» » Все, что нужно знать о водородном топливе будущего. Машины на водородном топливе Применение водорода в будущем

Все, что нужно знать о водородном топливе будущего. Машины на водородном топливе Применение водорода в будущем

Где можно взять водород было известно давно, еще пару веков назад. Способ получения водорода был достаточно подробно описан в издании:
О. Д. Хвольсон, Курс физики, Берлин, 1923, тт. 3 и.

Оказывается, не нарушая никаких законов физики можно построить машину, которая будет производить тепло за счет положительной разности энергии сжигания водорода, и энергии затрачиваемой на получение его в процессе электролиза воды.

Конкретно, 2 гр водорода при сгорании выделяют 67.54 больших калорий тепла, а при электролизе раствора серной кислоты, при напряжении 0.1 вольта, на получение такого же количества водорода будет затрачено менее 5 больших калорий тепла. Суть состоит в том, что при электролизе не расходуется энергия разъединения молекулы воды на кислород и водород. Эта работа совершается без нашего участия межмолекулярными силами при диссоциации воды ионами серной кислоты. Мы расходуем энергию только на то, чтобы нейтрализовать заряды уже имеющихся ионов водорода и остатка SO- Количество выделившегося водорода зависит не от энергии, а только от количества электричества, равного произведению силы тока на время его прохождения.

При сжигании водорода выделяется именно та энергия, которую надо было бы совершить для того, чтобы оторвать молекулу водорода от кислорода в воздухе. А это и есть 67.54 больших калорий. Полученный избыток энергии может быть использован по разному.

Можно получать водород прямо на заправочных станциях и заправлять им автомобили.

В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд. Это своеобразный усилитель энергии. Отпадет надобность в проводке газовых труб, теплотрассах и котельных. Энергия будет приготовлена прямо в квартире из воды, а отходами будет снова только вода.

В крупных промышленных установках, даже при 33% кпд, как и в атомных станциях сегодня, сжигая водород получим электрической энергии в несколько раз больше, чем было затрачено ее на получение этого водорода.

Привлекательно использование водорода, как топлива для автомобилей, ввиду его нескольких особых преимуществ:

  • при сгорании водорода в двигателе образуется практически только вода, что делает двигатель на водородном топливе наиболее экологически чистым;
  • высокие энергетические свойства водорода (1 кг водорода эквивалентен почти 4,5 кг бензина);
  • неограниченная сырьевая база при получения водорода из воды.

Использовать водород в качестве топлива для автомобилей можно несколькими разными способами:

  • можно использовать только сам водород;
  • можно использовать водород вместе с традиционными топливами;
  • можно применять водород в топливных элементах.

Конечно, возникают определенные технические трудности, которые необходимо решить. Лет 30 назад, академик А. П. Александров, вел семинар по водородной энергетике. На нем обсуждались уже технические проекты. Предполагалось, что атомная энергия будет использоваться для получения водорода, а он уже будет использоваться как топливо. Но очевидно скоро поняли, что атомная энергетика здесь вообще не нужна. Тогда и похерили все водородные проекты, потому что нужно было не водородное топливо, а плутоний.

Писательница Л. Улицкая, генетик по образованию, писала в «Общей газете» 16-22 мая 2002 г. «Романтический период в истории науки закончился. Я совершенно уверена, что дешевые источники электроэнергии давно уже разработаны и разработки эти лежат в сейфах нефтяных королей. Убеждена, сегодня наука так работает, что этого не могут не сделать. Но до тех пор, пока последнюю каплю нефти не сожгут, такие разработки не выпустят из сейфа, им не нужен передел денег, мира, власти, влияния».

До сих пор сторонники развития атомной энергетики ставят коронный вопрос: А где альтернатива атому? Следует ожидать яростного противодействия не только сторонников ядерной энергетики, но всего топливно- энергетического комплекса. Они не пожалеют сил и средств, чтобы закопать проблему водородного топлива вместе с ее энтузиастами.

