» » Кристи Н.М. Методические рекомендации по производству автотехнической экспертизы - файл n1.doc

Кристи Н.М. Методические рекомендации по производству автотехнической экспертизы - файл n1.doc

ПРИМЕР №1.

Установить замедление и скорость автомобиля перед началом торможения на сухом асфальтобетонном покрытии, если длина следов торможения всех колес составляет 10 м, время нарастания замедления 0,35 с, установившееся замедление 6,8 м/с 2 , база автомобиля 2,5 м, коэффициент сцепления – 0,7.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации в соответствии с зафиксированным следом скорость автомобиля перед началом торможения составляла примерно 40,7 км/ч:

j = g*φ = 9,81*0,70 = 6,8 м/с 2

В формуле обозначены:

t 3 = 0,35 с -- время нарастания замедления.

j = 6,8 м/с 2 -- установившееся замедление.

Sю = 10 м -- длина зафиксированного следа торможения.

L = 2,5 м -- база автомобиля.

ПРИМЕР №2.

Установить остановочный путь автомобиля ВАЗ-2115 на сухом асфальтобетонном покрытии, если: время реакции водителя 0,8 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,35 с; установившееся замедление 6,8 м/с 2 ; скорость движения автомобиля ВАЗ-2115 - 60 км/ч, коэффициент сцепления – 0,7.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации остановочный путь автомобиля ВАЗ-2115 составляет примерно 38 м:

В формуле обозначены:

t 1 = 0,8 с -- время реакции водителя;

t 3 = 0,35 с -- время нарастания замедления;

j = 6,8 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля ВАЗ-2115.

ПРИМЕР №3.

Определить остановочное время автомобиля ВАЗ-2114 на мокром асфальтобетонном покрытии, если: время реакции водителя 1,2 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,25 с; установившееся замедление 4,9 м/с 2 ; скорость движения автомобиля ВАЗ-2114 50 км/ч.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации остановочное время автомобиля ВАЗ-2115 составляет 4,26 с:

В формуле обозначены:

t 1 = 1,2 с -- время реакции водителя.

t 3 = 0,25 с -- время нарастания замедления.

V = 50 км/ч -- скорость движения автомобиля ВАЗ-2114.

j = 4,9 м/с 2 -- замедление автомобиля ВАЗ-2114.

ПРИМЕР №4.

Определить безопасную дистанцию между движущимся впереди со скоростью автомобилем ВАЗ-2106 и автомобилем КАМАЗ, движущимся с той же скоростью. Для расчета принять следующие условия: включение стоп-сигнала от тормозной педали; время реакции водителя при выборе безопасной дистанции – 1,2 с; время запаздывания срабатывания тормозного привода автомобиля КамАЗ – 0,2 с; время нарастания замедления автомобиля КамАЗ – 0,6 с; замедление автомобиля КамАЗ – 6,2 м/с 2 ; замедление автомобиля ВАЗ – 6,8 м/с 2 ; время запаздывания срабатывания тормозного привода автомобиля ВАЗ – 0,1 с; время нарастания замедления автомобиля ВАЗ – 0,35 с.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации безопасная дистанция между автомобилями составляет 26 м:

В формуле обозначены:

t 1 = 1,2 с -- время реакции водителя при выборе безопасной дистанции.

t 22 = 0,2 с -- время запаздывания срабатывания тормозного привода автомобиля КамАЗ.

t 32 = 0,6 с -- время нарастания замедления автомобиля КамАЗ.

V = 60 км/ч -- скорость движения автомобилей.

j 2 = 6,2 м/с 2 -- замедление автомобиля КамАЗ.

j 1 = 6,8 м/с 2 -- замедление автомобиля ВАЗ.

t 21 = 0,1 с -- время запаздывания срабатывания тормозного привода автомобиля ВАЗ.

t 31 = 0,35 с -- время нарастания замедления автомобиля ВАЗ.

ПРИМЕР №5.

Определить безопасный интервал между движущимися в попутном направлении автомобилями ВАЗ-2115 и КамАЗ. Скорость автомобиля ВАЗ-2115 – 60 км/ч, скорость автомобиля КамАЗ – 90 км/ч.

