» » Презентация на тему: Технология - Смазывание. Методы нанесения смазок

Презентация на тему: Технология - Смазывание. Методы нанесения смазок

Скачать документ

Технический комитет по стандартизации
«Трубопроводная арматура и сильфоны» (ТК259)

Закрытое акционерное общество
«Научно-производственная фирма
«Центральное конструкторское бюро арматуростроения»

СТАНДАРТ ЦКБА


Предисловие

1 РАЗРАБОТАН Закрытым акционерным обществом «Научно-производственная фирма «Центральное конструкторское бюро арматуростроения» (ЗАО «НПФ «ЦКБА»).

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом от 04.04.2008 г. № 24

3 СОГЛАСОВАН:


ОСТ 26-07-2070-86 Арматура трубопроводная. Антифрикционные смазочные материалы. Марки. Нормы расхода

СТАНДАРТ ЦКБА


Настоящий стандарт распространяется на антифрикционные смазки, применяемые в парах трения (подвижных и неподвижных соединениях) трубопроводной арматуры и приводных устройств к ней (далее - арматуры).

Стандарт устанавливает перечень антифрикционных смазок, параметры их применения при эксплуатации арматуры и нормы расхода смазок на одно изделие.

2.1 В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты, нормативные документы:

ГОСТ 201-76 Тринатрийфосфат. Технические условия.


ГОСТ 9433-80 Смазка ЦИАТИМ-221. Технические условия

ГОСТ 10597-87 Кисти и щетки малярные. Технические условия

ГОСТ 12026-76 Бумага фильтрованная лабораторная. Технические условия

ГОСТ 14068-79 Паста ВНИИНП-232. Технические условия

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 19782-74 Паста ВНИИНП-225. Технические условия

ГОСТ 20799-88 Масла индустриальные общего назначения. Технические условия

ГОСТ 25549-90 Топлива, масла, смазки и специальные жидкости. Химмотологическая карта. Порядок составления и согласования

ГОСТ 26191-84 Масла, смазки и специальные жидкости. Ограничительный перечень и порядок назначения

ГОСТ 29298-2005 Ткани хлопчатобумажные и смешанные бытовые. Общие технические условия

ОСТ 38.01.408-86

ТУ 38.101891-81 Смазка ВНИИНП-275

ТУ 38.1011062-86 Смазка ВНИИНП-276. Технические условия

3 Обозначения и сокращения

3.1 В настоящем стандарте использованы следующие сокращения и обозначения:

а) АС - атомные электростанции;

б) МО РФ - Министерство обороны Российской Федерации;

в) ТУ - технические условия.

4 Общие положения

4.1 Перечень антифрикционных смазок, применяемых в парах трения арматуры, не имеющих прямого контакта с рабочей средой, их характеристики и область применения приведен в таблице 4.1. Указанные смазки для арматуры заказа МО РФ соответствуют требованиям УП 01-1874-62.

4.2 Антифрикционные смазки могут быть использованы в течение двух лет со дня вскрытия тары, но не более срока хранения, указанного в стандарте или ТУ на смазку, и должны храниться в крытых складских помещениях, в условиях, предохраняющих от попадания грязи и влаги.

Антифрикционные смазки должны заказываться в упаковке в алюминиевых тубах. В случае поставки антифрикционных смазок в банках из белой жести, последние после их вскрытия должны храниться в крытых складских помещениях в закрытых двухслойных мешках из пластмассы или резины.

Срок хранения в таре завода - изготовителя - в соответствии с требованиями стандартов или технических условий на конкретную смазку.

4.3 Не допускаются к применению смазки, имеющие поврежденную в процессе транспортировки упаковку, а также не имеющие упаковочного листа или паспорта, подтверждающего соответствие данной партии требованиям стандартов или технических условий.

4.4 Антифрикционные смазки для пар трения арматуры в зависимости от условий эксплуатации следует применять в соответствии с таблицей 4.1.

4.5 При проектировании, выбор и предварительное назначение смазок производятся в соответствии с таблицами 4.1, 4.2. Окончательный выбор смазок производится на основании положительных результатов испытаний опытных образцов арматуры.

4.6 При обеспечении заданной работоспособности арматуры несколькими смазками, указанными в таблице 4.1, смазка должна выбираться с минимально допустимыми значениями температур, нагрузок, и т.д.

Применение в этих случаях смазок, обеспечивающих работоспособность арматуры в более широком диапазоне параметров эксплуатации, не допускается.

4.7 Антифрикционные смазки, указанные в таблице 4.1, работоспособны в парах трения изделий в условиях тропического климата.

4.8 Нормы расхода антифрикционных смазок для трубопроводной арматуры общепромышленного назначения и приводных устройств к ней, выбранных в соответствии с требованиями таблиц 4.1, 4.2, в расчете на одно изделия приведены в приложении А.

4.9 Если конструкция арматуры отличается от типовой (наличие ручного дублера, масленки, наличие карманов для создания резерва смазки в узле, гидропривода, пневмопривода и т.п.), нормы расхода могут быть уточнены применительно к конкретной конструкции изделия.

4.10 Выбор и предварительное назначение смазок производится в соответствии с указаниями табл. 4.1 и 4.2. На стадии технического проекта для вновь разрабатываемой арматуры или технического задания на модернизацию арматуры разработчиком арматуры составляется и согласовывается ведомость применения смазок в соответствии с требованиями ГОСТ 26191 и химмотологическая карта в соответствии с требованиями ГОСТ 25549.

4.11 Выбор смазки для пар трения арматуры заказов МО РФ, а также допуск к применению по результатам испытаний должен быть согласован с головной организацией по смазкам.

4.12 Металлические материалы пар трения, резинотехнические детали (РТД), подшипники качения должны быть согласованы соответственно с головными организациями по специализации.

4.13 Нормы расхода антифрикционных смазок для арматуры заказов МО РФ, выбранных в соответствии с требованиями таблиц 4.1, 4.2 в расчете на одно изделие, приведены в таблице Б.1 приложения Б.

4.14 Пополнение или замена смазки производится в соответствии с указаниями руководства по эксплуатации.

4.15 Условия хранения смазок в изделиях - неотапливаемые складские помещения или навесы при температуре от минус 60 до плюс 65 °С.

4.16 Срок службы смазок для вновь разрабатываемых или модернизируемых конструкций узлов трения арматуры заказов МО РФ определяется головным предприятием по арматуре совместно с головной организацией по смазкам и согласовывается с представителем заказчика при головном предприятии по арматуре.

4.17 При работе с антифрикционными смазками необходимо соблюдать требования безопасности, указанные в стандартах и технических условиях на смазки, приведенные в таблице 4.1.

Таблица 4.1 - Антифрикционные смазки

Марки смазок

Характеристики смазок

Область применения

ЦИАТИМ-221

Пластичная смазка гладкой структуры от светло-желтого до светло-коричневого цвета; морозостойкая, стойкая в агрессивным средам при ограниченном с ними контакте, радиационностойкая.

Подвижные соединения типа «металл-металл» и соединения типа «металл-резина» (подвижные и неподвижные).

