» » Двигатель внешнего сгорания можно сделать из консервной банки. Какие бывают двигатели внешнего сгорания Устройство двигателя внешнего сгорания

Двигатель внешнего сгорания можно сделать из консервной банки. Какие бывают двигатели внешнего сгорания Устройство двигателя внешнего сгорания

Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок . Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.

Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.

Схема работы

Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела (газа или жидкости), циркулирующего в замкнутом объеме.

В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.

Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.

Стирлинг модификации «Альфа»

Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.

Стирлинг модификации «Бета»

Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.

Стирлинг модификации «Гамма»

Конструкция состоит из двух цилиндров. Первый - полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.

Преимущества двигателя Стирлинга

Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность : двигатель работает от перепада температуры, независимо от причин его вызвавших.

Интересный факт! Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло - силовой агрегат продолжал устойчиво работать.

Двигатель обладает простотой конструкции и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).

Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.

Двигатель Стирлинга бесшумен , так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.

В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым силовым агрегатом.

Недостатки конструкции Стирлинга

При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:

Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.

Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.

Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.

Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.

Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:

Коэффициент полезного действия

В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.

Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:

  • неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
  • потери энергии на трение деталей и теплопроводность корпуса двигателя;
  • отсутствие конструкционных материалов, устойчивых к высокому давлению.

Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35% на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.

Примечание! Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.

Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

Несмотря на свои высокие показатели, современный двигатель внутреннего сгорания начинает устаревать. Его к. п. д. достиг, пожалуй, своего предела. Шум, вибрация, отравляющие воздух газы и другие присущие ему недостатки заставляют ученых искать новые решения, пересматривать возможности давно «забытых» циклов. Одним из «возрожденных» двигателей является стирлинг.

Еще в 1816 г. шотландский священник и ученый Роберт Стирлинг запатентовал двигатель, в котором топливо и воздух, поступающие в зону горения, никогда не попадают внутрь цилиндра. Они, сгорая, лишь нагревают находящийся в нем рабочий газ. Это и дало основание назвать изобретение Стирлинга двигателем внешнего сгорания.

Роберт Стирлинг построил несколько двигателей; последний из них имел мощность 45 л. с. и проработал на шахте в Англии более трех лет (до 1847 г.). Эти двигатели были очень тяжелыми, занимали много места и внешне напоминали паровые машины.

Для мореплавания двигатели внешнего сгорания впервые были применены в 1851 г. шведом Джоном Эриксоном. Построенное им судно «Эриксон» благополучно пересекло Атлантический океан из Америки в Англию с силовой установкой, состоявшей из четырех двигателей внешнего сгорания. В век паровых машин это было сенсацией. Однако силовая установка Эриксона развивала всего 300 л. с., а не 1000, как ожидалось. Двигатели имели огромные размеры (диаметр цилиндра 4,2 м, ход поршня 1,8 м). Расход угля получился не меньше, чем у паровых машин. Когда судно пришло в Англию, оказалось, что двигатели не пригодны для дальнейшей эксплуатации, так как у них прогорели днища цилиндров. Чтобы вернуться в Америку, пришлось заменить двигатели обычной паровой машиной. На обратном пути судно попало в аварию и затонуло со всем экипажем.

Маломощные двигатели внешнего сгорания в конце прошлого века применялись в домах для перекачивания воды, в типографиях, на промышленных предприятиях, в том числе на петербургском заводе Нобеля (ныне «Русский дизель»), Устанавливались они и на мелких судах. Стирлинги выпускались во многих странах, в том числе в России, где они назывались «тепло и сила». Ценили их за бесшумность и безопасность работы, чем они выгодно отличались от паровых машин.

С развитием двигателей внутреннего сгорания о стирлингах забыли. В энциклопедическом словаре Брокгауэа и Эфрона о них написано следующее: «Безопасность от взрывов составляет главную выгодную сторону калорических машин, благодаря которой они могут опять войти в употребление, если найдут для их построения и смазки новые материалы, лучше выдерживающие высокую температуру».