РЕШЕНИЕ:

В сложившейся дорожной ситуации при попутном движении транспортных средств безопасный боковой интервал составляет 1,5 м:

В формуле обозначены:

V 1 = 60 км/ч - скорость движения автомобиля ВАЗ-2115.

V 2 = 90 км/ч - скорость движения автомобиля КамАЗ.

ПРИМЕР №6.

Определить безопасную скорость автомобиля ВАЗ-2110 по условиям видимости, если видимость в направлении движения составляет 30 метров, время реакции водителя при ориентировании в направлении движения – 1,2 с; время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,25 с; установившееся замедление – 4,9 м/с 2 .

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации безопасная скорость автомобиля ВАЗ-2110 по условию видимости в направлении движения составляет 41,5 км/ч:

В формулах обозначены:

t 1 = 1,2 с -- время реакции водителя при ориентировании в направлении движения;

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

t 3 = 0,25 с -- время нарастания замедления;

jа = 4,9 м/с 2 -- установившееся замедление;

Sв = 30 м -- расстояние видимости в направлении движения.

ПРИМЕР №7.

Установить критическую скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения, если радиус поворота составляет 50 м, коэффициент поперечного сцепления - 0,60; угол поперечного уклона дороги - 10 °

РЕШЕНИЕ:

В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения составляет 74,3 км/ч:

В формуле обозначены:

R = 50 м -- радиус поворота.

ф У = 0,60 -- коэффициент поперечного сцепления.

b = 10 ° -- угол поперечного уклона дороги.

ПРИМЕР №8

Определить критическую скорость движения автомобиля ВАЗ-2121 на повороте радиусом 50 м по условию опрокидывания, если высота центра тяжести автомобиля – 0,59 м, колея автомобиля ВАЗ-2121 – 1,43 м, коэффициент поперечного крена подрессоренной массы – 0,85.

РЕШЕНИЕ:

В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2121 на повороте по условию опрокидывания составляет 74,6 км/ч:

В формуле обозначены:

R = 50 м -- радиус поворота.

hц = 0,59 м -- высота центра тяжести.

В = 1,43 м -- колея автомобиля ВАЗ-2121.

q = 0,85 -- коэффициент поперечного крена подрессоренной массы.

ПРИМЕР №9

Определить тормозной путь автомобиля ГАЗ-3102 в условиях гололеда при скорости движения 60 км/ч. Загрузка автомобиля 50%, время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,05 с; коэффициент сцепления – 0,3.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации тормозной путь автомобиля ГАЗ-3102 составляет примерно 50 м:

В формуле обозначены:

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

t 3 = 0,05 с -- время нарастания замедления;

j = 2,9 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля ГАЗ-3102.

ПРИМЕР №10

Определить время торможения автомобиля ВАЗ-2107 при скорости 60 км/ч. Дорожные и технические условия: укатанный снег, время запаздывания срабатывания тормозного привода – 0,1 с, время нарастания замедления – 0,15 с, коэффициент сцепления – 0,3.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации время торможения автомобиля ВАЗ-2107 составляет 5,92 с:

В формуле обозначены:

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода.

t 3 = 0,15 с -- время нарастания замедления.

V = 60 км/ч -- скорость движения автомобиля ВАЗ-2107.

j = 2,9 м/с 2 -- замедление автомобиля ВАЗ-2107.

ПРИМЕР №11

Определить перемещение автомобиля КамАЗ-5410 в заторможенном состоянии при скорости 60 км/ч. Дорожные и технические условия: загрузка – 50%, мокрый асфальтобетон, коэффициент сцепления – 0,5.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации перемещение автомобиля КамАЗ-5410 в заторможенном состоянии составляет примерно 28 м:

j = g*φ = 9,81*0,50 = 4,9 м/с 2

В формуле обозначены:

j = 4,9 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля КамАЗ-5410.

ПРИМЕР №12

На дороге шириной 4,5 м произошло встречное столкновение двух автомобилей - грузового ЗИЛ130-76 и легкового ГАЗ-3110 "Волга", Как установлено следствием, скорость грузо­вого автомобиля была примерно 15 м/с, легкового - 25 м/с.