Например:

шпиндель-втулка резьбовая, шток (вал) - втулка, подшипники, шпоночные и шлицевые соединения, зубчатые червячные передачи; сальники, РТД (кольцо, манжета, прокладка).

ЦИАТИМ-201

Пластичная смазка гладкой структуры от светло-желтого до светло-коричневого цвета; водостойкая, морозостойкая, радиационностойкая.

Подвижные и неподвижные соединения типа «металл-металл»; шпиндель - втулка резьбовая, шток (вал) - втулка, подшипники: шпоночные и шлицевые соединения, зубчатые и червячные передачи; сальники, (крепежные резьбы)

Солидол С

Пластичная смазка гладкой структуры коричневого цвета; водостойкая, стабильна при хранении, обладает хорошими защитными свойствами.

ВНИИНП-232

Пастообразная смазка без комков от темно-серого до черного цвета; радиационностойкая

Нагруженные подвижные и неподвижные соединения (шпиндель-втулка резьбовая, шток-втулка, подшипники, шпоночные и шлицевые соединения, сальники, неподвижные резьбовые соединения (крепежные резьбы)

ВНИИНП-225

Пастообразная смазка черного цвета, термостойкая, стойкая к агрессивным средам при ограниченном с ними контакте, радиационностойкая

ВНИИНП-275

Пластичная смазка гладкой структуры от белого до светло-желтого цвета; термостойкая, радиационностойкая

Подвижные соединения типа «металл-металл» (шпиндель-втулка резьбовая, шток (вал) - втулка, подшипники)

ВНИИНП-276

Пластичная смазка гладкой структуры от белого до светло-бежевого цвета, термостойкая, стойкая к агрессивным средам, радиационностойкая

Подвижные соединения типа «металл-металл» (шпиндель-втулка резьбовая, шток-втулка, упорные шариковые подшипники)

Примечание: Суммарная доза радиации за весь срок службы смазочного материала согласовывается разработчиком арматуры с головной организацией по смазкам.

Таблица 4.2 - Условия применения антифрикционных смазок в парах трения арматуры

Наименование пары трения

Характер движения

Параметры работы пары трения

Марка смазки

Скорость, м/с, не более

Температура, °С

Ресурс, циклы, не менее

Шпиндель-втулка резьбовая

Вращательно-поступательное

от -20 до +65

Солидол С

от -60 до +90

ЦИАТИМ-201

от -60 до +150

ЦИАТИМ-221

от -20 до +150

ВНИИНП-232

от -20 до +200

ВНИИНП-275

от -30 до +230

ВНИИНП-225

от -30 до +250

ВНИИНП-276

Шток-втулка

Возвратно-поступательное

от -20 до +65

Солидол С

от -60 до +90

ЦИАТИМ-201

от -60 до +160

ЦИАТИМ-221

от -20 до +150

ВНИИНП-232

от -20 до +200

ВНИИНП-275

от -30 до +230

ВНИИНП-225

от -30 до +250

ВНИИНП-276

Подшипники скольжения

Вращательное

от -20 до +65

Солидол С

от -60 до +90

ЦИАТИМ-201

от -60 до +150

ЦИАТИМ-221

от -20 до +150

ВНИИНП-232

от -20 до +200

ВНИИНП-275

от -30 до +230

ВНИИНП-225

Подшипники качения упорные шариковые

Вращательное

от -20 до +65

Солидол С

от -60 до +100

ЦИАТИМ-201

от -60 до +150

ЦИАТИМ-221

от -20 до +150

ВНИИНП-232

от -20 до +200

ВНИИНП-275

от -30 до +230

ВНИИНП-225

от -30 до +250

ВНИИНП-276

Зубчатые и червячные передачи

Вращательное

от -60 до +80

Шпоночные и шлицевые соединения

Возвратно-поступательное

ЦИАТИМ-221

ЦИАТИМ-201

Возвратно-поступательное

от -60 до +150

ЦИАТИМ-221

Поршень-РТД

Корпус-РТД

Неподвижное

Неподвижные резьбовые соединения (крепежные резьбы)

от -60 до +350

ВНИИНП-232

от -20 до +65

Солидол С

Примечания 1 - Смазку ВНИИНП-275 применяется в парах трения арматуры АС, эксплуатирующихся в интервале температур от +160 до +200 °С при суммарной дозе радиации не ниже 10 6 рад.

2 - Смазка ЦИАТИМ-221 может быть заменена на другие, не вызывающие деформации РТД смазки, по согласованию с НПФ «ЦКБА».

Приложение А
(справочное)

Нормы расхода антифрикционных смазок на 1 изделие для трубопроводной арматуры и приводных устройств к ней

Таблица А.1 - Нормы расхода смазок на 1 изделие арматуры

Наименование изделия

Варианты исполнений

Марки смазок

до 50 включ.

от 50 до 150

от 150 до 500

от 500 до 1000

от 1200 до 2400

Задвижки

1 Все смазываемые соединения

ВНИИНП-232, ВНИИНП-225

от 80 до 128

от 180 до 284

от 340 до 500

от 550 до 1150

2 Подвижные соединения

ЦИАТИМ-221

от 95 до 131

от 150 до 400

Неподвижные резьбовые соединения

ВНИИНП-232

от 80 до 125

от 150 до 238

от 250 до 350

3 Подвижные соединения

ЦИАТИМ-201, Солидол С

от 95 до 131

от 150 до 400

Неподвижные резьбовые соединения

Солидол С

от 75 до 119

от 125 до 175

Запорные клапаны

1 Все смазываемые соединения

ВНИИНП-232, ВНИИНП-225

от 70 до 120

от 160 до 210

2 Подвижные соединения

ВНИИНП-275

от 80 до 120

Неподвижные резьбовые соединения

ВНИИНП-232

3 Подвижные соединения

ЦИАТИМ-221

Неподвижные резьбовые соединения

ВНИИНП-232

4 Подвижные соединения

ЦИАТИМ-201, Солидол С

Неподвижные резьбовые соединения

Солидол С

Регулирующие клапаны и регуляторы

1 Все смазываемые соединения

ВНИИНП-232, ВНИИНП-225

от 125 до 150

2 Подвижные соединения

ВНИИНП-275

Неподвижные резьбовые соединения

ВНИИНП-232

3 Подвижные соединения

ЦИАТИМ-221

Неподвижные резьбовые соединения

ВНИИНП-232

4 Подвижные соединения

ЦИАТИМ-201

Неподвижные резьбовые соединения

Солидол С

Предохранительные и обратные клапаны, конденсатоотводчики, дисковые затворы, краны

1 Подвижные соединения (предохранительные клапаны)

ВНИИНП-232, ВНИИНП-225

от 70 до 100

Неподвижные резьбовые соединения (предохранительные клапаны)

ВНИИНП-232

от 100 до 150

от 175 до 350

от 450 до 850

2 Подвижные соединения (предохранительные клапаны)

ЦИАТИМ-221, ЦИАТИМ-201, Солидол С

от 1,5 до 2,5

Неподвижные резьбовые соединения (предохранительные клапаны, обратные клапаны, конденсатоотводчики, дисковые затворы, краны)