Дело заключалось, однако, не только в отсутствии соответствующих материалов. Еще оставались неизвестными современные принципы термодинамики, в частности эквивалентность тепла и работы, без чего невозможно было определить наивыгоднейшие соотношения основных элементов двигателя. Теплообменники делали с малой поверхностью, из-за чего двигатели работали при непомерно высоких температурах и быстро выходили из строя.

Попытки усовершенствовать Стирлинг были предприняты после второй мировой войны. Наиболее существенные из них заключались в том, что рабочий газ стали применять сжатым до 100 атм и использовать не воздух, а водород, имеющий более высокий коэффициент теплопроводности, низкую вязкость и, кроме того, не окисляющий смазки.

Устройство двигателя внешнего сгорания в его современном виде схематически показано на рис. 1. В закрытом с одной стороны цилиндре находятся два поршня. Верхний - поршень-в ы тесните ль служит для ускорения процесса периодического нагрева и охлаждения рабочего газа. Он представляет собой полый закрытый цилиндр из нержавеющей стали, плохо проводящий тепло, и перемещается под действием штока, связанного с кривошипно-шатунным механизмом.

Нижний поршень - рабочий (на рисунке показан в сечении). Он передает усилие на кривошипно-шатунный механизм через полый шток, внутри которого проходит шток вытеснителя. Рабочий поршень снабжен уплотняющими кольцами.

Под рабочим поршнем имеется буферная емкость, образующая подушку, выполняющую функцию маховика - сглаживать неравномерность крутящего момента благодаря отбору части энергии во время рабочего хода и отдаче ее на вал двигателя во время хода сжатия. Для изоляции объема цилиндра от окружающего пространства служат уплотнения типа «заворачивающийся чулок». Это резиновые трубки, прикрепленные одним концом к штоку, а другим к корпусу.

Верхняя часть цилиндра соприкасается с подогревателем, а нижняя - с холодильником. Соответственно в нем выделяются «горячий» и «холодный» объемы, свободно сообщающиеся между собой посредством трубопровода, в котором находится регенератор (теплообменник). Регенератор заполнен путанкой из проволоки малого диаметра (0,2 мм) и обладает высокой теплоемкостью (например, к. п. д. регенераторов фирмы Филипе превышает 95%).

Рабочий процесс двигателя Стирлинга может быть осуществлен и без вытеснителя, на основе применения золотникового распределителя рабочего заряда.

В нижней части двигателя расположен кривошипно-шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное движение вала. Особенностью этого механизма является наличие двух коленчатых валов, соединенных двумя шестернями со спиральными зубьями, вращающимися навстречу друг другу. Шток вытеснителя связан с коленчатыми валами посредством нижнего коромысла и прицепных шатунов. Шток рабочего поршня соединяется с коленчатыми валами через верхнее коромысло и прицепные шатуны. Система одинаковых шатунов образует подвижный деформируемый ромб, откуда и название этой передачи - ромбическая. Ромбическая передача обеспечивает необходимый сдвиг фаз при движении поршней. Она полностью уравновешена, в ней не возникают боковые усилия на штоки поршней.

В пространстве, ограниченном, рабочим поршнем, находится рабочий газ - водород или гелий. Полный объем газа в цилиндре не зависит от положения вытеснителя. Изменения объема, связанные со сжатием и расширением рабочего газа, происходят за счет перемещения рабочего поршня.

При работе двигателя верхняя часть цилиндра постоянно нагревается, например, от камеры сгорания, в которую впрыскивается жидкое топливо. Нижняя часть цилиндра постоянно охлаждается, например, холодной водой, прокачиваемой через водяную рубашку, окружающую цилиндр. Замкнутый цикл Стирлинга состоит из четырех тактов, изображенных на рис. 2.