При осмотре места ДТП зафиксированы тормозные следы. Задними шинами грузового автомобиля оставлен след юза длиной 16 м, задними шинами легкового автомобиля - 22 м. В результате следственного эксперимента установлено, что в момент, когда каждый из водителей имел техническую возможность обнаружить встречный автомобиль и оценить дорожную обстановку как опасную, расстояние между автомобилями было около 200 м. При этом грузовой автомобиль находился от места столкновения на удалении примерно 80 м, а легковой - 120 м.

Установить наличие технической возможности пред­отвратить столкновение автомобилей у каждого из водителей.

Для исследования приняты:

для автомобиля ЗИЛ-130-76:

для автомобиля ГАЗ-3110:

РЕШЕНИЕ:

1. Остановочный путь автомобилей:

грузового

Легкового

2. Условие возможности предотвращения столкновения присвоевременном реагировании водителей на препятствие:

Проверяем это условие:

Условие выполняется, следовательно, если бы оба водителя правильно оценили создавшуюся дорожную обстановку и одновре­менно приняли правильное решение, то столкновения удалось бы избежать. После остановки автомобилей между ними оставалось бы расстояние S = 200 - 142 = 58 м.

3.Скорость автомобилей в момент начала полного тор­можения:

грузового

легкового

4. Путь, пройденный автомобилями придвижении юзом (пол­номторможении):

грузового

легкового

5. Перемещение автомобилей от места столкновения в затор­моженном состоянии при отсутствии столкновения:

грузового

легкового

6.Условие возможности предотвращения столкновения у водителей автомобилей в создавшейся обстановке: для грузового автомобиля

Условие не выполняется. Следовательно, водитель автомобиля ЗИЛ-130-76 даже при своевременном реагировании на появление автомобиля ГАЗ-3110 не имел технической возможности предот­вратить столкновение.

для легкового автомобиля

Условие выполняется. Следовательно, водитель автомобиля ГАЗ-3110 при своевременном реагировании на появление автомо­биля ЗИЛ-130-76 имел техническую возможность предотвратить столкновение.

Вывод. Оба водителя несвоевременно реагировали на появ­ление опасности и оба затормозили с некоторым опозданием. (S" y д = 80 м > S" o = 49,5 м: S" y д = 120 м > S" o = 92,5 м). Однако только водитель легкового автомобиля ГАЗ-3110 в создавшейся обста­новке располагал возможностью предотвратить столкновение.

ПРИМЕР 13

Автобусом ЛАЗ-697Н, двигавшимся со скоростью 15 м/с, был сбит пешеход, шедший со скоростью 1,5 м/с. Удар пешеходу нанесен передней частью автобуса. Пешеход успел пройти по полосе движения автобуса 1,5 м. Полное перемещение пешехода 7,0 м. Ширина проезжей части в зоне ДТП равна 9,0 м. Определить возможность предотвращения наезда на пешехода путем объезда пешехода или экстренного торможения.

Для исследования приняты:

РЕШЕНИЕ:

Проверим возможность предотвращения наезда на пешехода путем объезда пешехода спереди и сзади, а также экстренного торможения.

1. Минимальный безопасный интервал при объезде пешехода

2. Ширина динамического коридора

3. Коэффициент маневра

4. Условие возможности выполнения маневра с учетом дорож­ной обстановки при объезде пешехода:

сзади

спереди

Объезд пешехода возможен лишь сзади (со стороны спины).

5. Поперечное смещение автобуса, необходимое для объезда пешехода со стороны спины:

6. Фактически необходимое продольное перемещение автобуса для его смещения в сторону на 2,0 м

7. Удаление автомобиля от места наезда на пешехода в момент возникновения опасной ситуации

6. Условие безопасного объезда пешехода:

Условие выполняется, Следовательно, водитель автобуса имел техническую возможность предотвратить наезд на пешехода путем его объезда со стороны спины.

7. Длина остановочного пуши автобуса

Так как S уд =70 м > S o = 37, б м, безопасность перехода пеше­хода можно было также обеспечить путем экстренного тормо­жения автобуса.

Вывод.Водитель автобуса имел техническую возможность предотвратить наезд на пешехода:

а) путем объезда пешехода со стороны спины (при неизменной скорости движения автобуса);

б) путем экстренного торможения с момента начала движения пешехода по проезжей части.

ПРИМЕР 14.

