886-94 как промежуток времени от начала торможения до момента времени, в который замедление (тормозная сила ДТС) принимает установившееся значение.

Наибольшую эффективность диагностирования тормозных систем обеспечивают специализированные стенды, которые гарантируют точность и достоверность диагностирования.

В процессе развития стендовой техники были опробованы самые разнообразные конструкции. Основным элементом, определяющим все различия, были опорные поверхности для проверяемых колес.

Основным типом стенда является одноосный стенд с беговыми барабанами.

Стендовые испытания основаны на принципе обратимости движения: проверяемый автомобиль неподвижен, а его вращающиеся колеса опираются на движущуюся опорную поверхность. Самыми распространенными стендами являются цилиндрические поверхности спаренных роликов. На полноопорных стендах вращаются все колеса, на одноосных стендах - только колеса одной оси.

Работа автомобиля на стенде моделирует его реальную работу на дороге. Как при любом моделировании, здесь воспроизводятся не все факторы реального движения, а лишь самые существенные (с точки зрения разработчика стенда и технологии испытаний). Так, обычно не моделируется набегающий поток воздуха, из-за чего при тяговых испытаниях не действует аэродинамическое сопротивление, а также меняется тепловой режим работающего двигателя. Далее, в эксплуатации используют большей частью одноосные стенды, что существенно влияет на моделирование рабочих режимов.

Тем не менее стендовые испытания имеют ряд весьма важных достоинств.

Таблица 9.2

Нормативные значения тормозного пути для дорожных транспортных средств, находящихся в эксплуатации (по ДСТУ 3649-97)

Примечание: V 0 - начальная скорость торможения в км/ч.

По назначению стенды можно разделить на тяговые для контроля тяговых и экономических свойств (то есть силового агрегата), тормозов и других систем.

По методу создания действующих сил различают силовые, инерционные и комбинированные инерционно-силовые стенды. Самый общий принцип стендового контроля состоит в том, что колеса автомобиля взаимодействуют с опорными элементами стенда, причем на колеса действуют силы двух групп: движущие и тормозные. Создают их либо силовыми устройствами - двигателями и тормозами, либо инерционными элементами - массами и маховиками. Соответственно называют силовыми и инерционными методами испытаний.

При силовом методе, как правило, используют установившиеся режимы, то есть контроль при постоянной скорости. При инерционном методе режимы только неустановившиеся (динамические), скорости меняются, за счет ускорений создаются инерционные силы (табл. 9.3).

При стендовых испытаниях критериями технического состояния РТС являются общая удельная тормозная сила и время срабатывания ТС на стенде, а также осевой коэффициент равномерности тормозных сил для каждой оси. Общая удельная тормозная сила {у,) должна быть не менее 0,59 для одиночных ДТС категории Mj и 0,51 для всех прочих. При этом максимальное значение коэффициента неравномерности любой оси (A” H) не должно превышать 20 % в диапазоне тормозных сил от 30 до 100 % максимальных значений. Указанные критерии вычисляют по следующим формулам:

где Р Т max i - максимальное значение тормозной силы на /-м колесе, Н; п - общее количество колес, оборудованных тормозными механизмами; М а - масса автомобиля, кг; g - ускорение свободного падения, 9,80665 м/с 2 ;

где Р тл, Р тп - значения тормозной силы на левом и правом колесах одной оси соответственно, Н; Р т тах - большее из двух указанных значений тормозной силы.

Таблица 9.3

Назначение стендов и методы испытаний

По ГОСТ 25478 коэффициент неравномерности вычисляется иначе:

Время срабатывания тормозной системы на стенде (т сп) - промежуток времени от начала торможения до момента времени, в который тормозная сила колеса ДТС, находящегося в наихудших условиях, достигает установившегося значения, определяется по ДСТУ 2886-94.

На стенде ДТС должно испытываться в состоянии полной массы. Допускается проводить испытания ДТС с пневмоприводом в снаряженном состоянии. В этом случае максимальные тормозные силы колес и время срабатывания должны быть пересчитаны. Общая удельная тормозная сила и время срабатывания на стенде должны определяться как среднее арифметическое значение по результатам трех испытаний, округленное до десятых долей. Если разница между каким- либо из этих значений и средним больше 5 %, испытания необходимо повторить. Как и при дорожном методе, испытания следует проводить при «холодных» тормозных механизмах.

Требование выполнять стендовый контроль тормозов ДТС в состоянии полной массы исходит из ограниченных возможностей большинства силовых стендов по реализации тормозных сил (0,7...0,9 от действующей в момент испытаний нагрузки на колесо; у инерционных стендов это отношение несколько выше - q = 1,0... 1,2). Требование это нереально; не случайно стандарт допускает для ДТС с пневмоприводом (то есть большинства грузовых автомобилей и автобусов) испытания в снаряженном состоянии. Не исключено, что оно будет соблюдаться при государственных техосмотрах легковых автомобилей, где можно посадить в салон водителя, инспектора и двух-трех человек из очереди. Но уже для микроавтобусов, не говоря о грузовых автомобилях и автобусах с гидроприводом тормозов, это неосуществимо. При регулярном контроле в эксплуатации, выполняемом в автотранспортных предприятиях (АТП) и на станциях технического обслуживания (СТО). Это требование никогда не будет соблюдаться. Выходом может послужить искусственное догружение проверяемых колес, но стенды с догружателями массового распространения не получили.

Во всех действующих стандартах для расчета нормативов использовано упрощенное представление процесса торможения. Фактическая тормозная диаграмма автомобиля имеет довольно сложную конфигурацию. Один из примеров записи замедления функции времени показан на рис. 9.1 (тонкая зубчатая линия) . URL: http://www.alpoka.ru/catalogue/str1__13__itemid__73.html.

5. Средства диагностики и контроля автотранспортных средств [электронный ресурс]. URL: http://ktc256.ts6.ru/index.html.