ВНИИНП-232

от 100 до 150

от 175 до 350

от 450 до 850

Таблица А.2 - Нормы расхода смазок на 1 электропривод

Наименование изделия

Варианты исполнения

Марки смазок

Количество смазки на 1 изделие в зависимости от номинального диаметра арматуры, г

Тип М (Мкр. на выходном валу 5 - 25 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 100 до 150

Неподвижные соединения

ВНИИНП-232

Тип А (Мкр. на выходном валу 25 - 100 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 150 до 200

Неподвижные соединения

ВНИИНП-232

Тип Б (Мкр. на выходном валу 100 - 250 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 200 до 250

Неподвижные соединения

ВНИИНП-232

от 80 до 100

Тип В (Мкр. на выходном валу 250 - 1000 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 250 до 500

Неподвижные соединения

ВНИИНП-232

от 100 до 125

Тип Г (Мкр. на выходном валу 1000 - 2500 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 500 до 1000

Неподвижные соединения

ВНИИНП-232

от 125 до 175

Тип Д (Мкр. на выходном валу 2500 - 10000 Н · м)

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

от 1000 до 1200

Неподвижные соединения

ВНИИНП-232

от 175 до 250

Планетарно-винтовой привод типа Б

Подвижные соединения

ЦИАТИМ-221

ЦИАТИМ-201

Неподвижные соединения

ВНИИНП-232

Приложение Б
(справочное)

Нормы расхода антифрикционных смазок на 1 изделие для заказов МО РФ арматуры и приводных устройств к ней

Таблица Б.1 - Нормы расхода смазок на 1 изделие арматуры

Наименование изделия

Варианты исполнения со смазкой

Количество смазки на 1 изделие в зависимости от номинального диаметра, г

Задвижки

Пары трения:

шпиндель-втулка резьбовая, крепежные резьбовые соединения собраны на смазке ВНИИНП-232.

Подшипники упорные качения собраны на смазке ЦИАТИМ-221

Клапаны запорные сильфонные с ручным управлением

1. ЦИАТИМ-221

2. ВНИИНП-276

Клапаны запорные и регулирующие с ручным управлением

Подвижные соединения собраны на смазке

1. ЦИАТИМ-221

2. ВНИИНП-276

Неподвижные резьбовые соединения собраны на пасте ВНИИНП-232

Клапаны запорные с пневмоприводом

Клапаны и распределители с электромагнитным приводом и ручным дублером

Подвижные соединения и РТД собраны на смазке ЦИАТИМ-221

Неподвижные резьбовые соединения и ручной дублер собраны на пасте ВНИНП-232

Клапаны предохранительные с ручным дублером

Подвижные и неподвижные соединения собраны на пасте ВНИИНП-232

Регуляторы

РТД собраны на смазке ЦИАТИМ-221

Неподвижные резьбовые соединения собраны на пасте ВНИИНП-232

Электроприводы задвижек

Подвижные соединения и РТД собраны на смазке ЦИАТИМ-221

Неподвижные резьбовые соединения и ручной дублер собраны на пасте ВНИИНП-232

Приложение В
(справочное)

Методы нанесения антифрикционных смазок на поверхности деталей трубопроводной арматуры

В.1 Общие положения

Материалы, применяемые для подготовки поверхности деталей с целью нанесения антифрикционных смазок, смазки, нормы их расхода приведены в таблице В.1.

Таблица В.1 - Нормы расхода материалов, применяемых для подготовки поверхностей деталей под смазки

Наименование материала

Нормативный документ

Норма расхода на 1 м 2 поверхности, кг

Тринатрийфосфат

Вещества вспомогательные ОП-7 и ОП-10

Керосин технический

ОСТ 38.01.408

Масла индустриальные

Ткани хлопчатобумажные бязевой группы

Калий двухромовокислый

Бумага фильтровальная

Спирт этиловый технический

Солидол синтетический

Ерши капроновые *

1 шт. на 4000 изделий

Кисти и щетки малярные

1 шт. на 4000 изделий

Поропласт полиуретановый эластичный *

Примечание - Материалы, отмеченные знаком « * », применять по технической документации, утвержденной в установленном порядке.

В.1.2 Допускается применять другие материалы с аналогичными свойствами по согласованию с предприятием-разработчиком настоящего стандарта.

В.1.3 Подготовку поверхностей деталей к нанесению смазок следует производить в помещении, оборудованном местной вытяжной вентиляцией. Температура воздуха в помещении - от 10 до 30 °С.

В.1.4 Перед нанесением смазки все трущиеся поверхности деталей следует проверить на отсутствие коррозии, очистить от загрязнения, металлической стружки, обезжирить и просушить.

В.1.5 Обезжиривание металлических деталей (шпинделей, резьбовых втулок, винтов, шпилек, гаек и др.) следует производить в водном моющем растворе: тринатрийфосфат технический - 15 г на литр воды и вещество вспомогательное - 2 г на литр воды. Температура моющего раствора - от 60 до 80 °С. Обезжиренные детали следует промыть 0,1-процентным раствором двухромовокислого калия. Температура раствора - от 60 до 80 °С.

В.1.6 Допускается при выпуске арматуры партиями до 4000 штук обезжиривание металлических деталей производить двукратной промывкой керосином последовательно в двух ваннах в течение 10 минут. Для первой промывки следует использовать керосин из второй промывочной ванны.

При первой промывке рекомендуется пользоваться капроновыми ершами или малярными кистями. Обезжиривание резьбовой части шпинделя в сильфонных сборках следует производить хлопчатобумажной салфеткой, смоченной в спирте и отжатой до полусухого состояния.

В.1.7 Материалы для промывки и обезжиривания арматуры заказов МО РФ должны быть согласованы заказчиком.

В.1.8 Обезжиривание подшипников качения следует производить в ваннах с керосином в течение 20 минут и в ванне со спиртом в течение 3 минут.

В.1.9 Обезжиривание резиновых деталей следует производить двукратной протиркой хлопчатобумажными салфетками, смоченными в этиловом спирте.

В.1.10 Контроль чистоты поверхности следует производить:

а) визуальным осмотром;

б) хлопчатобумажной салфеткой (только для деталей арматуры заказов МО РФ).

При протирке поверхностей деталей сухая хлопчатобумажная салфетка должна оставаться чистой.

Если салфетка будет иметь следы грязи или масла, детали следует отправить на повторную промывку.

В.1.11 Сушка деталей после обезжиривания должна производиться:

а) после обработки моющим раствором - по технологии предприятия изготовителя;

б) после обработки растворителями - на воздухе до полного удаления запаха растворителя.

Температура воздуха - от 10 до 30 °С.

Время сушки - от 10 до 30 мин.

Сильфонные сборки арматуры заказов МО РФ следует дополнительно просушить в течение от 15 до 30 мин. в термостате при температуре от 100 до 110 °С.