Автомобиль марки ЗИЛ-4331 в результате повреждения шины переднего левого колеса внезапно выехал на левую сторону проезжей части дороги, где произошло ло­бовое столкновение со встречным автомобилем марки ГАЗ-3110. Водители обоих автомобилей во избежание столкновения при­меняли торможение.

На разрешение эксперта поставлен вопрос: имели ли они техническую возможность предотвратить столкновение путем торможения.

Исходные данные:

- проезжая часть - асфальтированная, мокрая, горизон­тального профиля;

- расстояние от места столкновения до начала поворота автомобиля ЗИЛ-164 влево - S = 56 м;

- длина следа торможения от задних колес автомобиля ГАЗ-3110 - = 22,5 м;

- длина следа торможения автомобиля ЗИЛ-4331 до удара - = 10,8 м;

- длина следа торможения автомобиля ЗИЛ-4331 после удара до полной остановки - = 3 м;

- скорость движения автомобиля ЗИЛ-4331 перед проис­шествием –V 2 = 50 км/ч, скорость движения автомобиля ГАЗ-3110 не установлена.

Эксперт принял следующие значения технических величин, необходимых для расчетов:

- замедление автомобилей при экстренном торможении - j = 4м/с 2 ;

- время реакции водителей – t 1 = 0,8 с;

- время запаздывания срабатывания тормозного привода автомобиля ГАЗ-3110 – t 2-1 = 0,1 с, автомобиля ЗИЛ-4331 – t 2-2 = 0,3 с;

- время нарастания замедления автомобиля ГАЗ-3110 - t 3-1 = 0,2 с, автомобиля ЗИЛ-4331 t 3-2 = 0,6 с;

- вес автомобиля ГАЗ-3110 – G 1 = 1,9 т, вес автомобиля ЗИЛ-4331 – G 2 = 8,5 т.


Торможение, целью которого является максимально быстрая остановка, называется экстренным. При экстренном торможении считается, что силы сцепления используются полностью, то есть силы торможения достигают максимального значения одновременно на всех колесах, коэффициенты сцепления j х на всех колесах одинаковы и неизменны за весь период торможения.

При таких допущениях процесс торможения может быть описан графиком зависимости j з = f(t) (рисунок 3.1), называемым тормозной диаграммой. Начало координат соответствует моменту обнаружения опасности. На диаграмму для лучшей иллюстративности наносят зависимость V = f(t) .

t рв - время, прошедшее от момента обнаружения опасности до начала торможения, называют временем реакции водителя. В зависимости от индивидуальных качеств, квалификации водителя, степени его утомления, дорожной обстановки и т. п. t рв может изменяться в пределах 0,2…1,5 с. При расчетах принимают среднее значение t рв = 0,8 с.

t с - время срабатывания тормозов, с:

Для дисковых тормозов с гидроприводом t с = 0,05…0,07 с;

Для барабанных тормозов с гидроприводом t с = 0,15…0,20 с;

Для барабанных тормозов с пневмоприводом t с = 0,2…0,4 с.

t н - время нарастания замедления, с:

Для легковых автомобилей t с = 0,05…0,07 с;

Для грузовых автомобилей с гидроприводом t н = 0,05…0,4 с;

Для грузовых автомобилей с пневмоприводом t н = 0,15…1,5 с;

Для автобусов t с = 0,2…1,3 с.

Максимальное замедление j з max при торможении достигается при достижении максимального усилия воздействия на тормозную педаль, поэтому считается, что сила торможения будет неизменной, а замедление также можно принять постоянным.

При экстренном торможении на горизонтальной дороге максимальное замедление по условиям сцепления можно определить по формуле:

j з max = j х ×g , м/с 2 . (3.1)

За время t н (время нарастания замедления) изменение замедления j з происходит пропорционально времени, то есть график j з = f(t н) - прямая линия.

t т – минимальное время торможения, с;

t р – время растормаживания (это время от начала отпускания тормозной педали до возникновения зазора между фрикционными элементами).

Построение тормозной диаграммы осуществляется в соответствии с выбранными масштабами времени t , скорости V и замедления j в прямоугольной системе координат, в соответствии с рисунком 3.1.