6. Техническое обслуживание и ремонт автомобилей: механизация и экологическая безопасность производственных процессов // В.И. Сарбаев, С.С. Селиванов, В.Н. Коноплев -- Ростов: Феникс, 2004. -- 448 с.

7. Техническое обслуживание и ремонт автомобилей: учебник для студ. // В. М. Власов, С. В. Жанказиев, С. М. Круглов и др. -- М.: Издательский центр Академия, 2003. -- 480 с.

8. Технологические процессы диагностирования, обслуживания и ремонта автомобилей: учеб. пособие // В.П. Овчинников, Р.В. Нуждин, М.Ю. Баженов -- Владимир: Изд-во Владим. гос. ун-та, 2007. -- 284 с.

9. Технологические процессы технического обслуживания, ремонта и диагностики автомобилей: учеб. пособие для студ. высш. учеб. заведений // В.Г. Передерий, В.В. Мишустин. -- Новочеркасск: ЮРГТУ (НПИ), 2013. -- 226 с.

10. Харазов А.М. Диагностическое обеспечение технического обслуживания и ремонта автомобилей: справ. пособие -- М. : Высш. шк., 1990. -- 208 с.

Размещено на Allbest.ru

Подобные документы

    Принцип действия и основные элементы тормозной системы автомобиля. Схема работы главного цилиндра и вакуумного усилителя тормозов. Сравнение технических характеристик, ценовой категории, затрат на ремонт и срока службы диагностического оборудования.

    курсовая работа , добавлен 20.06.2015

    Устройство и принцип работы тормозной системы автомобиля ВАЗ 2109. Нормативные документы, регламентирующие значение параметров эффективности данных механизмов. Порядок диагностирования тормозных систем, правила пользования стендом и обработка результатов.

    курсовая работа , добавлен 02.06.2013

    Основные типы тормозных систем автомобилей и их характеристика. Назначение и устройство тормозной системы автомобиля ВАЗ-2110. Возможные неисправности тормозной системы, их причины и способы устранения. Техника безопасности и охрана окружающей среды.

    курсовая работа , добавлен 20.01.2016

    Конструкция и компоненты тормозной системы автомобилей. Тенденции развития дисковых тормозных механизмов. Устройство и принцип работы испытательного стенда для диагностики элементов тормозной системы легковых автомобилей с гидравлическим приводом.

    курсовая работа , добавлен 09.02.2015

    Устройство тормозной системы автомобиля ЗиЛ-130: структура и элементы, принцип действия. Техническое обслуживание тормозной системы с пневмоприводом, приемы и инструменты для реализации. Техника и правила безопасности при обслуживании автомобилей.

    курсовая работа , добавлен 28.06.2011

    Оценка технического состояния тормозной системы. Назначение, устройство, базовая комплектация и блок индикаторов стенда VIDEOline фирмы CARTEC. Описание тормозной системы автомобиля ВАЗ 2112. Анализ неисправностей и способы ремонта тормозной системы.

    дипломная работа , добавлен 12.09.2010

    Устройство и принцип работы тормозной системы автомобиля. Принцип действия и основные конструктивные особенности рабочих тормозных систем. Эффективность торможения и устойчивость автотранспортного средства. Проведение проверки рабочей тормозной системы.

    курсовая работа , добавлен 13.10.2014

    Анализ конструкции рабочей тормозной системы грузового автомобиля. Выявление основных неисправностей рабочей тормозной системы, методы устранения, разработка маршрутной карты сборки главного тормозного цилиндра с гидровакуумным усилителем в ходе ремонта.

    дипломная работа , добавлен 20.03.2011

    Устройство автомобиля ВАЗ-2106 и его технические характеристики. Тормозная система и ее устройство. Краткое описание и принцип действия тормозной системы автомобиля ВАЗ-2106. Описание отдельных устройств тормозной системы и возможные неисправности.

    реферат , добавлен 12.01.2009

    Устройство тормозной системы с гидравлическим приводом автомобиля ГАЗ-3307. Неисправности, их главные причины и способы устранения. Операции технического обслуживания. Требования к оборудованию автомобиля для перевозки топливно-смазочных материалов.

Ремонт тормозной системы необходим на всех автомобилях, однако, необходимо проводить диагностику технического состояния тормозной системы каждые несколько тысяч километров, это необходимо для снижения вероятности возникновения отказа тормозов автомобиля.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE \* MERGEFORMAT 28

Стр.

ВВЕДЕНИЕ ....................................................................................................

1.1. Принцип действия тормозной системы………………………………

1.2. Виды тормозных систем……………………………………………….

1.3. Основные элементы тормозной системы автомобиля……………….

2.МЕТОДЫ И ОБОРУДОВАНИЕ ДЛЯ ДИАГНОСТИКИ ТОРМОЗНЫХ СИСТЕМ

2.1. Основные неисправности тормозной системы……………………….

2.2. Требования к тормозным системам…………………………………...

2.3. Методы и оборудование диагностирования тормозных систем……

3.1. Выбор диагностического оборудования……………………………...

3.2. Технические характеристики выбранного оборудования…………...

ЗАКЛЮЧЕНИЕ …………………………………………………………….

…………………...

ВВЕДЕНИЕ

Количество автомобилей становится все больше и больше, их число увеличивается по всему миру, с каждым годом. А с количеством автомобилей, увеличивается и количество ДТП, из-за которых гибнет большее количество людей и еще больше остаются инвалидами и калеками. Ненадлежащее техническое состояние и эксплуатация автомобилей, является одной из основных причин возникновения многих ДТП. Аварии, возникающие из-за отказа различных систем автомобиля, несут за собой самые тяжкие последствия.