В.1.12 Контроль качества сушки деталей и узлов следует производить с помощью фильтровальной бумаги: на поверхности фильтровальной бумаги, приложенной к детали, не должно оставаться следов растворителя. Допускается контроль качества сушки деталей арматуры общепромышленного назначения производить визуально.

В.1.13 Периодичность смены растворителей устанавливается технологическим процессом в зависимости от объема, количества промываемых деталей и норм расхода, установленных настоящим стандартом.

В.1.14 Антифрикционные смазки на поверхность деталей следует наносить в условиях, гарантирующих защиту смазываемых поверхностей от грязи и влаги.

В.1.15 Смазку на трущиеся поверхности деталей арматуры следует наносить непосредственно перед сборкой арматуры согласно указаниям чертежей, карт смазки, технических требований или инструкций по эксплуатации арматуры.

В.1.16 Основной способ нанесения антифрикционных смазок - при помощи кисти. Слой смазки должен быть сплошным и равномерным. Особое внимание обратить на трущиеся поверхности резьб и другие труднодоступные места.

В.1.17 Смазку солидол синтетический допускается наносить окунанием.

В.1.18 Смазку ВНИИНП-232 следует наносить с помощью тампона из замши. Допускается наносить смазку ВНИИНП-232 с помощью кисти. Не допускается использовать загустевшую смазку ВНИИНП-232, не обеспечивающую равномерного слоя. В этом случае смазка ВНИИНП-232 разбавляется маслом индустриальным «20» в количестве до 15 % от массы с последующим тщательным перемешиванием до однородной, не имеющей комков массы.

В.1.19 В случае повреждения слоя смазки при установке детали в узел, смазка должна быть восстановлена путем повторного нанесения по п.п. В.1.16 - В.1.18.

В.2. Требования безопасности

В.2.1 При выполнении работ по подготовке поверхности деталей к нанесению смазок необходимо руководствоваться общими правилами техники безопасности и производственной санитарии для предприятий и организаций машиностроения.

В.2.2 При выполнении работ по подготовке поверхности деталей к нанесению смазки должны выполняться следующие условия:

а) концентрация паров керосина в помещении, где происходит обезжиривание, не должна превышать 10 мг на 1 дм воздуха.

б) конструкция оборудования, используемого при обезжиривании, должна обеспечивать защиту работников от попадания растворителя.

в) рабочие, производящие обезжиривание растворителями, должны быть обеспечены фартуками, обувью, перчатками, респираторами;

г) рабочие, производящие обезжиривание водными растворами, должны обеспечиваться резиновыми фартуками, обувью и перчатками.

На предприятии должна быть разработана и утверждена инструкция по требованиям безопасности, пожарной безопасности и промышленной санитарии, учитывающая местные производственные условия.

В.2.3 К выполнению работ по подготовке поверхностей деталей к нанесению смазок допускаются лица, изучившие устройство оборудования и технологический процесс и прошедшие инструктаж по требованиям безопасности, пожарной безопасности и промышленной санитарии.

Виды смазок, ^дним из способов уменьшения сцеп­ления бетона с поверхностью форм является применение раз­личных смазок. Правильно подобранная и хорошо нанесенная смазка обеспечивает легкое освобождение изделия и способству­ет получению ровной и гладкой его поверхности. 1

Смазка для форм должна удовлетворять следующим усло­виям:

По консистенции она должна быть пригодной для нанесения распылителем или кистью на холодные или нагретые до 40°С по­верхности;

Ко времени выемки изделий из форм смазка должна превра­щаться в прослойку, не вызывающую сцепления с поверхностью форм, например, порошкообразную или типа пленки, легко раз­рушаемой при распалубке;

Не оказывать вредного действия на бетон, не приводить к образованию пятен и потеков на лицевой поверхности изде­лия, не вызывать коррозии рабочей поверхности формы;

Не создавать антисанитарных условий в цехах и быть безо­пасной в пожарном отношении;

Смазка должна быть простой по технологии приготовления и позволяющей механизировать процесс нанесения.

Смазку следует наносить на тщательно очищенную от бето­на поверхность; на бетонной пленке, на поверхности с вмятина­ми, царапинами она не может дать положительных результатов.

Смазки, применяемые на предприятиях сборного железобе­тона, можно распределить на три основные группы: 1) водные и водно-масляные суспензии, 2) водно-масляные и водно-мыльно­керосиновые эмульсии, 3) машинные масла, нефтепродукты и смеси из них.;

Суспензии, или водные растворы тонкодисперсных мине­ральных веществ, применяются на заводах, главным образом, при отсутствии других смазок. К ним относятся известковая, ме­ловая, глиняная, шламовая (отходы при шлифовке мозаичных изделий) и др. Эти смазки просты в приготовлении и имеют невысокую стоимость. Недостатком их является легкая размы - ваемость водой, что способствует нарушению смазки при бето­нировании; прочность пленок, образуемых суспензионными смазками, довольно высока, и это затрудняет распалубку и очистку форм и изделий.

Известковая и меловая смазки применяются для деревянных поверхностей, известково-глиняная дает сравнительно хорошие результаты на бетонных поверхностях.

Широкое распространение получила водно-цементно-масля­ная смазка, отличительной особенностью которой является ее стойкость во время укладки бетона и превращение в порошко­образную прослойку, легко счищаемую при съеме изделия. На ряде заводов полностью механизировано приготовление, транс­портирование и нанесение этой смазки.

Эмульсионные смазки имеют много различных со­ставов, допускают возможность комплексной механизации их приготовления и нанесения на формы, превосходя в этом отно­шении многие другие смазки. Наиболее удобны в производ­ственных условиях водно-масляные эмульсии; они не вызывают у рабочих раздражения кожных покровов и слизистых оболо­чек, не огнеопасны.

На ряде заводов успешно используют водную эмульсию трансмиссионного автотракторного масла и натриевой соли нафтеновой кислоты (мылонафта), вместо которой в каче­стве эмульгирующего и стабилизирующего компонента мож­но применять соапсточные отходы, мыльные отходы про­мышленности или мыло. Трансмиссионное автотракторное мас­ло (нигрол) можно заменить автотракторным маслом (автолом) с увеличением его количества в смазке в 1,2-1,5 раза.

Водно-мыльно-масляные эмульсионные смазки вполне оправ­дывают себя в условиях вертикального формования изделий (в кассетных установках); их можно наносить на горячие метал­лические поверхности, имеющие температуру до 100°С. Эти смазки не оставляют на стенках форм пригара и легко очища­ются. Внутренние углы и ребра форм, на которые наносить эмульсии затруднительно, следует смазывать солидолом, рас­плавленным парафином или автотракторным маслом.

Смазка из соапстока (отходы мыловаренного производства) с водой дает относительно большое сцепление бетона с поверх­ностью формы, поэтому ее следует применять только для. гори­зонтальных поддонов. Ее наносят на поверхности в горячем виде. Так как применение этой смазки вызывает ржавление ме­талла, необходимо 3-4 раза в месяц смазывать формы ма­шинным маслом.

Машинные масла, керосин, петр о л а ту м и сме­си из них составляют самостоятельную группу смазок. Наибо­лее употребительны масла соляровое, веретенное, автол и отра­ботанное, а также смеси этих масел с керосином в соотношении по весу 1:1.