Более 90% водорода получают в нефтеперерабатывающих и нефтехимических процессах. Также водород вырабатывается при превращении природного газа в синтез-газ. Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе.

На сегодняшний день, практически весь вырабатываемый водород используется в различных нефтеперерабатывающих и нефтехимических процессах.

С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций, что обеспечивает устойчивую работу двигателя на всех скоростных режимах.

В отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СН), но выброс оксидов азота вдвое превышает выброс оксидов азота бензинового двигателя.

Из-за высокой реакционной способности водорода есть возможность проскока пламени во впускной трубопровод и преждевременного воспламенения смеси. Из всех вариантов устранения этого явления самым оптимальным является впрыск водорода непосредственно в камеру сгорания.

Проблемой использования водорода в качестве моторного топлива является его хранение на автомобиле.

Система хранения сжатого водорода позволяет уменьшить объем бака, но не его массу из-за увеличения толщины стенки. Хранение жидкого водорода – сложная задача, учитывая его низкую температуру кипения. Жидкий водород хранят в емкостях с двойными стенками.

При хранении водорода в виде гидридов металлов, водород находится в химически связанном состоянии. Если в качестве гидрида металла использовать гидрид магния, соотношение между водородом и металлом-носителем составляет около 168 кг магния и 13 кг водорода.

Высокая температура самовоспламенения водородо-воздушных смесей затрудняет использование водорода в дизелях. Устойчивое воспламенение может быть обеспечено принудительным поджогом от свечи.

Трудности при использовании водорода и высокая его цена привели к тому, что разрабатывается комбинированное топливо бензин-водород. Использование бензино-водородных смесей позволяет на 50% снизить расход бензина при скорости 90 – 120 км/ч и на 28% при езде в городе.

— сайт —

Комментарии:

    Я за комбинированное топливо бензин-водород

    А я за то, что бы использовать мобильный реактор водорода, как описывается выше. И не надо боков и безопасно. В качестве безопасности как уже извесно, можно использовать гидрозатвор.

    Никто и никогда не сможет эапустить водород как топлво пока есть нефть….как можно получить или посмотреть чертежи об устаноке дпя печного отопления……….

    В начале статьи говорится о серной кислоте, потом невзначай упоминается вода. Так с какой жидкостью будем иметь дело и соответсвующие экологические неоднозначности?
    Я не химик, прошу ногами не пинать, если что-то упустил.

    Если использовать серную кислоту некой средней концентрации, то после получения электролизом из нее водорода надо концентрацию кислоты как-то удерживать. Можно просто доливать воды и по ареометру следить, но вода из водопровода далека от дистиллировки и испарение оксида серы-6 в негерметичной системе тоже наверняка будет происходить, все же газ. Сжигать же водород в получаемом параллельно кислороде, чтобы обеспечить герметичность, надо малыми порциями, но и это взрывонебезопасно. Идея хорошая, надо попробовать – электролит аккумуляторный доступен, как и электросеть.

    в вов на дерижаблях в лененграде использовали водород а позже из них же питали движки машин с лебёдками