Актуальность темы курсовой работы заключается в том, что наиболее важная система, отвечающая за безопасность автомобиля, является тормозная система. Конструкции автомобилей постоянно совершенствуется, но неизменным остаётся наличие тормозной системы, которая способствует при необходимости остановить авто, что сохраняет жизни пешеходов, водителей и пассажиров, а также остальных участников дорожного движения. Ремонт тормозной системы необходим на всех автомобилях, однако, необходимо проводить диагностику технического состояния тормозной системы каждые несколько тысяч километров, это необходимо для снижения вероятности возникновения отказа тормозов автомобиля.

Цель курсовой работы – повышение эффективности диагностирования тормозной системы автомобиля, за счет разработать рекомендации по выбору диагностического оборудования тормозных систем и.

Для этого необходимо решить следующие задачи :

  • выполнить анализ устройства тормозной системы автомобилей;
  • изучить методы диагностирования тормозной системы;
  • изучить используемое оборудование при диагностике тормозных систем.

Объектом исследования является технология диагностирования тормозной сист е мы автомобилей.

Предмет исследования представляет собой средства и методы диагн о стирования тормозной системы автомобиля.

Методами исследования , используемыми в данной работе, являются методы обобщения, сравнения, анализа и аналогии.

Структура курсовой работы состоит из введения, трех глав, з а ключения и списка 10 использованных источников.

1. УСТРОЙСТВО ТОРМОЗНОЙ СИСТЕМЫ

1.1. Принцип действия тормозной системы автомобиля

Несложно понять на примере гидравлической системы. При надавливании на педаль тормоза, сила давления на педаль тормоза, передается на главный тормозной цилиндр (рис.1.1).

Этот узел преобразует усилие, которое прикладывается к педали тормоза, в давление в гидравлической тормозной системе, для замедления и остановки автомобиля .

Рис. 1.1. Устройство главного цилиндра

Сегодня, для повышения надежности тормозной системы, на всех автомобилях устанавливаются двухсекционные главные цилиндры, которые разделяют тормозную систему на два контура. Тормозной двухсекционный цилиндр может обеспечить работоспособность тормозной системы, даже если произойдёт разгерметизация одного из контуров.

При наличии в автомобиле вакуумного усилителя, то главный тормозной цилиндр крепится над самим цилиндром или бывает в другом месте, где находится бачок с тормозной жидкостью , который соединяется с секциями главного тормозного цилиндра через гибкие трубки. Резервуар необходим для контроля и восполнения тормозной жидкости в системе, при необходимости. На стенках бака имеются для просмотра уровня жидкости. А также, в бачок вмонтирован датчик, следящий за уровнем тормозной жидкости.

Рис. 1.2. Схема главного тормозного цилиндра:

1 — шток вакуумного усилителя тормозов; 2 — стопорное кольцо; 3 — перепускное отверстие первого контура; 4 — компенсационное отверстие первого контура; 5 — первая секция бачка; 6 — вторая секция бачка; 7 — перепускное отверстие второго контура; 8 — компенсационное отверстие второго контура; 9 — возвратная пружина второго поршня; 10 — корпус главного цилиндра; 11 — манжета; 12 — второй поршень; 13 — манжета; 14 — возвратная пружина первого поршня; 15 — манжета; 16 — наружная манжета; 17 — пыльник; 18 — первый поршень.

В корпусе главного тормозного цилиндра имеется 2 поршня с двумя возвратными пружинами и с уплотнительными резиновыми манжетами. Поршня, при помощи тормозной жидкости, создают давление в рабочих контурах системы. Затем, возвратные пружины возвращают поршня в исходное положение.

Некоторые автомобили оборудуются датчиком, на главном тормозном цилиндре, который контролирует перепад давления в контурах. При возникновении не герметичности, он своевременно предупреждает водителя.

О работе главного тормозного цилиндра :

1. При нажимании на педаль тормоза, шток вакуумного усилителя приводит в движение 1-ый поршень (рис. 1.3.)

Рис. 1.3. Работа главного тормозного цилиндра

2. Компенсационное отверстие закрывается, движущимся по цилиндру поршнем и создается давление, которое действует на 1-ый контур и двигает 2-ой поршень следующего контура. Также двигаясь вперед 2-ой поршень в своем контуре закрывает компенсационное отверстие и тоже создает давление в системе 2-ого контура.

3. Давление, создаваемое в контурах, обеспечивает срабатывание рабочих тормозных цилиндров. А пустота, что образовалась при движении поршней тут же заполняется жидкостью тормозной через специальные перепускные отверстия, тем самым предотвращая попадания в систему, ненужного воздуха.

4. При окончании торможения, поршни за счет действия возвратных пружин, возвращаются в исходное положение. При этом компенсационные отверстия получают сообщения с резервуаром и благодаря этому давление ровняется с атмосферным. А в это время, колеса автомобиля, растормаживаются.

Поршень в главном тормозном цилиндре, в свою очередь, который начинает двигаться и тем самым повышает давление в системе гидравлических трубок, ведущих ко всем колесам автомобиля. Тормозная жидкость под большим давлением, на всех колесах автомобиля, оказывая воздействие на поршень колесного тормозного механизма.

И который, уже в свою очередь, двигает тормозные колодки и те, прижимаются к тормозному диску или тормозному барабану автомобиля. Вращение колес сильно замедляется и автомобиль останавливается за счет силы трения.

После того, как мы отпускаем педаль тормоза, возвратная пружина возвращает педаль тормоза в исходное положение. Усилие, которое действует на поршень в главном барабане, тоже ослабевает, то и его поршень, также возвращается на свое место, заставляя тормозные колодки с находящимися на них фрикционным накладкам разжаться, тем самым, освобождая барабанные колеса или диски.

Также ещё есть вакуумный усилитель тормозов, применяемый в тормозных системах автомобилей. Его использование, существенно облегчает всю работу тормозной системы автомобиля.

1.2. Виды тормозных систем автомобиля

Тормозная система необходима для замедления транспортного средства и полной остановки автомобиля, а также его удержания на месте.