Такт I - охлаждение . Рабочий поршень находится в крайнем нижнем положении, вытеснитель движется вверх. При этом рабочий газ перетекает из «горячего» объема над вытеснителем в «холодный» объем под ним. Проходя по пути через регенератор, рабочий газ отдает ему часть своего тепла, а затем охлаждается в «холодном» объеме.

Такт II - сжатие . Вытеснитель остается в верхнем положении, рабочий поршень движется вверх, сжимая рабочий газ при низкой температуре.

Такт III - нагревание . Рабочий поршень находится в верхнем положении, вытеснитель движется вниз. При этом сжатый холодный рабочий газ устремляется из-под вытеснителя в освобождающееся пространство над ним. По дороге рабочий газ проходит через регенератор, где предварительно подогревается, попадает в «горячую» полость цилиндра и нагревается еще сильнее.

Такт IV - расширение (рабочий ход) . Нагреваясь, рабочий газ расширяется, передвигая при этом вытеснитель и вместе с ним рабочий поршень вниз. Совершается полезная работа.

Стирлинг имеет замкнутый цилиндр. На рис. 3, а показана диаграмма теоретического цикла (диаграмма V - Р). По оси абсцисс отложены объемы цилиндра, по оси ординат - давления в цилиндре. Первый такт является изотермическим I-II, второй происходит при постоянном объеме II-III, третий - изотермический III-IV, четвертый - при постоянном объеме IV-I. Так как давление во время расширения горячего газа (III-IV) больше давления во время сжатия холодного газа (I-II), то работа расширения больше работы сжатия. Полезную работу цикла можно графически изобразить в виде криволинейного четырехугольника I-II-III-IV.

В действительном процессе поршень и вытеснитель движутся непрерывно, так как они связаны с кривошипно-шатунным механизмом, поэтому диаграмма действительного цикла скруглена (рис. 3, б).

Теоретический к. п. д. двигателя стирлинга составляет 70%. Исследования показали, что на практике можно получить к. п. д., равный 50%. Это значительно больше, чем у самых лучших газовых турбин (28%), бензиновых двигателей (30%) и дизелей (40%).


Стирлинг может работать на бензине, керосине, дизельном, газообразном и даже твердом топливе. По сравнению с другими двигателями, он имеет более мягкий и почти бесшумный ход. Объясняется это низкой степенью сжатия (1,3÷1,5), к тому же давление в цилиндре повышается плавно, а не взрывом. Продукты сгорания также выпускаются без Шума, так как сгорание происходит постоянно. В них сравнительно немного токсичных составляющих, потому что горение топлива происходит непрерывно и при постоянном избытке кислорода (α=1,3).

Стирлинг с ромбической передачей полностью уравновешен, в нем не возникает вибраций. Это качество, в частности, было учтено американскими инженерами, установившими одноцилиндровый стирлинг на искусственном спутнике Земли, где даже небольшая вибрация и неуравновешенность могут привести к потере ориентации.

Одним из проблемных вопросов остается охлаждение. В стирлинге с выпускными газами отводится только 9% тепла, получаемого от топлива, поэтому, например, при установке его на автомобиле пришлось бы делать радиатор примерно в 2,5 раза больше, чем при использовании бензинового двигателя той же мощности. Задача решается проще на судовых установках, где эффективное охлаждение обеспечивается неограниченным количеством забортной воды.


На рис. 4 показан разрез двухцилиндрового катерного двигателя Филипс мощностью 115 л. с. при 3000 об/мин с горизонтальным расположением цилиндров. Общий рабочий объем каждого цилиндра 263 см 3 . Поршни, расположенные оппозитно, соединены с двумя траверсами, что позволило полностью уравновесить газовые силы и обойтись без буферных объемов. Подогреватель выполнен из трубок, окружающих камеру сгорания, по которым проходит рабочий газ. Охладителем служит трубчатый холодильник, через который прокачивается забортная вода. Двигатель имеет два коленчатых вала, соединенных с гребным валом посредством червячных передач. Высота двигателя всего 500 мм, что позволяет установить его под настилом и таким образом уменьшить размеры машинного отсека.