    Забудьте, это все теория, на самом деле все правильно, только вот Водород по калорийности в 3 раза меньше скажем природного газа сответствено КПД такого двигетеля ниже в 3 раза чем скажем на природном газе,тоесть он будет гудеть на холостом, но не ехать.Так что о применении самодостаточного водородного топлива забудьте это утопия,а вот молекулярная интенсивикация топлива бензин,газ, солярав двигателях внутренего сгорания и вгазотурбинных установках это перспективно экономически оправдано так как КПД двигателей растет 2-3 разы,при сокращению расхода топлива на 38-50% скажем на 100 км реально.Все эти раскозни про газ Брауна,Майера и других ничто так каз законы физики пока работают тесть получить методом электролиза газ и на нм ездить не реально так как мощность борт сети авто не достаточно генератор типового авто выдает максимум ток в 7.5А, дляустойчивой работы электролизера необходимая сила тока хотябы в 2 разы больше,значить мы посадим акамулятор достаточно быстро и еще и уграем как минимум реле регулятор авто.Все приплыли. Но решение все же есть.Так как октановое число водорода 1000то соответствено его в двигатель подавать надо очень мало, тоесть довести силу тока в электролизере до 3-4 ампер и готовит бензиновую или топливною смесь не посредственно перед впрыском в камеру сгорания обогащая ее полученым гремучим газом.Как показала практика на автомобилях испытуемых Шкода Октавия,БМВ-520.,Опель Аскона и других на протяжении порядка5-7 лет экономия составляла до 50% в зависимости от вида топлива двигателя,Увеличелся моторесурс в 2 разы,мощность двигателя возросла как минимум на 50%,соответствено увеличелся крутящий момент.Интересное явление наблюдается расход по топливу практически одинаков что в городском что в загородном цыкле.Машина становится резвая и очеь шустрая, скорость при базовом двигателе Шкоды Октавия обемом 1.6 литра набирает скорость до ста км за 12 сек, с молекулярным интенсификатором за 7 сек…крейсерская максимальная скорость Октавии составила 195 км в час при заводских настройках лиш 120-130 с горки,на бензиновых двигателях убитых большим пробегом оказалось что свечи зажигания смеси становятся вечними,прошли без замены по 250 тыс пробега…

    Н- на ~75% даёт больше дж чем бензин и ~50%больше чем метан(могу ошибаться).
    Интересно, какое давления создает в цилиндре Н?

    HHO .prom.ua
    Там собирают электр.лизеры на продажу

    автомобиль на водородном топливе уже в эксплуатации. в мире более 100 тысяч автомобилей ездит на водороде.

    Интересно, кто автор этого шедевра? Сначала он пишет: «В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд». Просто и со вкусом автор предлагает обыкновенный вечный двигатель. Немного ниже: «Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе». По-видимому автор это писал разными руками, а правая рука не ведает, что пишет левая и наоборот….

    Юрий.
    Автор имел ввиду что для власть и имущество имущих генерация водорода наиболее выгодна при синтезе с другими веществами. Но опять же это целые цепочки технологических мероприятий не говоря уже об дорогих оборудованиях. Способов масса но вот рентабельность нужно считать. Я считаю что наиболее рентабелен именно электролиз ибо ветряная энергия очень дешевая. А все другие способы добычи газ.об-водорода могут быть не рентабельными из за износа оборудований и слож. Технолог. Проццесов..

На данный момент водород является самым разрабатываемым "топливом будущего". На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 году исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 году самая крупная термоядерная установка - Европейский Токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Электроводородный генератор

В результате проведенных работ изобретено и патентуется по системе РСТ простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название "электроводородный генератор (ЭВГ)". Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. При этом на каждую единицу затраченный мощности привода генератором в зависимости от заданного режима работы поглощается от 20 до 88 энергетических единиц низкопотенциального тепла, что собственно и компенсирует отрицательный термический эффект химической реакции разложения воды. Один кубический метр условного рабочего объема генератора, работающего в оптимальном режиме с КПД 86-98 %, способен за секунду произвести 3,5 м3 водорода и одновременно около 2,2 МДж постоянного электрического тока. Единичная тепловая мощность ЭВГ в зависимости от решаемой технической задачи может варьироваться от нескольких десятков ватт до 1000 МВт.

"Водородный" автомобиль

Французский автомобильный концерн Renault совместно с компанией Nuvera Fuel Cells планирует разработать серийный автомобиль, использующий в качестве топлива водород, уже к 2010 году (рис.6)

Рис. 6

Nuvera - небольшая американская компания, с 1991 года занимающаяся разработкой двигателей, альтернативных доминирующим сейчас бензиновым и дизельным. В основе разработок Nuvera лежит так называемый "топливный элемент" (Fuel Cell). Топливный элемент - устройство, не имеющее движущихся частей, в котором происходит химическая реакция водорода и кислорода, в результате которой вырабатывается электричество. Побочными продуктами реакции является выделяемое тепло и некоторое количество воды.