Для этого на автомобиле используют некоторые тормозные система, как - стояночная, рабочая, вспомогательная система и запасная.

Рабочая тормозная система используется постоянно, на любой скорости, для замедления и остановки автомобиля. Рабочая тормозная система, приводится в действие, путем нажатия на педаль тормоза. Она является самой эффективной системой из всех остальных.

Запасная тормозная система используется при неисправности основной. Она бывает в виде автономной системы или её функцию выполняет часть исправной рабочей тормозной системы.

Стояночная тормозная система нужна для удержания автомобиля на одном месте. Стояночную систему использую во избежание самопроизвольного движения автомобиля.

Вспомогательная тормозная система применяется на авто с повышенной массой. Вспомогательную систему используют для торможения на склонах и спусках. Не редко бывает, что на автомобилях роль вспомогательной системы играет двигатель, где выпускной трубопровод перекрывает заслонка.

Тормозная система - это важнейшая неотъемлемая часть автомобиля, служащая для обеспечения активной безопасности водителей и пешеходов. На многих автомобилях применяют различные устройства и системы, повышающие эффективность системы при торможении — это антиблокировочная система ( ABS ), усилитель экстренного торможения ( BAS ), усилитель тормозов .

1.3. Основные элементы тормозной системы автомобиля

Тормозная система автомобиля состоит из тормозного привода и тормозного механизма .

Рис.1.3. Схема гидропривода тормозов:
1 — трубопровод контура «левый передний-правый задний тормоз»; 2-сигнальное устройство; 3 — трубопровод контура «правый передний — левый задний тормоз»; 4 — бачок главного цилиндра; 5 — главный цилиндр гидропривода тормозов; 6 — вакуумный усилитель; 7 — педаль тормоза; 8 — регулятор давления задних тормозов; 9 — трос стояночного тормоза; 10 — тормозной механизм заднего колеса; 11 — регулировочный наконечник стояночного тормоза; 12 — рычаг привода стояночного тормоза; 13 — тормозной механизм переднего колеса.

Тормозным механизмом блокируются вращения колес автомобиля и в следствии чего, появляется тормозная сила, которая является причиной остановки автомобиля. Тормозные механизмы находятся на передних и задних колесах автомобиля.

Проще говоря, все тормозные механизмы можно назвать колодочными. И уже в свою очередь, их можно разделять по трению - барабанные и дисковые. Тормозной механизм основной системы монтируется в колесо, а за раздаточной коробкой или коробкой передач находится механизм стояночной системы.

Тормозные механизмы, как правило состоят из двух частей, из неподвижной и вращающейся. Неподвижная часть – это тормозные колодки, а вращающаяся часть барабанного механизма - это тормозной барабан.

Барабанные тормозные механизмы (рис. 1.4.) чаще всего стоят на задних колесах автомобиля. В процессе эксплуатации из-за износа, зазор между колодкой и барабаном увеличивается и для его устранения используют механические регуляторы.

Рис. 1.4. Барабанный тормозной механизм заднего колеса:
1 – чашка; 2 – прижимная пружина; 3 – приводной рычаг; 4 – тормозная колодка; 5 – верхняя стяжная пружина; 6 – распорная планка; 7 – регулировочный клин; 8 – колесный тормозной цилиндр; 9 – тормозной щит; 10 – болт; 11 – стержень; 12 – эксцентрик; 13 – нажимная пружина; 14 – нижняя стяжная пружина; 15 – прижимная пружина распорной планки.

На автомобилях могут применять различные комбинации тормозных механизмов:

  • два барабанных задних, два дисковых передних;
  • четыре барабанных;
  • четыре дисковых.

В тормозном дисковом механизме (рис. 1.5.) - диск вращается, а внутри суппорта установлены, две неподвижные колодки. В суппорте установлены рабочие цилиндры, при торможении они прижимают тормозные колодки к диску, а сам суппорт надежно закреплен на кронштейне. Для увеличения отвода тепла от рабочей зоны часто используются вентилируемые диски .

Рис. 1.5. Схема дискового тормозного механизма:
1 — колесная шпилька; 2 — направляющий палец; 3 — смотровое отверстие; 4 — суппорт; 5 — клапан; 6 — рабочий цилиндр; 7 — тормозной шланг; 8 — тормозная колодка; 9 — вентиляционное отверстие; 10 — тормозной диск; 11 — ступица колеса; 12 — грязезащитный колпачок.

2. МЕТОДЫ И ОБОРУДОВАНИЕ ДЛЯ ДИАГНОСТИКИ ТОРМОЗНЫХ СИСТЕМ

2.1. Основные неисправности тормозной системы

Тормозная система требует к себе самого пристального внимания, т.к. запрещено эксплуатировать автомобиль, с неисправной тормозной системой. В данной главе рассмотрены основные неисправности тормозной системы, их причины и способы их устранения .

Увеличенный, большой рабочий ход педали тормоза . Возникает из-за недостатка, либо утечки тормозной жидкости из рабочих цилиндров. При этом следует заменить, вышедшие из строя рабочие цилиндры, промыть колодки, диски, барабаны и долить тормозную жидкость при необходимости. А также этому способствует попадание воздуха в тормозную систему, в этом случае, просто необходимо удалить его, прокачав систему.

Недостаточная эффективность торможения . Недостаточная эффективность тормозов возникает при замасливании или износе накладок тормозных колодок, также возможно заклинивание поршней в рабочих цилиндрах, перегрев тормозных механизмов, разгерметизация одного из контуров, применение некачественных колодок, нарушение в работе ABS и т.д.

Неполное растормаживание колес автомобиля. Данная проблема возникает, когда у педали тормоза нет свободного хода, необходимо просто отрегулировать положение педали. Также проблема может быть и в самом главном цилиндре, из-за заклинивания поршней. Может быть увеличенным выступание штока вакуумного усилителя, либо резиновые уплотнители, просто разбухли, из-за попадания бензина или масла, тогда в этом случае необходимо заменить все резиновые детали, а также промыть и прокачать всю систему гидропривода.