Мощность стирлинга регулируется в основном изменением давления рабочего газа. Одновременно, чтобы поддерживать температуру подогревателя постоянной, регулируется и подача топлива. Для двигателя внешнего сгорания пригодны практически любые источники тепла. Важно, что он может превращать в полезную работу низкотемпературную энергию, на что не способны двигатели внутреннего сгорания. Из кривой на рис. 5 видно, что при температуре подогревателя всего 350° С к. п. д. стирлинга еще равен ≈ 20%.

Стирлинг экономичен - удельный расход топлива у него составляет всего 150 г/л. с. час. В энергетической установке «двигатель стирлинг- аккумулятор тепла», использующейся на американских спутниках Земли, тепловым аккумулятором служит гидрит лития, который поглощает тепло в период «освещения» и Отдает его стирлингу, когда спутник находится на теневой стороне Земли. На спутнике двигатель служит для привода генератора мощностью 3 квт при 2400 об/мин.

Создан опытный мотороллер со Стирлингом и аккумулятором тепла. Использование аккумулятора тепла и стирлинга на подводной лодке позволяет ей в несколько раз дольше идти в погруженном положении.

Литература

  • 1. Смирнов Г. В. Двигатели внешнего сгорания. «Знание», М., 1967.
  • 2. Dr. Ir. R. I. Meijer. Der Philips - Stirlingmotor, MTZ, N 7, 1968.
  • 3. Curtis Anthony. Hot air and the wind of change. The Stirling engine and its revival. Motor (Engl.), 1969, (135), N 3488.

Паровые двигатели, широко используемые в девятнадцатом веке, не обеспечивали достаточной безопасности при их эксплуатации. Механизмы обладали множественными конструктивными недостатками, не выдерживали высокого давления пара, что приводило к разрывам котлов. , запатентованный в 1816 году священником из Шотландии по имени Роберт Стирлинг, стал удачным решением для того времени. Его уникальность состояла в применении специального очистителя (регенератора) в, известных ранее, «двигателях горячего воздуха».

На представленной схеме в доступной форме проиллюстрировано устройство поршневого механизма и порядок его работы.

Суть изобретения Стирлинга

На схеме тепловой двигатель состоит из двух цилиндров компрессионного и рабочего. Левая и правая стороны удлиненного цилиндра разделены теплоизоляционной стенкой. Внутри ходит специальный вытеснительный поршень, который не соприкасается с боковыми стенками.

  1. К левой стороне устройства подводится тепло, к правой – охлаждение.
  2. Когда поршень движется влево, горячий воздух вытесняется в холодную правую зону и охлаждается.
  3. При этом газ уменьшается объеме.
  4. Рабочий поршень втягивается влево.
  5. При движении вытеснительного поршня вправо холодный воздух вытесняется в горячую зону, где нагревается и расширяется.
  6. Толкает рабочий поршень вправо.
  7. Рабочий и вытеснительный поршни связаны между собой через коленчатый вал с углом смещения 90 градусов.

Важно: – это механизм поршневого типа с подводом тепла от внешнего источника. Рабочее тело устройства постоянно находится в замкнутом пространстве и не подлежит замене. Для поставки необходимого количества тепла могут быть использованы следующие источники:

  • электричество;
  • солнце;
  • ядерная энергия и пр.

История развития двигателей внешнего сгорания

В отличие от двигателей внутреннего сгорания (ДВС), где энергия выделяется в результате расширения объема воздуха при сгорании топливных смесей, здесь нагрев рабочего материала осуществляется через наружные стенки цилиндра. Отсюда произошло название «Двигатель внешнего сгорания».


Благодаря появлению в конструкции двигателя регенерирующего элемента, тепло надолго сохраняется в зоне действия при охлаждении рабочего тела, что способствует значительному повышению производительности двигателя. Изобретение позволило увеличить эффективность механизмов, его стали широко применять в промышленном производстве.