Широко применяется смазка из солярового масла, солйдола и золы (по весу 1: 0,5: 1,3). Она обеспечивает беспрепятствен­ное распалубливание и приготовляется путем замешивания жид­кого солидола и солярового масла при температуре 60°С с по­следующим добавлением золы ТЭЦ или извести-пушонки. Во время пропаривания изделий соляровое масло почти полностью улетучивается и между бетоном и формой остается порошкооб­разная прослойка, легко сметаемая с поверхности форм и изде­лий.

Хорошие результаты дает смазка из солярового масла, соли­дола и автола (1:1:1), стеарино-керосиновая (1: 3), парафи - но-керосиновая (1:3) и др. Однако применение этих смазок ограничено дефицитностью материалов.

Петролатумно-керосиновая смазка состоит из недефицитных дешевых материалов, она дает малое сцепление бетона с по­верхностью формы, не оставляет пятен на поверхности бетона, не расслаивается гтри хранении; ее можно применять при низких температурах (на открытых полигонах).

Недостатком петролатумной смазки, а также смазки из ни­грола, растворенного в соляровом масле или керосине, является вредное действие их на кожные покровы, возможность раздра­жения слизистой оболочки рта и носа при неосторожном обра­щении со смазкой. Опыт работы крупнейших заводов показал, что устройство вытяжных колпаков над машинами для смазки форм полностью устраняет вредное влияние этих смазок.

На заводах сборного железобетона широко применяются эмульсионные смазки, стоимость которых не превышает 10 Руб /т. Если, например, при производстве изделий в кассет­ных формах принять стоимость солидоло-соляровой смазки за 100%, стоимость петролатумно-соляровой смазки составит 54%, нигрольно-мыльиой - всего 18-31%. Это объясняется сравни­тельно низкой стоимостью компонентов эмульсионной смазки и возможностью реже производить профилактическую очистку формовочных поверхностей. Составы рекомендуемых к примене­нию смазок приведены в табл. 6. На расход смазки влияет ряд факторов: консистенция смазки, конструкция и тип форм (го­ризонтальные, вертикальные) , способ нанесения, смазки (ручной, механический) и качество поверхности форм.

Генеральный директор ЗАО «НПФ «ЦКБА»

В.П. Дыдычкин

Первый заместитель генерального

директора - директор по научной работе

Ю.И. Тарасьев

Заместитель генерального директора - главный

конструктор

В.В. Ширяев

Заместитель главного конструктора - начальник

технического отдела

С.Н. Дунаевский

Начальник отдела 112

А.Ю. Калинин

Заместитель начальника отдела 112

О.И. Федоров

Инженер-исследователь 1 категории отдела 112

Е.П. Никитина

Исполнитель:

Е.Ю. Филимонова

СОГЛАСОВАНО:

Председатель ТК 259

М.И. Власов

Представитель заказчика 1024 ВП МО РФ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области техники, связанной с разработкой и применением способов смазки скользящей поверхности лыж (систем нанесения покрытий на скользящую поверхность лыж).

Занятие лыжным спортом, так же как лыжные прогулки и походы, невозможно представить без использования специальных покрытий (лыжных смазок). Лыжные смазки применяют для того, чтобы лыжи хорошо скользили - лыжники говорят «катили», и не проскальзывали назад - на языке лыжников «держали». Поэтому все смазки разделяют на две большие группы: мази скольжения или парафины, которые обеспечивают наилучшее скольжение, и мази держания, которые обеспечивают отсутствие проскальзывания, «держат».

Парафины (мази скольжения) разделяются на две группы: без фтора (простые) и фтористые, обеспечивающие лучшее скольжение. При применении парафинов с добавками фтора учитывается не только температура воздуха, но и его влажность, а также тип и структура снега.

Скользящая поверхность современных лыж выполнена из полиэтиленов различных сортов. В гоночных моделях лыж скользящая поверхность изготавливается из аморфных полиэтиленов с высоким молекулярным весом. Различаются они содержанием добавок, например, графита (черная скользящая поверхность) или фтороуглерода (цветные вкрапления в пластике), «впекаемого» в структуру пластика. Полиэтилен состоит из маленьких кристаллов, окруженных менее структурированным аморфным материалом.

При нанесении покрытий по современным технологиям, то есть при нагревании скользящей поверхности лыж, некоторые из кристаллов материала покрытия начинают плавиться прежде, чем весь материал (при температуре приблизительно 135°С). Когда материал смазки вплавляется утюгом в скользящую поверхность, жидкий парафин проникает между кристаллами и смешивается с аморфным материалом. Это значит, что происходит не только насыщение скользящей поверхности материалом смазки, но и непосредственно изменяется ее химическая структура.

Обработка поверхности лыжи смазкой не только улучшает качество скольжения, но и предохраняет поверхность от механического разрушения кристаллами льда, механическими загрязнениями снега.

К сожалению, даже качественно нанесенное парафиновое покрытие разрушается при эксплуатации лыж и туристу приходится повторять трудоемкую операцию практически ежедневно, а спортсмену - многократно в течение соревнований. В связи с этим, необходимость применения эффективного способа нанесения скользящих покрытий, способного обеспечить высокое качество скольжения и длительность эксплуатации, является актуальной.

Известен способ смазки скользящей поверхности лыж , заключающийся в том, что нанесение смазки осуществляют электроутюгом, снабженным вращающейся щеткой, с которой соприкасается брусок лыжной мази. Нагретый утюг перемещают по скользящей поверхности лыжи, нагревая ее, и одновременно с этим, вращающаяся щетка захватывает частицы мази и наносит ее на нагретую поверхность лыжи.

Известен также способ смазки скользящей поверхности лыж , реализуемый с помощью устройства - плиты, в которой установлен плоский электронагревательный элемент. На плите смонтирована емкость с лыжной мазью, снабженная пресс-масленкой, приводимой в действие рычагом, свободный конец которого смонтирован на рукоятке. Передвигая устройство по поверхности лыжи, спортсмен дозирует вручную количество подаваемой на лыжу мази.

Применяется также способ по патенту , при реализации которого лыжа устанавливается в наклонном положении на специальном стенде скользящей поверхностью наружу. Вдоль этой поверхности размещено сопло, перемещаемое вверх-вниз по направляющим и соединенное трубопроводом с емкостью для разогрева лыжной мази.

Недостатком всех описанных аналогов является: во-первых, - отсутствие контроля температуры поверхности лыжи и, следовательно, неравномерный ее нагрев по длине, что обуславливает перегрев смазки и прожоги поверхности лыжи; а во-вторых, - недостаточное заполнение имеющихся на скользящей поверхности лыжи пор и микротрещин смазкой, что ухудшает ее беговые свойства.

Наиболее близким к предлагаемому техническому решению является способ нанесения смазки на скользящую поверхность лыжи по патенту , принятому за прототип. Способ заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия и равномерном распределении смазки.