На участках t рв , t с скорость V остается равной V o – скорости в начале торможения; на участке t н величина скорости плавно снижается, а на участке t т изображается в виде прямой линии, так как замедление постоянное (V = V o - j з ×t , м/с).

Расчетом движения называют определение основных параметров движения автомобиля и пешехода: скорости, пути, времени и траектории движения.

При расчете равномерного движения автомобиля используют элементарное соотношение

где S а , V а и t à - соответственно: путь, скорость и время движения автомобиля.

Торможение при постоянном коэффициенте сцепления

Если водитель в ходе ДТП тормозил, то начальную скорость автомобиля можно достаточно точно определить по длине следа скольжения (следа хода) шины на дороге, возникающего при полной блокировке колес.

Экспериментальное исследование процесса торможения показывает, что вследствие изменения коэффициента сцепления шин с дорогой и колебаний, вызванных наличием упругих шин и элементов подвески, замедление j в процессе торможения носит сложный характер.

Рис. 5.1. Диаграмма торможения

Для упрощения расчетов полагаем, что за время tн (время нарастания замедления) замедление нарастает по закону прямой (участок АВ), а в течение времени (время tу установившегося замедления) остается постоянным (участок ВС) и по окончании периода полного торможения мгновенно уменьшается до нуля (точка С).

Замедление автомобиля рассчитывают исходя из условий полного использования сцепления всеми шинами автомобиля,

, м/с 2 (5.2)

где g = 9,81 м/с 2 ;

ч - коэффициент продольного сцепления шин с дорогой, который принимают постоянным.

Так как полное и одновременное использование сцепления всеми шинами автомобиля наблюдается относительно редко, в формулу вводят поправочный коэффициент эффективности торможения Кэ, и формула приобретает следующий вид:

, м/с 2 , (5.3)

Величина К э учитывает соответствие тормозных сил силам сцепления и зависит от условий торможения. Если при торможении были заблокированы все колеса, то К э выбирают в зависимости от х .

Таблица 5. 1

Значение к при наличии следов юза

Самый распространенный способ определения скорости движения транспортного средства перед началом торможения представлен по формуле, имеющейся во всех литературных источниках,

где: j а - замедление автомобиля, развиваемое при его торможении, зависящее от типа транспортного средства, степени его загрузки, состояния покрытия проезжей части, м/с 2 ;

t н - время нарастания замедления автомобиля при его затормаживании, зависящее также от всех вышеперечисленных факторов, как и замедление, и практически изменяющиеся пропорционально изменению загрузки автомобиля и величине коэффициента сцепления, с;

S - протяженность следа торможения автомобиля, считая до оси задних колес; если след остался от колес обеих осей автомобиля, то из величины следа «юза» вычитается база автомобиля L , м.

Тормозной и остановочный пути автомобиля

Тормозной путь, остановочный путь, след торможения, замедление транспортного средства и т. д. - к значениям этих терминов часто приходится обращаться, чтобы объективно оценить действия водителя в конкретной дорожной ситуации.

Остановочный путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала реакции водителя на опасность до его полной остановки:

, м (5.5)

Тормозной путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала нажатия на педаль тормоза до его полной остановки:

, м. (5.6)

Таким образом, остановочный путь автомобиля больше его тормозного пути на величину расстояния, которое преодолевает автомобиль за время реакции водителя t 1 .

Время реакции водителя t 1 . Значение времени реакции водителя (в автотехнической экспертизе) представляет собой промежуток времени с момента появления сигнала опасности в поле зрения водителя до начала воздействия на органы управления транспортного средства (тормозная педаль, рулевое колесо, педаль акселератора).

На время реакции водителя влияют все элементы системы «водитель - автомобиль - дорога - среда» (ВАДС), поэтому целесообразно дифференцировать значения времени реакции в зависимости от типичных дорожно-транспортных ситуаций, характеризующихся определенными сочетаниями взаимосвязанных факторов системы ВАДС. Время реакции колеблется в значительных пределах - от 0,3 до 1,4 и более секунд.

Так, при расчете максимально допустимой скорости по условиям видимости дороги минимальное время простой сенсомоторной реакции следует принимать равным 0,3 с. Такое же время реакции следует принимать при определении минимально допустимой дистанции между попутно движущимися транспортными средствами.