С течением времени, устройства Стирлинга утратили популярность, но по инерции продолжали применяться на некоторых немногочисленных производствах. Паровые двигатели уступили лидирующую ступеньку механизмам нового поколения:

  • двигателям внутреннего сгорания;
  • паровым машинам;
  • электрическим двигателям.

О достоинствах тепловых устройств снова стали вспоминать только в двадцатом веке. Внедрением двигателей Стирлинга в современные разработки занимаются лучшие инженерные коллективы известных производителей Америки, Швеции, Японии и пр.

Как работает тепловая машина Стирлинг

Принцип работы двигателя внешнего сгорания заключается в постоянной смене режимов – нагревание/охлаждение рабочего материала, находящегося в замкнутом пространстве. Исходя из законов физики, при нагревании газа, его объем увеличивается, а при снижении температуры, он уменьшается соответственно. Количество вырабатываемой энергии зависит от коэффициента изменения объема рабочего тела.

Под термином «рабочее тело» подразумеваются следующие вещества:

  1. Воздух.
  2. Газ (гелий, водород, фреон, двуокись азота).
  3. Жидкость (вода, сжиженный бутан или пропан).

Сфера применения двигателей внешнего сгорания

В результате последующих усовершенствований конструкции мотора, газ нагревается/охлаждается при постоянном давлении в системе (вместо сохранения объема). Это изобретение инженера из Швеции по имени Эриксон, позволило создавать двигатели, предназначенные для использования работниками шахт, типографий, судов и пр. В пассажирских экипажах того времени тепловые двигатели не применялись, т. к. обладали сравнительно большим весом.


Двигатели внешнего сгорания часто использовались для приведения в действие генераторов в районах, где отсутствовала подача электроэнергии.

Интересно: В 1945 году изобретатели-энтузиасты компании Philips придумали обратное применение тепловых устройств. При раскручивании вала электрическим двигателем, головка цилиндра охлаждается до минус 190°С. Это дало возможность использовать усовершенствованный поршневой двигатель внешнего сгорания Стирлинга в холодильных агрегатах.

Можно ли использовать двигатели Стирлинга вместо ДВС

Компания General Motors со второй половины ХХ века начала заниматься внедрением в производство V-образных стирлингов для кривошипно-шатунных механизмов. При испытаниях двигателей внешнего сгорания было замечено, что они идеально работают без звуков и шума. Здесь отсутствуют карбюратор, система зажигания, форсунки, требующие высокое давление, свечи, клапаны и пр. Для создания достаточного давления в цилиндрах двигателя не нужно взрывать топливо, как в ДВС. При использовании автомобилей, оснащенных двигателями внешнего сгорания, можно решить проблему, связанную со снижением шума в больших городах.


В результате проведенных испытаний были выявлены следующие достоинства и недостатки двигателей внешнего сгорания.

  • Преимущества данных устройств:
  • бесшумная работа (нет необходимости устанавливать глушитель);
  • отсутствие вибраций;
  • нет необходимости в создании высокого давления в системе;
  • универсальность, способность работать от различных источников тепла;
  • легкость регулировок.

К недостаткам двигателей относятся:

  • сравнительно большой вес конструкции;
  • малая экономичность;
  • высокая себестоимость механизма.

Упрощенная схема V- образного двигателя внешнего сгорания:


Один из цилиндров двигателя является рабочим (1), другой, соответственно, компрессионным (7). В каждом из них расположен свой поршень (2). В центральной части схемы размещены: охладитель (6), теплообменник (4), нагревательный элемент (3). При максимальной скорости одного из поршней, другой в это же время находится в неподвижном состоянии, его скорость равна нулю. Угол смещения фаз равен 90°, благодаря взаимно перпендикулярному расположению цилиндров.