Принцип "топливного элемента" в корне отличается от обычного процесса электролиза, применяемого сейчас в батареях и аккумуляторах. Разработчики утверждают, что их продукция - это по сути дела "вечная батарейка", имеющая весьма значительный срок службы. Кроме того, в отличие от обычной батареи, "топливный элемент" не нуждается в подзарядке.

"Водородные батарейки"

Группа инженеров из технологического института штата Массачусетс (Massachusetts Institute of Technology) совместно со специалистами других университетов и компаний разрабатывает миниатюрный топливный двигатель, который в будущем сможет заменить батареи и аккумуляторы.

Журнал Popular Science, опубликовавший статью об исследованиях американских учёных, не удержался от восторга: "Вы только представьте себе жизнь без батареи! Когда топливо заканчивается в вашем ноутбуке, вы "заливаете полный бак" - и вперёд!"

Снижение объема углеводородов и ухудшение состояния окружающей среды.

Крупнейшие мегаполисы мира встречают вас серым видом: застывший над городом тяжелый смог, образованный выхлопными газами.

Наряду с задымлением, в воздух выделяется углекислый газ, изменяющий наш климат на Земле.

Также многие государства задумываются об энергетической независимости.

Не волнуйтесь, автомобиль не исчезнет. Как раз когда вы читаете, сегодняшние ученые исследуют топливо будущего. На чем будут работать двигатели завтрашних автомобилей? Рассмотрим трех самых многообещающих кандидатов.

Водород – топливо космической эры

  1. более энергоемкий, чем бензин или аккумулятор для электромобиля;
  2. в качестве выхлопа вода;
  3. быстро заправляется.
  1. очень дорогой в производстве;
  2. трудность в хранении и транспортировке;
  3. несовместимость с сегодняшней инфраструктурой.

Итог:

На бумаге водород – весьма многообещающее горючее, но высокая стоимость и проблемы с хранением не дают возможности его широкого использования в ближайшем будущем.

Когда ученым понадобилось топливо для космической отрасли, они обратили внимание на водород. Водородные топливные элементы использовались, чтобы привести в действие электронику в командных модулях, включая миссию 1969 года, в которой люди впервые высадились на Луну.

Энергоблоки хоть и выглядят необычно, тем не менее очень похожи на батареи. Они также производят электричество, что дает основание считать автомобиль, работающий на подобном элементе, электромобилем. Для выработки электроэнергии в топливных элементах взаимодействуют два химических вещества.

Могут использоваться и другие, включая метанол и этанол. Но, как правило, применяется водород, поскольку у него высокая энергоемкость на единицу веса, а побочным продуктом является вода. Поэтому, если у вас водородный автомобиль, можно пить его выхлоп.

Топливные элементы почти не ограничены размерами и могут применяться в различных транспортных средствах.

Но не все так радужно. К сожалению, у водородных топливных элементов есть серьезные недостатки.

Во-первых, энергия в них не хранится.

Во-вторых, нет больших естественных источников чистого водорода на Земле, в отличие от ископаемого топлива. Это означает, что он должен производиться с нуля. Также водород – очень энергоемкое вещество. Это преимущество становится и недостатком, так как требует больших затрат энергии для производства.

Несмотря на некоторые многообещающие новые технологии, сегодня в почти каждом мыслимом промышленном сценарии стоимость водорода превышает цену бензина.

Кроме всего, водород – газ. Для использования он должен находиться в сжатом состоянии при высоком давлении, что затрудняет хранение и транспортировку. Например, для сохранности 5 кг водорода нужен крупный 171 литровый бак, удерживающий газ при давлении в 340 раз превышающим атмосферное.

Заправка транспорта сжатым газом требует дорогой инфраструктуры. Водородная заправочная станция стоит приблизительно 2 миллиона долларов США. Добавьте затраты на транспортировку и производство водорода. Все это потребует значительных долгосрочных инвестиций.