В случае же проявления при движении каких-либо неисправностей транспортного средства, влияющих на безопасность движения, а также при физическом вмешательстве пассажира в процесс управления транспортным средством время реакции водителя можно принять равным 1,2 с.

При дорожно-транспортных происшествиях в темное время суток, когда препятствие было малозаметно, допускается увеличение времени реакции водителя на 0,6 с.

Время запаздывания срабатывания действия тормозного привода t 2 . В течение этого времени выбирается свободный ход педали тормоза и зазоры привода тормозной системы. Величина зависит от типа привода тормозов и его технического состояния.

Гидравлический привод тормозов срабатывает быстрее пневматического. Время запаздывания срабатывания гидравлического при­вода принимается t 2 = 0,2 - 0,4 с . У легковых автомобилей при экстренном торможении t 2 = 0,2 с , а у грузовых t 2 = 0,4 с. Время запаздывания срабатывания неисправного гидравлического привода (при наличии воздуха в системе или неисправности клапанов в главном тормозном цилиндре) увеличивается. Если тормоза срабатывают со второго нажатия на педаль, то оно повышается в среднем до 0,6 с, а при трех нажатиях - до 1,0 с.

Время запаздывания срабатывания пневматического привода тормозов колеблется в пределах t 2 = 0,4-0,6 с , а среднее его значение t 2 = 0,4 с. У автопоездов, имеющих пневматический привод, это время увеличивается: при одном прицепе t 2 = 0,6 с, а при двух - t 2 = до 1 с .

Время нарастания замедления t н. Временем нарастания замедления считается время от начала появления замедления или от момента соприкосновения накладок с тормозными барабанами до начала момента движения транспортного средства с установившимся максимальным замедлением или до момента полного прижатия накладок к тормозным барабанам, а при образовании следов торможения - до начала образования последних на проезжей части.

При экстренном торможении до момента блокировки колес это время практически изменяется пропорционально изменению загрузки автомобиля и величине коэффициента сцепления.

Время нарастания замедления зависит, главным образом, от типа тормозного привода, типа и состояния дорожного покрытия, массы транспортного средства.

Так, если известна начальная скорость автомобиля V a , то скорость V ю , соответствующую началу полного торможения, можно найти, считая, что в течение t у автомобиль движется равномерно замедленно с постоянным замедлением 0,5 j .

, м/с. (5.7)

Техническая возможность предотвращения ДТП

При анализе обстоятельств дорожно-транспортного происшествия после определения величины остановочного пути автомобиля S о необходимо определить:

Удаление автомобиля (S a ) от места наезда в момент, когда возникла опасность для движения;

Время, необходимое на остановку автомобиля, т. е. время на остановочный путь (t o );

Время пешехода (t п ), которое он затрачивает на движение от места возникновения опасности до места наезда;

Время (), в течение которого заторможенный автомобиль перемещался до наезда.

Время движения пешехода к месту соударения определяется:

, с, (5.8)

где: S n - путь пешехода от места возникновения опасной обстановки до места наезда, м ;

V n - скорость движения пешехода, определенная либо по табличным данным, либо экспериментальным путем, км/ч.

Если время движения пешехода к месту соударения меньше или равно суммарному времени реакции водителя и времени срабатывания тормозного привода (t n t 1 + t 2 + 0,5t н = Т ), то пешеход окажется в полосе движения автомобиля, тогда как торможение еще не наступило. В таком случае технической возможности предотвратить наезд нет, независимо от значения скорости движения транспортного средства.

Если t a > Т, то анализ осуществляют в следующей последовательности:

Определяют расстояние S a между автомобилем и местом наезда в момент возникновения опасности для движения;

Сравнивают расстояние S а с остановочным путем транспортного средства S o .

Если остановочный путь автомобиля (S о ) меньше расстояния (S a ), то следует вывод о технической возможности избежания ДТП, в противном случае таковая у водителя отсутствует.

Для определения расстояния S a ВНИИСЭ рекомендует следующие формулы:

В случае наезда до начала торможения

, м, (5.9)

где L уд - расстояние от места удара автомобиля до его передней части, м;

В случае, если заторможенный автомобиль после наезда продолжал движение до остановки,

, м (5.10)

, м, (5.11)

где - расстояние, которое преодолевает автомобиль после наезда до полной остановки.