Притормаживание одного из колес, при отпущенной педали. Скорей всего ослабла стяжная пружина колодок заднего колеса, или из-за коррозии, либо просто загрязнения - заело поршень в колесном цилиндре, тогда необходимо заменить рабочий цилиндр. Также возможно нарушение положения суппорта относительно тормозного диска переднего колеса, при ослабевании болтов крепления. Еще может быть нарушение в работе ABS , разбухание уплотнительных колец колесного цилиндра, неправильная регулировка стояночной системы и т.д.

Занос, либо отклонение от прямолинейного движения при торможении. Если автомобиль, двигаясь по ровной и сухой дороге, во время торможения начал отклонятся в какую-либо сторону, то этому может способствовать заклинивание поршня главного цилиндра, закупоривание трубок вследствие засорения, загрязнение или замасливание тормозных механизмов, разное давление в колесах, а также возможно не работает один из контуров тормозной системы.

Увеличенное усилие на педали тормоза при торможении . Если для остановки автомобиля необходимо приложить большое усилие на педаль тормоза, то скорей всего просто неисправен вакуумный усилитель, но также еще бывает и поврежден шланг, который соединяет впускную трубу двигателя с вакуумным усилителем. А также возможно заедание поршня главного цилиндра, износ колодок и еще могут быть установлены новые колодки, которые просто еще не приработались.

Повышенный шум при торможении . Когда тормозные колодки изношены, возникает визжащий звук при торможении, из-за трения индикатора износа, трущегося о диск. Также колодки, либо диск могут быть засалены или загрязнены.

2.2. Требования к тормозным системам автомобиля

Тормозная система автомобиля, кроме общих требований к конструкции, имеет повышенные специальные требования, т.к. она обеспечивает безопасность движения автомобилей на дороге. Поэтому тормозная система в соответствии с этими требованиями, должна обеспечивать:

  • минимальный тормозной путь;
  • устойчивость автомобиля во время торможения;
  • стабильность тормозных параметров при частом торможении;
  • быстрое срабатывание тормозной системы;
  • пропорциональность усилия на тормозную педаль и на колеса автомобиля;
  • легкость управления.

К тормозным системам автомобиля, имеются требования, которые регламентируются правилами № 13 ЕЭК ООН, применяемые и у нас в России:

Минимальный тормозной путь. Тормозная система на автомобилях должна быть высокоэффективной. Число аварий и ДТП будет меньше, если максимальное значение замедления будет высоким и примерно равным у различных по массе и типу автомобилей, движущихся в интенсивном потоке.

А также и тормозные пути автомобилей должны быть одновременно близкими друг к другу, с разницей около 15%. Если минимальный тормозной путь сократится, то будет обеспечиваться не только высокая безопасность движения, но и увеличение средней скорости автомобиля.

Необходимые условия для получения минимального тормозного пути – это наименьшее время, необходимое для срабатывания тормозного привода автомобиля, а также торможение всех колес одновременно и возможность доведения тормозных сил до максимального значения по сцеплению и обеспечению нужного распределения тормозных сил между колесами автомобиля в соответствии с нагрузкой.

Устойчивость при торможении. Это требование повышает эффективность торможения автомобиля на дороге с малыми коэффициентами сцепления (обледенелые, скользкие и т. д.) и тем самым повышает уровень безопасности всех участников движения на дорогах.

При соблюдении пропорциональности между тормозными силами и нагрузками на задних и передних колесах, обеспечивается торможение автомобиля с максимальным замедлением при любых дорожных условиях.

Стабильное торможение. Данное требование связано с нагревом тормозного механизма во время торможения и возможными нарушениями их действий при нагреве. Так, при нагреве между тормозным барабаном (диском) и фрикционными накладками колодок, коэффициент трения уменьшается. Кроме этого, при нагреве тормозных накладок, их изнашивание значительно увеличивается.

Стабильность тормозных параметров при частых торможениях автомобиля достигается с коэффициентом трения тормозных накладок, равным около 0.3-0.35, практически не зависящий от скорости скольжения, нагрева и попадания воды.

От времени срабатывания тормозной системы автомобиля, будет зависеть тормозной путь, что существенно влияет на безопасность движения. Главным образом, от типа тормозного привода, зависит время срабатывание тормозной системы. У автомобилей с гидравлическим приводом будет 0.2-0.5, у автомобилей с пневматическим приводом 0.6-0.8 и у автопоездов с пневматическим приводом 1-2. При выполнении указанных требований, обеспечивается значительное повышение безопасности движения автомобилей в различных дорожных условиях.

Усилие на тормозную педаль во время торможения автомобиля должно быть 500 - 700 Н (минимальное значение, для легковых автомобилей) при ходе педали 80 - 180 мм .

2.3. Методы диагностирования тормозных систем

Для диагностирования тормозных систем автомобилей, применяют два основных метода диагностирования — дорожный и стендовый .

  • дорожный метод диагностирования предназначен для определения длинны тормозного пут; установившегося замедления; устойчивость автомобиля вовремя торможения; время срабатывания тормозной системы; уклон дороги, на которой должен неподвижно стоять автомобиль;
  • стендовый метод испытаний необходим для расчета общей удельной тормозной силы; коэффициента неравномерности (относительной неравномерности) тормозных сил колес оси.

На сегодняшний день существует множество различных стендов и приборов, для измерения тормозных качеств различными методами и способами:

  • инерционные платформенные ;
  • статические силовые ;
  • силовые роликовые стенды ;
  • инерционные роликовые ;
  • приборы, измеряющие замедление автомобиля во время дорожных испытаниях.