Тем не менее многие автопроизводители создали прототипы автомобилей на водородных топливных элементах, включая Фиат, Фольксваген и BMW. А Пежо-Ситроен даже произвел работающий на водороде квадроцикл.

Батареи – высокое напряжение в реальности

  1. отсутствие выхлопа;
  2. практически бесшумная работа;
  3. для зарядки используется электросеть;
  4. батареи уже запущены в массовое производство.
  1. большие габариты;
  2. тяжелые;
  3. долгое время зарядки;
  4. большая часть электричества многих стран производится работающими на угле ТЭС.

Итог:

Электромобиль – давняя мечта изобретателя. С правильным правительством и промышленной поддержкой он давно стал бы массовым. Есть много теорий заговора о том, что погубило «чистый» автомобиль. Но любая история об электромобилях должна начинаться с обсуждения энергоносителей.

После 20 летнего технологического пути сегодня золотым ребенком является литий-ионный аккумулятор. Он существенно легче, держит больше энергии и более эффективен, чем предшествующие ему батареи. Они используются во всей бытовой электронике.

Все же сегодняшние самые лучшие батареи вырабатывают существенно меньше энергии, чем водород или бензин. Средний запас хода электромобиля составляет 60 км. Поэтому технологии чистой энергии являются дополнением к традиционным.

Хотя возможности электромобилей постоянно расширяются. Например, Мини-E проезжает 240 км на одной зарядке. Но Мини-E – крошечный автомобиль с крупной батареей весом более 300 кг, из-за которой проектировщикам пришлось пожертвовать задними сиденьями.

Помимо ужасного модельного ряда, есть и другой недостаток. Аккумуляторы очень не спешат заряжаться.

Однако, чтобы справиться с различными проблемами внедряются технологические инновации. Израильская компания пошла по необычному пути: создание пунктов замены отработанных аккумуляторных батарей.

Другие решения включают внедрение мощных станций, где время заряда может быть снижено до тридцати минут. Также существует возможность зарядить специальные батареи всего за 10 секунд, используя очень высокое напряжение. Но если что-то пойдет не так, существует опасность получить серьезный вред здоровью.

В совокупности, вышеперечисленные технические проблемы убили первый электромобиль массового производства – EV-1 GM.

Все же прогресс не стоит на месте. Многие компании мира исследуют новые типы элементов для создания более энергоемких и простых в обслуживании аккумуляторных батарей. И недолог тот час, когда мы перестанем дышать городским смогом.

Биотопливо – мать-природа к спасению

  1. отсутствует необходимость в новой инфраструктуре;
  2. возобновляется;
  3. представляет собой нейтральный углерод;
  4. производится и применяется.
  1. может нанести вред более старым автомобилям;
  2. конкуренция с производством продуктов питания;
  3. нужно большое количество биомассы для удовлетворения мировой потребности.

Итог:

Сегодня биотопливо уже используется. С дальнейшим развитием технологий и увеличением производства его применение будет только расти. Несмотря на все перспективы, воздействие на окружающую среду – предмет интенсивного обсуждения.

Биотопливо – любое топливо, полученное из биологических материалов, например, таких как щепа, сахарное или растительное масло. Биогорючее от традиционного отличается двумя важными свойствами.

При добыче и сжигании ископаемых энергоресурсов дополнительно выделяется углекислый газ и накапливается в атмосфере. А биотопливо изготовлено из сельскохозяйственных культур, использующих двуокись углерода из окружающей среды для фотосинтеза. Поэтому при использовании биотоплива новый углекислый газ не выделяется (нейтральный углерод), что не ведет к климатическим изменениям.

Кроме всего, для биогорючего сырье выращивается.

Но несколько экологических «грязных пятен» портят радужную картину.

Для превращения биологического материала в биотопливо необходим производственный процесс, требующий затраты энергии. И, если она не из возобновляемого источника, производство вызывает загрязнение.