"..."установившееся замедление" - среднее значение замедления за время торможения от момента окончания периода времени нарастания замедления до начала его спада в конце торможения;..."

Источник:

Постановление Правительства РФ от 10.09.2009 N 720 (ред. от 06.10.2011) "Об утверждении технического регламента о безопасности колесных транспортных средств"

  • - один из основных классификационных признаков транспортного средства, определяющих его назначение и общее конструктивное исполнение...

    Криминалистическая энциклопедия

  • - А. Отношение массы пассажиров и грузов, загруженных на транспортное средство, к нормативной массе пассажиров и грузов. Б. Масса пассажиров и грузов, загруженных в транспортное средство...

    Словарь бизнес терминов

  • - принудительное задержание транспортного средства на основании решения судебного органа, производимое, например, в порядке обеспечения гражданско-правового...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "...1) владелец транспортного средства - лицо, владеющее транспортным средством на праве собственности или на ином законном основании;..." Источник: Федеральный закон от 01.07...

    Официальная терминология

  • - "..."дефект" - каждое отдельное несоответствие транспортного средства установленным требованиям;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

  • - мера обеспечения производства по делам о нарушении некоторых правил дорожного движения...

    Административное право. Словарь-справочник

  • - принудительное задержание транспортного средства по решению суда, производимое для обеспечения правового...

    Словарь бизнес терминов

  • - 1. масса пассажиров и грузов, находящихся в транспортном средстве и предназначенных для перевозки 2...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "..."база транспортного средства" - расстояние между вертикальной поперечной плоскостью, проходящей через ось передних колес, и вертикальной поперечной плоскостью, проходящей через ось задних колес;.....

    Официальная терминология

  • - "...Год выпуска: календарный год, в котором было произведено ТС..." Источник: "ТРАНСПОРТНЫЕ СРЕДСТВА. МАРКИРОВКА. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ...

    Официальная терминология

  • - "...ГРУЗОПОДЪЕМНОСТЬ ТРАНСПОРТНОГО СРЕДСТВА - масса груза, на перевозку которого рассчитано данное транспортное средство.....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - "..."устойчивость транспортного средства при торможении" - способность транспортного средства двигаться при торможениях в пределах коридора движения;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

"Установившееся замедление при торможении транспортного средства" в книгах

Из книги Пользование чужим имуществом автора Панченко Т М

Статья 637. Страхование транспортного средства Если иное не предусмотрено договором аренды транспортного средства с экипажем, обязанность страховать транспортное средство и (или) страховать ответственность за ущерб, который может быть причинен им или в связи с его

Аренда транспортного средства

Из книги Расходы организации: бухгалтерский и налоговый учет автора Уткина Светлана Анатольевна

Аренда транспортного средства Затраты на выплату компенсации работникам за использование ими личных автомобилей для служебных поездок включаются в состав прочих расходов, связанных с производством и реализацией. При этом нормы расходов на указанные цели установлены

2. 5. Выбор транспортного средства

Из книги Логистика автора Савенкова Татьяна Ивановна

2. 5. Выбор транспортного средства Выбор транспорта решается в о взаимной связи с другими задачами логистики: создание и поддержание оптимального уровня запасов, выбор вида упаковки и др. На выбор транспортных средств будут влиять: характер груза (вес, объем,

Из книги Гражданский кодекс РФ автора ГАРАНТ

Задержание транспортного средства

Из книги автора

Задержание транспортного средства Статья 27.13. Задержание транспортного средства 1. При нарушениях правил эксплуатации, использования транспортного средства и управления транспортным средством соответствующего вида, предусмотренных статьями 11.26, 11.29, частью 1 статьи

автора Дума Государственная

Из книги Кодекс Российской Федерации об административных правонарушениях (КоАП РФ) автора Дума Государственная

автора Законы РФ

Статья 11. 27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс РФ об административных правонарушениях автора Законы РФ

Статья 12. 25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

автора Автор неизвестен

Статья 11.27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс Российской Федерации об административных правонарушениях. Текст с изменениями и дополнениями на 1 ноября 2009 г. автора Автор неизвестен

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

Из книги КоАП для автомобилистов с комментариями. С изменениями на 2015 год автора Федорова Екатерина Николаевна