Инерционный платформенный стенд . Принцип действия этого стенда основывается на измерении сил инерции (от вращательно и поступательно движущихся масс), возникающие во время торможения автомобиля и приложенные в местах сопряжения колес автомобиля с динамометрическими платформами.

Статические силовые стенды . Данные стенды представляют собой роликовые и платформенные устройства, которые предназначены для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Статистические силовые стенды имеют, пневматические, гидравлические или механические приводы. Тормозная сила измеряется при вывешивании колеса или при его опоре на гладкие беговые барабаны. У данного метода есть недостаток диагностирования тормозов - это неточность результатов, в результате чего не повторяются условия настоящего динамического процесса торможения.

Инерционные роликовые стенды . Они имеют ролики, имеющие привод от электродвигателя или от двигателя автомобиля. Во втором примере, за счет задних (ведущих) колес автомобиля, вращаются ролики стенда, а от них с помощью механической передачи — и передние (ведомые) колеса.

После того, как автомобиль установлен на инерционный стенд, линейную скорость колес доводят до 50-70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Спустя некоторое время вращение барабанов стенда и колес автомобиля прекращают. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.

Тормозной путь определяется по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление — угловым деселерометром.

Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерить тормозную силу в процессе его вращения со скоростью 2,10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор редуктора стенда при торможении колес.

Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» — оценка неравномерности тормозных сил за один оборот колеса, т.е. исследуется вся поверхность торможения.

При испытании на роликовых тормозных стендах, когда усилие передается извне (от тормозного стенда), физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию даже несмотря на то, что автомобиль не обладает кинетической энергией.

Есть еще одно важное условие — безопасность испытаний. Самые безопасные испытания — на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на площадочных тормозных стендах вероятность аварийной ситуации очень высока .

Следует отметить, что по совокупности своих свойств именно силовые роликовые стенды являются наиболее оптимальным решением как для диагностических линий станций техобслуживания, так и для диагностических станций, проводящих гостехосмотр.

Современные силовые роликовые стенды для проверки тормозных систем могут определять следующие параметры:

  1. По общим параметрам транспортного средства и состоянию тормозной системы — сопротивление вращению незаторможенных колес; неравномерность тормозной силы за один оборот колеса; массу, приходящуюся на колесо; массу, приходящуюся на ось.
  2. По рабочей и стояночной тормозным системам — наибольшую тормозную силу; время срабатывания тормозной системы; коэффициент неравномерности (относительную неравномерность) тормозных сил колес оси; удельную тормозную силу; усилие на органе управления.

Данные контроля (рис. 2.3.) выводятся на дисплей в виде цифровой или графической информации. Результаты диагностирования могут выводиться на печать и храниться в памяти компьютера в базе данных диагностируемых автомобилей.

Рис. 2.3. Данные контроля тормозной системы автомобиля:

1 — индикация проверяемой оси; ПО — рабочий тормоз передней оси; СТ — стояночная тормозная система; ЗО — рабочий тормоз задней оси

Результаты проверки тормозных систем могут выводиться также на приборную стойку (рис. 2.4.)

Динамику процесса торможения (рис. 2.5.) можно наблюдать в графической интерпретации. График показывает тормозные силы (по вертикали) относительно усилия на педали тормоза (по горизонтали). На нем отражены зависимости тормозных сил от усилия нажатия на педаль тормоза как для левого колеса (верхняя кривая), так и для правого (нижняя кривая).

Рис. 2.4. Приборная стойка тормозного стенда

Рис. 2.5. Графическое отображение динамики процесса торможения

С помощью графической информации можно наблюдать также разницу в тормозных силах левого и правого колес (рис. 2.6.). На графике показано соотношение тормозных сил левого и правого колес. Кривая торможения не должна выходить за границы нормативного коридора, которые зависят от конкретных нормативных требований. Наблюдая характер изменения графика, оператор-диагност может сделать заключение о состоянии тормозной системы .

Рис. 2.6. Значения тормозных сил левого и правого колес

  1. РЕКОМЕНДАЦИИ ПО ВЫБОРУ ОБОРУДОВАНИЯ ДИАГНОСТИРОВАНИЯ ТОРМОЗНОЙ СИСТЕМЫ

3.1. Выбор диагностического оборудования

Тормозные стенды SPACE имеют сертификат качества системы управления согласно UNI EN ISO 9001—2000 подтверждает применение передовых технологий, использования современных покрытий, высококачественных материалов и комплектующих, что даёт возможность экспортировать оборудование более чем в сорок стран мира.

Диагностирование тормозной системы автомобиля осуществляют ролики, которые разделяются на 3 типа. Тормозные стенды имеют разную конструкцию и мощность двигателя, но главной основной чертой является максимальное значение тормозной силы (табл. 3.1).

Таблица 3.1

Роликовые агрегаты для тормозных стендов

Модель

Макс. Тормозная сила

PFB 035

5000 кг

PFB 040

6000 кг

PFB 050

7500 кг

PFB 715

7500 кг (с двойной скоростью)

А также еще одна важная характеристика – это коэффициент трения между колесом автомобиля и роликами стенда. В нашем случае берем значение равное 0.7. Для выбора тормозного стенда определяем тормозное усилие.

Тормозное усилие – это сила взаимодействия колеса автомобиля с внешней стороной ролика (имитация движения автомобиля по дороге). Оно выражается в Дэн.

1 Ньютон = 0,101972 кг.

1 Дэн = 10 Ньютон = 1.01 кг.

Для удобства расчетов принимаем 1 Дэн = 1 кг с 1% незначительной погрешности.

µ = F/M

Коэффициент трения µ - отношение силы F к массе M .

Данное выражение означает отношение между массой автомобиля и силой, необходимой для движения по дороге.

Если мы имеем массу M , взаимодействующая с поверхностью и 0,5 кг силы F для её перемещения, то тогда коэффициент трения µ будет равен 0,5.