В прототипе лыжи размещают в контейнере, затем наносят смазку на их скользящую поверхность с разогревом поверхности и смазки. Перед нагреванием контейнер, с помещенными в него лыжами, герметизируют. Лыжи в контейнере помещают на упоры, выполненные из материала смазки, между которыми по всей длине лыж, со стороны их скользящей поверхности, равномерным слоем насыпают смазку в виде порошка. Затем из контейнера откачивают воздух до вакуума 0,2-0,9 атм и нагревают в течение 4-20 мин внутренний объем контейнера с находящимися в нем лыжами и смазкой до 70-90°С. После окончания нагрева давление внутри контейнера повышают до 1-3 атм и поддерживают его в течение 1-3 мин и затем лыжи извлекают.

Прототип позволяет частично устранить недостатки известных способов, однако обладает следующими существенными недостатками:

1. Не обеспечивает глубокого проникновения материала смазки в структуру полимерного покрытия лыжи. Улучшить проникновение возможно только путем повышения температуры (снижения вязкости смазки и расширения пор полимерного покрытия). Однако такой путь на практике реализовать недопустимо из-за меньшей температуры плавления кристаллов полимерного покрытия, по сравнению с температурой плавления окружающего их аморфного материала, в который должен проникать парафин. На практике это приводит к прожогам скользящей поверхности и порче лыж.

2. Не обеспечивает длительного нахождения на скользящей поверхности и выделения материала смазки на поверхность из глубины материала лыжи при эксплуатации лыж. В результате происходит освобождение приглаженных парафином ворсинок полимерного материала поверхности лыжи и образование новых. При скольжении эти ворсинки снижают скорость и их необходимо либо срезать (шкурить), либо вплавлять в поверхность. И то и другое приводит к ухудшению качества скользящей поверхности и снижению срока эксплуатации дорогостоящих лыж.

Задача, на решение которой направлено изобретение, заключается в устранении недостатков существующего способа и создании нового способа, способного обеспечить равномерное нанесение смазки и лучшее заполнение микропор на поверхности скольжения лыжи, осуществить равномерное нанесение смазки на скользящую поверхность лыжи при температуре, ниже температуры плавления материала скользящей поверхности и осуществить глубокое проникновение парафина в ее поры.

Проведенный анализ реализуемых в настоящее время способов смазки скользящей поверхности лыж показал их несостоятельность и необходимость поиска новой технологии нанесения покрытий на скользящую поверхность лыж. Очевидно, что такая технология должна обеспечивать глубинное проникновение парафина в структуру полимерного материала скользящей поверхности при температуре, меньшей температуры его плавления при одновременной полировке поверхности и удалении ворсинок.

Суть предлагаемого технического решения заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, причем энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи. В зазор вводят смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20...100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки. Перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.

Анализ функциональных возможностей различных методов энергетического воздействия на скользящую полимерную поверхность лыж позволил установить эффективность применения ультразвуковых технологий, основанных на явлениях ультразвуковой пропитки, низкотемпературной сварки, снижения вязкости, дегазации .

Ультразвуковые технологии, применительно к решению проблемы подготовки скользящей поверхности лыж, позволяют реализовать следующие технологические процессы:

1. Ультразвуковую пропитку , основанную на звукокапилярном эффекте и снижении вязкости материалов, способную обеспечить ввод расплавленного материала смазки глубоко в материал поверхности при низких температурах, т.е. без термического повреждения поверхности. В процессе ввода ультразвуковых колебаний происходит ускорение молекул смазки за счет возникающей в ней кавитации и более глубокое их проникновение в скользящую поверхность лыжи. При введении ультразвука в смазку происходит его дегазация, что обеспечивает ровную поверхность парафинового покрытия, без газовых пузырьков - пустот.

2. Ультразвуковую сварку , реализуемую при температурах ниже температуры плавления соединяемых материалов и основанную на многократном ускорении процессов диффузии. Она обеспечивает не только интенсификацию проникновения парафина в полимерное покрытие, но и позволяет разрушать и вваривать в поверхность лыжи образовавшиеся на ней волоски (ворсинки).

3. Размягчение смазки (перевод в вязкопластичное состояние), происходящее при температуре ниже температуры ее плавления за счет снижения вязкости материала, подвергаемого УЗ воздействию. Возможно, также, низкотемпературное распыление материала смазки при применении ультразвуковых колебаний высокой интенсивности.

К несомненным достоинствам ультразвуковой технологии следует отнести, также, возможность исключения непосредственного механического контакта поверхности ультразвукового преобразователя с обрабатываемой поверхностью. Воздействие осуществляется через тонкий слой (0,5...3 мм) жидкого материала смазки в кавитирующем состоянии. Это исключает разогрев скользящей полиэтиленовой поверхности до температуры плавления или разложения полиэтилена.

Предложенный способ смазки скользящей поверхности лыж поясняется фиг.1, на которой приняты следующие обозначения:

1 - колебательная система, 2 - пьезокерамические элементы, 3 - отражающая накладка, 4 - корпус, 5 - защитный корпус, 6 - вентилятор, 7 - подложка, 8 - упорное кольцо, 9 - лыжа, 10 - скользящая поверхность лыжи, 11 - смазочный кавитирующий материал.

Для практической реализации предложенного способа нанесения смазки на скользящую поверхность лыжи 10 используются пьезоэлектрическая колебательная система 1 (фиг.2) и осуществляющий ее электрическое питание электронный генератор (не показан). Реализация предложенного способа осуществляется следующим образом. На скользящую поверхность лыжи 10 наносится материал смазки 11, после чего происходит обеспечение контакта ультразвуковой колебательной системы с наносимым покрытием и ввод ультразвуковых колебаний. При этом происходит поглощение УЗ колебаний в материале смазки 11 и смазка становится жидкой, в ней начинаются кавитационные процессы, при которых взрывы (захлопывания) кавитационных пузырьков обеспечивают проникновение смазки в глубь скользящей поверхности лыжи 10.

Для практической реализации предложенного способа создано специализированное малогабаритное оборудование, обеспечивающее необходимую и достаточную мощность излучения на заданной площади обработки.

Оборудование включает в себя:

1) специализированную ультразвуковую колебательную систему 1 (см. фиг 2), имеющую размер рабочей поверхности, превосходящий ширину скользящей поверхности лыжи и обеспечивающую равномерное распределение ультразвуковых колебаний на излучающей поверхности для обеспечения равномерного размягчения и нанесения парафина по всей ширине лыжи;

2) генератор электрических колебаний ультразвуковой частоты для питания колебательной системы, обеспечивающий регулировку выходной мощности и стабилизацию ультразвукового воздействия в процессе обработки поверхности лыж.

Технический результат заключается в создании нового способа, позволяющего повысить качество нанесенного на скользящую поверхность лыж покрытия, повышении производительности процесса при одновременном уменьшении энергозатрат и исключении необходимости применения систем термического нагрева. Эффект достигается за счет оптимизации параметров энергетического и временного воздействия. Разработанный способ нанесения покрытия на скользящую поверхность лыж обеспечивает снижение трения скольжения не менее чем на 5%, увеличение объема смазки, введенной в материал скользящей поверхности лыж - на 5...10% (в зависимости от типа лыж и покрытия), что позволяет не менее чем в 2 раза увеличить время эксплуатации лыж.