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам полиции или иным лицам, которым в случаях, предусмотренных

4.4. Досмотр транспортного средства

Из книги Эй, инспектор, ты не прав! Все о том, как противостоять произволу ГИБДД на дорогах автора Нариньяни Алена

4.4. Досмотр транспортного средства Досмотр автомобиля - это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника полиции должны быть основания. Кодексом об

2.2. Задержание транспортного средства

автора

2.2. Задержание транспортного средства Что представляет собой задержание транспортного средства?Это принудительное прекращение использования транспортного средства, включающее его помещение на специализированную стоянку. Специализированная стоянка в свою очередь –

2.4. Досмотр транспортного средства

Из книги ГИБДД. Как вести себя, что важно знать? автора Шалимова Наталия Александровна

2.4. Досмотр транспортного средства Досмотр транспортного средства любого вида – это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника милиции должны быть

  1. Евтюков С. А., Васильев Я. В. Расследование и экспертиза дорожно-транспортных происшествий / под общ. ред. С. А. Евтюкова. СПб.: ООО «Издательство ДНК», 2004. 288 с
  2. Евтюков С. А., Васильев Я. В. Экспертиза дорожно-транспортных происшествий: справочник. СПб.: ООО «Издательство ДНК», 2006. 536 с
  3. Евтюков С. А., Васильев Я. В. ДТП: Расследование, реконструкция и экспертиза. СПб.: ООО «Издательство ДНК», 2008. 390 с
  4. ГОСТ Р 51709-2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. М.: Изд-во стандартов, 2001. 27 с
  5. Литвинов А. С., Фаробин Я. Е. Автомобиль: Теория эксплуатационных свойств. М.: Машиностроение, 1986. 240 с
  6. Судебная автотехническая экспертиза: пособие для экспертов-автотехников, следователей и судей. Ч. II. Теоретические основы и методика экспериментального исследования при производстве автотехнической экспертизы / под ред. В. А. Иларионова. М.: ВНИИСЭ, 1980. 492 с
  7. Пучкин В. А. и др. Оценка дорожной ситуации, предшествовавшей ДТП // Организация и безопасность дорожного движения в крупных городах: сб. докл. 8-й междунар. конф. СПб., 2008. C. 359-363
  8. Об утверждении устава Федерального бюджетного учреждения российского федерального Центра судебной экспертизы при Министерстве юстиции Российской Федерации: Приказ Министерства юстиции Российской Федерации от 03.03.2014 № 49 (в ред. от 21.01.2016 № 10)
  9. Надеждин Е. Н., Смирнова Е. Е. Эконометрика: учеб. пособие / под ред. Е. Н. Надеждина. Тула: АНО ВПО «ИЭУ», 2011. 176 с
  10. Григорян В. Г. Применение в экспертной практике параметров торможения автотранспортных средств: метод. рекомендации для экспертов. М.: ВНИИСЭ, 1995
  11. Постановление Правительства Российской Федерации от 06.10.1994 № 1133 «О судебно-экспертных учреждениях системы Министерства юстиции Российской Федерации»
  12. Постановление Правительства Российской Федерации о Федеральной целевой программе «Повышение безопасности дорожного движения в 2013-2020 годах» от 30.10.2012 № 1995-р
  13. Никифоров В. В. Логистика. Транспорт и склад в цепи поставок: учеб. пособие. М.: ГроссМедиа, 2008. 192 с
  14. Щукин М. М. Сцепные устройства автомобилей и тягачей: Конструкция, теория, расчет. М.; Л.: Машиностроение, 1961. 211 с
  15. Пучкин В. А. Основы экспертного анализа дорожно-транспортных происшествий: База данных. Экспертная техника. Методы решений. Ростов н/Д: ИПО ПИ ЮФУ, 2010. 400 с
  16. Щербакова О. В. Обоснование математической модели процесса соударения с целью разработки методики повышения оценки точности определения скорости движения автопоезда в начале опрокидывания на криволинейных траекториях // Вестник гражданских инженеров. 2016. № 2 (55). С. 252-259
  17. Щербакова О. В. Анализ заключений автотехнических экспертиз по дорожно-транспортным происшествиям // Вестник гражданских инженеров. 2015. № 2 (49). С. 160-163