По этому усредненному значению выбирают роликовый тормозной стенд, например, PFB 035 = 500 Дэн.

Мощность мотора (и роликовый привод) позволяет выполнить точные измерения силы F свыше 510,2 кг. к касательной поверхности ролика. После измерения этой величины мотор уменьшает скорость, и проведение дальнейших измерений не выполняются. Для определения максимальной массы, используем предыдущую формулу:

W = F /µ

Получаем 500 кг / 0,7 = 714 кг (масса, действующая на один ролик). Отсюда следует, что максимальный вес на ось равен 1428 кг.

Для полученного максимального теоретического значения массы на ось, мы можем выбрать модель PFB 035. Этот выбор не точен, потому что коэффициент трения сильно зависит от характеристик шины (плохая шина имеет более низкое трение) и других условий. Например, максимальное тормозное усилие не измеряет время торможения ранее поврежденной шины, во избежание её дальнейшего износа. Это так же позволяет немного увеличить максимальный вес оси. Следует обратить внимание, что вес оси не просто половина полного веса автомобиля, так как разгруженный автомобиль имеет больший вес на ось, но если загружать автомобиль, соответственно нагрузка на ось увеличивается.

3.2. Технические характеристики выбранного оборудования

Принцип работы линии SPACE (Италия) заключается в последовательном сборе и программной обработке результатов измерений и визуального контроля технического состояния АТС при помощи измерительных приборов оборудования, входящих в комплектацию линии инструментального контроля . Процедура тестирования автомобиля управляется с пульта дистанционного управления либо с клавиатуры, обрабатывается и запоминается процессором, визуализация тестирования с помощью монитора, все изображения 3D графике, печать результатов на принтере, интерфейс для подключения:

  • стенд увода ;
  • тестер подвески ;
  • газоанализатор ;
  • дымометр ;
  • тахометр .

Перечень измеряемых параметров:

Сопротивление качению;

Овальность дисков или расцентровка тормозного барабана;

Максимальное тормозное усилие на колесо;

Разность тормозных усилий между правым и левым колесами одного моста;

Эффективность торможения рабочего и стояночного тормозов;

Усилие на педаль ножного тормоза и на рычаг ручного тормоза

На тормозном стенде можно испытывать и автомобили с приводом на все колеса 4WD. Процедура тестирования для полно приводных автомобилей 4WD разделяется на две отдельные фазы для каждого моста. На первой фазе левый роликовый агрегат начинает вращаться по ходу движения, а правый — в противоположном направлении. При этом в раздаточной коробке расцепляется передача на вторую ось, и, следовательно, момент вращения не передается на колеса, не стоящие на роликах. Результаты будут показаны после испытаний обеих осей. По окончании измерений тормозных усилий на каждом мосте, можно посмотреть график хода тормозных усилий.

Рис. 3.2. Процедура тестирования полно приводных автомобилей.

После того, как в память компьютера введены все данные и автомобиль сошел с роликового агрегата, на экране монитора появляется страница с итоговыми результатами испытаний всей тормозной системы (рис. 3.2.).

Технические характеристики стендов PFB 035, PFB 040 и PFB 050 приведены в таблице 3.2

Таблица 3.2

Технические характеристики

Технические характеристики

PFB 035

PFB 040

PFB 050

Нагрузка на ось при тестировании / при транзите, кг

2500/4000

2500/4000

2500/4000

Максимальная тормозная сила, N

5000

6000

7500

Точность, %

Скорость при тестировании

Мощность двигателей, кВт

2x4.7

2x5.5

Диаметр барабанов, мм

Коэффициент сцепления

Более 0.7

Более 0.7

Более 0.7

Питание, V

380 / 3ф

380 / 3ф

380 / 3ф

Сравнение ценовой рентабельности, затрат на ремонт и продолжительности работоспособности приведены на рисунке 3.3

Рис. 3.3. Сравнительная диаграмма стендов (в процентном соотношении) .

ЗАКЛЮЧЕНИЕ

Современный автомобиль работает в самых различных дорожных и климатических условиях. Длительная эксплуатация неизбежно приводит к ухудшению его технического состояния. Работоспособность автомобиля или его агрегатов определяется их способностью выполнять заданные функции без нарушения установленных параметров. Работоспособность автомобиля зависит прежде всего от его надежности, под которой понимают способность автомобиля безопасно перевозить грузы или пассажиров при соблюдении определенных эксплуатационных параметров.

При написании работы, была изучена специальная литература, включающая в себя статьи и учебники, описаны теоретические аспекты и раскрыты ключевые понятия исследования.

В ходе написания курсовой работы было изучено устройство тормозной системы. Были рассмотрены методы и способы восстановления работоспособности тормозов. И в заключении на основании изученного материала, были разработаны рекомендации выбора диагностического оборудования фирмы «SPASE», из трех роликовых стендов PFB 035, PFB 040 и PFB 050. В ходе изучения технических характеристик, ценовой категории, затрат на ремонт и срока службы, было принято решение выбора первого агрегата PFB 035, так как он является более оптимальным вариантом по ценовой категории, а техническими характеристика не сильно уступает остальным стендам, а также по затратам на ремонт и сроком службы, что приводится в рисунке 3.3, является более рентабельным.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. ГОСТ Р 51709-2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. — М.: Стандартинформ, 2010. — 42 с.

2. Деревянко В.А. Тормозные системы легковых автомобилей — М.: Петит, 2001. — 248 с.

3. Диагностирование автомобилей. Практикум: учеб. пособие // под ред. А.Н. Карташевича. — Минск: Новое знание; М.: ИНФРА-М, 2011. — 208 с.

4. Роликовые тормозные стенды для легковых автомобилей: SPACE [электронный ресурс]. URL : http :// www . alpoka . ru / catalogue / str 1__13__ itemid __73. html .