Вторая проблема состоит в том, что замена ископаемого топлива в мире на биотопливо требует огромного количества новой биомассы. Это может значительно сократить мировые продовольственные запасы. Этанол традиционно производится из зерна. Есть непродовольственные источники, например, пальмовое масло. Но они часто влекут за собой уничтожение девственных лесов.

Хорошие новости в том, что существует широкий выбор биологического материала для создания разных видов биогорючего. Метан, топливные добавки в виде этанола, более тяжелое дизельное топливо.

Направление получает значительную сумму правительственных субсидий, так как биотопливо совместимо с существующими двигателями внутреннего сгорания. Поэтому не требуется никакой новой инфраструктуры и автомобилей.

Производители сосредоточили усилия на создании этанола из целлюлозы, несъедобных частей растений. В этом два преимущества. Во-первых, отсутствует конкуренция с производством продуктов питания. Во-вторых, целлюлоза – самый богатый биологический материал на Земле.

Во многих странах используют биодобавки. Например, в Австралии этанол объединен с бензином в 10 процентную смесь, известную как E10. Почти все автомобили, сделанные после 1986 года, могут на ней безопасно ездить. Биодизель – другая топливная смесь (B10).

Какое будет топливо будущего?

Когда запасы ископаемых энергоресурсов сократятся до критических объемов, победит самая дешевая и быстрая в реализации альтернатива.

Поэтому биотопливо в настоящее время возглавляет гонку. Оно уже в продаже, широко используется и понижается в цене за счет роста производства. Электромобили едут вторыми с небольшим отрывом. Водородные автомобили без инфраструктуры плетутся на последнем месте.

Хотя внезапный технологический прорыв, такой как дешевый способ сохранять большое количество водорода, может изменить игру.

Достоинства: Главным и неоспоримым преимуществом автомобилей на водородном топливе является высокая их экологичность. Так и запишем:
Экологичность водородного топлива. Продуктом горения водорода является вода, точнее водяной пар. Это, естественно, не означает, что при езде на таком автотранспорте не будет выделяться токсичных газов, ведь в ДВС помимо водорода сгорают ещё и различные масла. Однако количество выбросов их несравнимо с чадящими бензиновыми коллегами. Собственно, ухудшающееся состояние экологии – это проблема человечества, и если количество бензиновых «монстров» будет расти такими темпами, то водородное топливо, как когда-то, в войну, станет единственным спасением теперь уже не города, а всего человечества.
ДВС на водороде может использовать и классические виды топлива, такие как бензин. Для этого придётся устанавливать на автомобиль дополнительный топливный бак. Такой гибрид гораздо легче «продвинуть» на рынок, чем чистый водородный ДВС.
Бесшумность.
Простота конструкции и отсутствие дорогостоящих, ненадёжных и опасных систем топливоподачи, охлаждения и т.д.
Коэффициент полезного действия электродвигателя работающего на водородном топливе в несколько раз выше, чем у классического двигателя внутреннего сгорания.

Недостатки: Большой вес автомобиля. Для работы электродвигателя на водородном топливе необходимы мощные аккумуляторные батареи и водородные преобразователи тока, которые в общей конструкции весят не мало, да и габариты у них внушительные.

Дороговизна водородных топливных элементов.

При использовании водорода с традиционным топливом велика опасность взрыва и возгорания.
Несовершенные технологии хранения водородного топлива. То есть, ученые и разработчики до сих пор не решат, какой сплав использовать для баков хранения водорода.
Не разработаны необходимые стандарты хранения, транспортировки, применения водородного топлива.
Полное отсутствие водородной инфраструктуры заправок автомобилей.
Сложный и дорогой способ получений водорода в промышленных масштабах.
Прочитав о достоинствах и недостатках водородного топлива можно сделать вывод, что в свете ухудшающийся экологии, альтернативный источник энергии водород станет единственным продуктивным решением проблемы. Но, если обратится к недостаткам, то становится ясным, почему, до сих пор, серийный выпуск водородных автомобилей откладывается на неопределённый срок.