Поскольку используемые материалы смазок имеют различную исходную вязкость, различную температуру плавления, кавитационный процесс возникает в них при различных мощностях ультразвукового воздействия, и скорость перемещения преобразователя при нанесении покрытия может быть различной и устанавливаться экспериментальным путем для каждого вида смазки.

Для реализации предложенного способа разработана специализированная ультразвуковая колебательная система, выполненная по полуволновой схеме в виде пьезоэлектрического преобразователя Ланжевена . Внешний вид колебательной системы представлен на фиг.2. Спроектированная и разработанная ультразвуковая колебательная система работает следующим образом. При подведении к электродам пьезоэлементов 3 электрического напряжения происходит преобразование электрических колебаний в механические колебания, которые распространяются в колебательной системе 1 и усиливаются за счет выбора продольных и поперечных размеров накладки 2 таким образом, что продольный резонанс всей колебательной системы совпадает с диаметральным резонансом рабочей частотно-понижающей накладки.

Колебательная система 1 крепится в корпус 4 при помощи винтов, вкручивающихся в подложку 7 (фиг.1). Колебательная система снабжена крепежным фланцем, который зажимается между корпусом и подложкой 7. Колебательная система снабжена дополнительным защитным корпусом 5 (фиг.1). Воздух вентилятором 6, через отверстия, втягивается в корпус колебательной системы, проходя там, он охлаждает разогревающиеся пьезокерамические элементы 2.

Разработанная колебательная система имеет рабочую частоту 27±3,3 кГц, диаметр рабочей излучающей поверхности 65 мм. Для обеспечения регулируемого зазора между излучающей поверхностью ультразвуковой колебательной системы 1 и поверхностью лыж 10 использовано упорное кольцо 8.

Одним из составляющих ультразвукового технологического оборудования является электронный генератор электрических колебаний ультразвуковой частоты (на фигурах не показан). Он предназначен для питания ультразвуковой колебательной системы.

Для обеспечения максимальной эффективности работы колебательной системы, при всех возможных изменениях ее параметров, электронный генератор снабжен блоком автоматической подстройки частоты генератора и стабилизации амплитуды колебаний излучающей поверхности.

Разработанный генератор для питания ультразвуковой колебательной системы имеет следующие параметры:

Рабочая частота, кГц 27±3,3
Пределы регулирования мощности, % 0-100
Потребляемая электрическая мощность, Вт 250
Напряжение питания, В 220±22

Внешний вид аппарата представлен на фиг.3.

Кроме интенсификации процесса пропитки и удаления ворсинок, применение ультразвукового аппарата исключило необходимость применения специальных нагревательных приборов (утюгов) для разогрева материала смазки.

Проведенные исследования функциональных возможностей созданного ультразвукового аппарата позволили разработать следующую методику нанесения парафина на скользящую поверхность лыж:

1) предварительное включение и работа аппарата без нагрузки (на воздух) на мощности 100% в течение 3...5 минут. Такой режим обеспечивает прогрев излучающей поверхности до 80...85°С. При такой температуре на поверхности плавится материал смазки (парафин);

2) снижение мощности аппарата ниже 100%, не более 75%;

3) нанесение парафина на скользящую поверхность и работа аппарата на мощности 75...85% неограниченное время.

При этом скорость нанесения смазки отличалась незначительно при использовании различных материалов смазки. Уменьшение скорости не приводило к снижению качества нанесения смазки.

Проведенные испытания показали, что скорость скольжения лыжи после применения ультразвукового способа нанесения парафина на скользящую поверхность лыжи увеличивается на 5...7%, а длительность работы скользящей поверхности увеличивается на 13-15%.

Внешний вид созданного ультразвукового аппарата представлен на фиг.3.

Таким образом, предложенный способ обеспечивает повышение эффективности (повышение производительности и улучшение качества пропитки) нанесения покрытия на скользящую поверхность лыж за счет реализации возможностей ультразвуковой интенсификации процессов.

В результате реализации предлагаемого технического решения оптимизирована технология нанесения покрытия на лыжи, с точки зрения обеспечения максимальной производительности, реализации возможности контроля за процессом, снижены энергозатраты и исключено применение высокотемпературных устройств.

Разработанный в лаборатории акустических процессов и аппаратов Бийского технологического института Алтайского государственного технического университета способ нанесения покрытия на поверхность лыж прошел лабораторные и технические испытания и был практически реализован в действующей установке. Мелкосерийное производство устройств планируется начать в 2004 году.

Источники информации

1. Патент ФРГ №3704216 от 1987 г.

2. Патент Швеции №446942 от 1986 г.

3. Патент Франции №2577816 от 1986.

4. Патент РФ №2176539 (прототип).

5. Холопов Ю.В. Ультразвуковая сварка пластмасс и металлов Л.:

Машиностроение, 1988 г.

6. Донской А.В., Келлер O.K., Кратыш Г.С. Ультразвуковые электротехнические установки Л.: Энергоатомиздат, 1982.

7. Прохоренко П.П., Дежкунов Н.В., Коновалов Г.Е. Ультразвуковой капиллярный эффект. Минск, «Наука и техника», 1981, 135 с.

8. Меркулов А. Г., Харитонов А.В. Теория и расчет составных концентраторов, «Акустический журн.», 1959, N 2.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ смазки скользящей поверхности лыж, заключающийся в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, отличающийся тем, что энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи, вводят в зазор смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20-100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки, перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.

Компоненты Смазки

Соотношение компо­нентов по весу

Расход смазки Иа 1 л2

Масло машинное типа автол, це­

Мент и вода.................................

1: 1,4: 0,4

Масло трансмиссионное автотрак­

Торное, эмульсол и вода.

1: 0,2: 5,4

Петролатум и керосин.

1: 2-1: 3

Отработанное машинное масло и

Керосин. ...................................................

Соапсток и вода..................................

1:5-1: 10

Приготовление И нанесение смазок. Весьма эффек­тивным способом приготовления водомасляных эмульсий явля­ется гидродинамический преобразователь, так называемый «жидкостный свисток», в котором вследствие колебаний метал­лической пластинки создаются акустические волны ультразвуко­вого диапазона. Возникающие при этом давления и быстрые движения частиц жидкости дают возможность получать различ­ные эмульсии, т. е. смешивать между собой в обычных условиях несмешивающиеся жидкости, например, бензин с водой, масло с водой и т. д.

Ультразвуковой эмульгатор типа Ленинградоргстроя, рабо­тающий на ряде заводов для. приготовления смазочных эмуль­сий, имеет производительность 100-120 Л/ч (рис. 41). Для при­готовления эмульсий используется гидродинамический преобра­зователь, состоящий из сопла и закрепленной перед ним в четы­рех точках пластинки. При перекачивании жидкости через сопло в пластинке возбуждаются колебания. Скорость истечения жид­костей и расстояние между соплом и пластинкой подбирают так, чтобы получить резонанс колебаний пластинки; частота колеба­ний пластинки возрастает до 18-22 тыс. Гц, и из смеси жидко­стей получается стойкая эмульсия.