5. Средства диагностики и контроля автотранспортных средств [электронный ресурс]. URL: http://ktc256.ts6.ru/index.html.

6. Техническое обслуживание и ремонт автомобилей: механизация и экологическая безопасность производственных процессов // В.И. Сарбаев, С.С. Селиванов, В.Н. Коноплев — Ростов: Феникс, 2004. — 448 с.

7. Техническое обслуживание и ремонт автомобилей: учебник для студ. // В. М. Власов, С. В. Жанказиев, С. М. Круглов и др. — М.: Издательский центр Академия, 2003. — 480 с.

8. Технологические процессы диагностирования, обслуживания и ремонта автомобилей: учеб. пособие // В.П. Овчинников, Р.В. Нуждин, М.Ю. Баженов — Владимир: Изд-во Владим. гос. ун-та, 2007. — 284 с.

9. Технологические процессы технического обслуживания, ремонта и диагностики автомобилей: учеб. пособие для студ. высш. учеб. заведений // В.Г. Передерий, В.В. Мишустин. — Новочеркасск: ЮРГТУ (НПИ), 2013. — 226 с.

10. Харазов А.М. Диагностическое обеспечение технического обслуживания и ремонта автомобилей: справ. пособие — М. : Высш. шк., 1990. — 208 с.

Другие похожие работы, которые могут вас заинтересовать.вшм>

20713. Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей 412.16 KB
Конструкции автомобилей постоянно совершенствуется, но неизменным остаётся наличие тормозной системы, которая способствует при необходимости остановить авто, что сохраняет жизни пешеходов, водителей и пассажиров, а также остальных участников дорожного движения. Ремонт тормозной системы необходим на всех автомобилях,
11115. Улучшение тормозных качеств автомобиля в эксплуатации 1.52 MB
Разработчики и конструкторы тормозов зарубежных и отечественных фирм все большее предпочтение отдают разработке дисковых тормозов, обладающих стабильными характеристиками в широком диапазоне температур, давлений и скоростей. Но и такие тормоза не в полной мере могут обеспечить эффективное срабатывание тормозной системы, более надежными становятся антиблокировочные системы (АБС)
7978. Стратегический менеджмент. Основные подходы к выбору стратегии 27.13 KB
В условиях жесткой конкурентной борьбы и быстро меняющейся ситуации организации должны не только концентрировать внимание на внутреннем состоянии дел но и вырабатывать долгосрочную стратегию поведения которая позволила бы им поспевать за изменениями происходящими в их окружении. В прошлом многие организации могли успешно функционировать обращая внимание в основном на ежедневную работу на внутренние проблемы связанные с повышением эффективности использовании ресурсов в текущей деятельности. В настоящее время задача рационального...
11416. Разработка технологии получения фрикционных материалов для реставрации тормозных колодок железнодорожных вагонов 1.34 MB
Настоящая дипломная работа выполнена в рамках вышеуказанной программы в сотрудничестве со специалистами ТТЦ «КМ», РХТУ им. Д.И. Менделеева, Института машиноведения (г.Москва) и Академии транспорта (г. Алматы). Следует отметить, что данные представленные в настоящей работе являются первыми в Республике Казахстан и должны рассматриваться как результаты поисковой и проблемных НИР
16759. Реструктуризация корпоративных заемщиков по выбору кредиторов: решение макро-проблем на микроуровне 14.73 KB
Существенное ухудшение экономической ситуации в стране и мире привело к тому что большинство российских предприятий в том числе и крупных столкнулись с многочисленными финансовыми проблемами и постоянным ростом задолженности. Общий объем дефолтов таков что суммарно за год с сентября 2008г. Причина кроется в том факте что все деньги осели в банках: на поддержку финансового рынка и отраслей...
6511. Принципи побудови систем АРП кабельного лінійного тракту систем передачі з ЧРК 123.51 KB
Пристрої автоматичного регулювання посилення призначені для регулювання рівнів передачі підсилювачів магістралі в заданих межах і для стабілізації залишкового загасання каналів звязку.
8434. Види облікових систем (АРМ-систем) бухгалтера та їх будова 46.29 KB
Види облікових систем АРМсистем бухгалтера та їх будова 1. Структурна будова облікових АРМ систем. Побудова облікових систем ОС на базі АРМ характеризується багатоаспектністю можливих варіантів їх побудови. Виділяючи класифікаційні ознаки АРМ враховують такі особливості їх побудови і впровадження як структурнофункціональне місце займане кожним АРМ розподіл функціональних задач серед АРМ способи організації розв’язування задач зв’язки з АРМ одного і різних рівнів управління та інші фактори.
5511. РЕКОМЕНДАЦИИ ПО СНИЖЕНИЮ РАСХОДОВ НА ПРЕДПРИЯТИИ ООО «ПРОФИЛЬ» 97 KB
Расходы предприятия, организации относятся к основным экономическим показателям деятельности предприятия и представляют собой уменьшение экономических выгод в результате выбытия активов (денежных средств, иного имущества) и (или) возникновения обязательств
5115. Расчёт энергопотребления и основные рекомендации по энергосбережению 121.88 KB
В квартире отсутствует теплосчётчик, поэтому мероприятия по экономии теплоты не приведут к снижению оплаты коммунальных услуг. Установка индивидуального прибора учёта на квартиру невозможна по техническим причинам. В квартире установлены стеклопакеты и застеклён балкон. Это сокращает теплопотери и способствует установлению оптимального уровня комфорта в квартире.
10438. Методические рекомендации к учебникам математики для 10 – 11 классов 75.1 KB
Авторы предлагают примерное тематическое планирование для базового уровня из расчета 15 часа в неделю – геометрия и 25 часа в неделю алгебра. Геометрия 10 11 Допущено Министерством образования Российской Федерации в качестве методических рекомендаций по использованию учебников для 10–11 классов при организации изучения предмета на базовом и профильном уровнях...