Методы получения H2:

1) Паровая конверсия метана – ПКМ. Осуществляется в мире в основном путём паровой конверсии метана при температурах 750-850 °С в химических паровых реформерах и каталитических поверхностях. На первом этапе метан и водяной пар превращаются в водород и монооксид углерода (синтез-газ). Вслед за этим «реакция сдвига» превращает монооксид углерода и воду в диоксид угле­рода и водород. Эта реакция происходит при температурах 200-250 °С. Для осуществления эндотермического процесса ПКМ сжигается около поло­вины исходного газа. При использовании паровой конверсии метана в со­четании с высокотемпературным гелиевым реактором (ВТГР) требуемая тепловая мощность ВТГР составляет в расчёте на 5 млн т водорода около 6,5 ГВт.

2) Плазменная конверсия углеводородов. . В РКЦ «Курчатовский инсти­тут» выполнены исследования плазменной конверсии природного углево­дородного топлива (метан, керосин) в синтез-газ. Эта технология может быть применена на заправочных станциях или на борту водородных авто­мобилей при использовании обычного жидкого топлива. Разработаны так­же плазмохимические методы получения водорода с помощью ВЧ- и СВЧ-технологий с использованием в качестве сырья химических соединений, в Которых водород находится в слабосвязанном состоянии, например, серо­водорода.

3) Электролитическое разложение воды (электролиз). Электролитиче­ский водород является наиболее доступным, но дорогим продуктом. Для разложения чистой воды при нормальных условиях требуется напряжение 1,24 вольта. Величина напряжения зависит от температуры и давления, от свойств электролита и других параметров электролизера. В промышлен­ных и опытно-промышленных установках реализован к.п.д. электролизера ~70-80 %, в том числе для электролиза под давлением. Паровой электро­лиз - это разновидность обычного электролиза. Часть энергии, необходи­мой для расщепления воды, в этом случае вкладывается в виде высокотем­пературного тепла в нагрев пара (до 900 °С), делая процесс более эффек­тивным. Стыковка ВТГР с высокотемпературными электролизерами по­зволит повысить суммарный кпд производства водорода из воды до 50 %.

Одним из существенных ограничений крупномасштабного электро­лизного производства водорода является потребность в драгоценных ме­таллах (платина, родий, палладий) для катализаторов, которая пропорцио­нальна мощности и, следовательно, поверхности электродов.

4) Расщепление воды. По-видимому, в ближайшем будущем методы по­лучения водорода с использованием углеродного сырья будут основными. Однако сырьевые и экологические ограничения процесса паровой конверсии метана стимулируют разработку процессов производства водорода из воды.

5) Термохимические и термоэлек­трохимические циклы. Воду можно термиче­ски разложить и при более низкой температуре, используя последователь­ность химических реакций, которые выполняют следующие функции: свя­зывание воды, отщепление водорода и кислорода, регенерация реагентов. термохимический процесс получения водорода с кпд до 50 % исполь­зует последовательность химических реакций (например, серно-кислотно-йодный процесс) и требует подвода тепла при температуре около 1000 °С. Источником тепла при термохимическом разложении воды также может служить высокотемпературный реактор. На отдельных стадиях процессов такого типа наряду с термическим воздействием для отщепления водорода может использоваться электричество (электролиз, плазма).

В настоящее время многие технические вопросы по внедрению водородной энергетики решены. Все ведущие автомобильные компании имеют концептуальные модели машин, работающих на водороде. Существуют станции заправки этих автомобилей. Однако стоимость водорода пока намного выше, чем бензина или природного газа. Чтобы новая отрасль стала коммерчески оправданной, необходимо выйти на новый уровень получения водорода и снизить цену на него.

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный - гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей - электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.


К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема - разработка катализаторов для получения водорода из органического сырья - продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.


Еще один перспективный метод - процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе - в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны - устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден - его подхватят технологи, и процесс «водородизации» пойдет.