В смесительный бак загружают составляющие - воду, мас­ло и мыльный раствор - в соответствующей пропорции общим объемом 50 Л. Затем включают насос, и смесь циркулирует че-

Рез сопло свистка, в зоне которого происходит интенсивное пе­ремешивание составляющих. Цикл перемешивания длится 10- 15 Мин; за это время весь объем жидкости 3-5 раз проходит через свисток. Готовая эмульсия подается насосом установки в сборный бак, из ко­торого под давлением / 2 з

3-4 Атм подается на­сосом к распылителям.

Стабильность такой эмульсионной смазки при комнатной темпе­ратуре составляет око­ло 3 суток.

Для приготовления смазок из однородных продуктов, например растворов машинного масла в керосине, при­меняют лопастные ме­шалки. Компоненты, представляющие собой густую или твердую массу, например, пет - ролатум, необходимо подогревать. Петрола - тум в баке или ванне с паровой рубашкой разогревается до ка­пельно-жидкого состо­яния (при температу­ре 60-80°С), затем в него с легким переме­шиванием вливается керосин. Смазка мо­жет храниться дли­тельное время, так как она не расслаивается.

Соапсток при нагреве до 90° полностью растворяется в во­де. Известковые, меловые и другие суспензии приготовляют в обычных лопастных растворомешалках или приводных краско­терках; длительное хранение их невозможно, так как они до­вольно быстро расслаиваются.

Приготовление эмульсионной смазки производится центра­лизованным путем по схеме, показанной на рис. 42.

Нанесение смазки на поверхность удочкой с форсун­кой производится сжатым воздухом или форсунками, в которых распыление смазки достигается действием центробежной силы.

Однако применять удочки для нанесения смазки в тесных или узких местах затруднительно, например, в нижней части кассет­ных форм, на криволинейные поверхности и т. д. В этих слу­чаях применяют специ­альные механизмы.

Механизм для смаз­ки формующих повер­хностей кассетных ус­тановок представляет собой тележку с элек­троприводом, передви­гающуюся по рельсам на уровне верха форм. На тележке располо­жена передвижная ка­ретка с гребенкой пер­форированных труб. Обработка одной фор­мовочной полости про­изводится в два прие­ма при движении гре­бенки сверху вниз и, после горизонтального смещения каретки, снизу вверх.

При нанесении смазки распылителя­ми меньшие потери да* ет применение более вязкой смазки. Верти - кальные формы требу­ют большего расхода смазки, чем горизон­тальные, так как часть смазки стекает, особенно с нагретых по­верхностей. Ручное нанесение смазки кистью повышает ее рас­ход, так как при этом смазку наносят слоем излишней толщины (более чем 0,2-0,3 Мм), что, кроме того, ухудшает качество из­делий. Наличие выбоин, глубоких вмятин и перекосов форм при­водят к скоплению в них излишней смазки, к тому же образу­ются пятна на поверхности изделий.

Карты смазки и способы смазки


Карты смазки. В каждой инструкции по эксплуатации башенного крана имеется карта смазки крана, включающая схему крана.

На схеме указываются смазываемые точки и их номера; в карте приводятся номера смазываемых точек, наименование механизма или детали, подлежащих смазке, способ смазки, режим и количество смазки в смену на каждую смазываемую деталь, наименование смазки и расход ее в течение года. В табл. 23 приведена часть карты смазки крана БКСМ-3.

При эксплуатации башенного крана следует строго придерживаться указаний, содержащихся в карте смазки. Несвоевременная смазка приводит к быстрому износу машины и повышенному расходу энергии. Обильная смазка так же вредна, как и недостаточная.

Новый кран следует смазывать обильнее, чем кран, бывший в работе. Так, например, масленки, заправляемые обычно одич раз в сутки, в первые 10-15 дней следует заправлять два раза в смену.

Спустя 10-15 дней следует перейти на обычный режим смазки, указанный в карте смазки.

Способы смазки. При смазке механизма необходимо принимать меры, предотвращающие попадание в смазочные материалы посторонних загрязняющих примесей. Пыль, песок и другие вредные примеси, попадая между трущимися деталями, вызывают быстрый износ деталей, что ухудшает их эксплуатацию и приводит к преждевременному ремонту.

Смазку наносят на трущиеся поверхности различными способами. Жидкую смазку подают посредством масленок (рис. 197, а, б, в, г) и колец (рис. 197, д), непрерывно по фитилям или каплями из бачка (рис. 197, е) через определенные промежутки времени (фитильная и капельная смазка), под давлением от насоса особого устройства (рис. 197, ж) или заливают в корпус редуктора (рис. 197,з).

Густую смазку подают под давлением с помощью шприца (рис. 197, и), намазывают на открытые передачи или вручную набивают в корпусы подшипников лопаточками.

Таблица 23



Рис. 197. Способы нанесения смазки на трущиеся поверхности

Таблица 24



При смазке следует руководствоваться следующими основными правилами.
1. Перед нанесением новой смазки очищать смазываемую де^ таль от грязи и старой смазки и промывать керосином, после чего насухо вытирать.
2. При подаче густой смазки под давлением проверять, дошла ли смазка до трущихся поверхностей; при этом сначала под давлением должно выходить старое масло темного цвета, а потом новое - светлого цвета. Если этого не наблюдается, необходимо прочистить весь маслопровод от грязи и старой смазки.
3. Проверять качество смазочного материала на отсутствие воды и других примесей. Консистентные мази, кроме того, не должны содержать комков и посторонних примесей, что проверяется растиранием смазки на пальцах. Жидкие масла перед употреблением желательно профильтровать.
4. Хранить смазочные материалы в закрытой чистой посуде отдельно по видам и сортам.
5. Не производить смазку на ходу машины.
6. Экономно использовать смазочные материалы и не расходовать их сверх установленной нормы.

Для стальных канатов применяют мази или их заменители, приведенные в табл. 25.

Таблица 25

Стальные канаты имеют пеньковую сердцевину, пропитанную. смазкой, которая и является постоянным источником смазки прядей каната. Кроме того, необходима дополнительная регулярная смазка канатов.

При приготовлении мазей составы, подлежащие смешиванию, подогревают до 60°.

Канаты смазывают перед первоначальной установкой их на кран, а также всякий раз при новом монтаже крана. Лучший способ смазки каната - погружение его перед установкой на сутки в бак с минеральным маслом.

Для покрытия 1 пог. м каната диаметром от 8 до 21 мм требуется 30-40 г мази (указанных выше составов). При покрытии смазкой новых, не бывших в употреблении канатов норма расхода марки увеличивается на 50%. Смазку канатов можно производить вручную с помощью пропитанных мазью концов или тряпок или механически, пропуская канаты через ванну, наполненную мазью. Конструкции приспособлений для этой цели приведены на рис. 198.
При набивке подшипников смазку закладывают на 2/3 емкости корпуса.