Как работает и где применяется двигатель внешнего сгорания

Несмотря на то, что двигатели Стирлинга были забыты на некоторый период, в современном производстве при создании новых модификаций выдающееся изобретение набирает новую популярность. Народные умельцы по достоинству оценили преимущества двигателей внешнего сгорания и сооружают самостоятельно в домашних условиях различные приспособления, основанные на их применении. Для изготовления теплового двигателя своими руками в домашних мастерских используются различные материалы и подручные средства:

  1. Большие и средние емкости, позаимствованные из домашнего хозяйства.
  2. Подшипники от старых механизмов.
  3. Диски.
  4. Металлические стержни различного диаметра для осей, стоек.
  5. Листы из металла, древесных плит для изготовления платформы.

Данные устройства используются в домашнем хозяйстве для выполнения самых различных работ:

  1. Вырабатывание электрической энергии в мелких масштабах.
  2. Создание тепловой энергии.

Количества мощности некоторых образцов самодельных двигателей Стирлинга, достаточно для обустройства электрической сети и обеспечения теплом частных домов, небольших школ, лечебных корпусов, спортивных сооружений, производственных мастерских и пр.

Двигатели, созданные своими руками, функционируют от различных источников тепла:

  • природный газ;
  • дрова;
  • уголь;
  • торф;
  • пропан и прочие виды топлива местного производства или полезных ископаемых.

Благодаря простоте конструкции, тепловые устройства, изготовленные своими руками, не нуждаются в регулярном техническом обслуживании агрегата. Сжигание топлива осуществляется за пределами корпуса цилиндра, поэтому рабочее тело не загрязняется продуктами сгорания, на внутренних стенках оборудования не скапливаются вредные отложения.

В сравнении с ДВС, в состав данной конструкции входит вдвое меньше подвижных узлов и деталей. Здесь требуется намного меньше смазки для ухода за быстро изнашиваемыми элементами. Требования к качеству смазочных материалов – минимальны.

Для подведения электросети к потребителям не требуется приобретать дорогостоящее оборудование. Подсоединение проводов к электрической сети осуществляется простыми привычными методами.

Двигатели внешнего сгорания, произведенные в бытовых условиях, легко монтируются на ровных площадках, покрытых гравием, без прочной фиксации. Данные установки не подвержены вредным атмосферным воздействиям. Для обеспечения бесперебойной стабильной работы двигателю не требуется специальный защитный корпус.

В минувшем году журналу , в первом номере которого читателей приветствовал А.Эйнштейн , исполнилось 85 лет.

Немногочисленный коллектив Редакции продолжает издавать ИР , читателями которого вы имеете честь быть. Хотя делать это становится с каждым годом все труднее. Уже давно, в начале нового века, Редакции пришлось покинуть родное место жительства на Мясницкой улице. (Ну, в самом деле, это место для банков, а не для какого-то органа изобретателей). Нам помог однако Ю.Маслюков (в то время председатель Комитета ГД ФС РФ по промышленности) перебраться в НИИАА у метро "Калужской". Несмотря на точное соблюдение Редакцией условий договора и своевременную оплату аренды, и вдохновляющее провозглашение курса на инновации Президентом и Правительством РФ, новый директор в НИИАА сообщил нам о выселении Редакции "в связи с производственной необходимостью". Это при уменьшении численности работающих в НИИАА почти в 8 раз и соответствующем высвобождении площадей и, при том, что занимаемая редакцией площадь не составляла и одну сотую процентов необозримых площадей НИИАА.

Нас приютил МИРЭА, где мы располагаемся последние пять лет. Дважды переехать, что один раз погореть, гласит пословица. Но редакция держится и будет держаться, сколько сможет. А сможет она существовать до тех пор, пока журнал "Изобретатель и рационализатор" читают и выписывают.

Стараясь охватить информацией большее число заинтересованных людей мы обновили сайт журнала, сделав его, на наш взгляд, более информативным. Мы занимаемся оцифровкой изданий прошлых лет, начиная с 1929 года - времени основания журнала. Выпускаем электронную версию. Но главное - это бумажное издание ИР .

К сожалению, число подписчиков, единственной финансовой основы существования ИР , и организаций, и отдельных лиц уменьшается. А мои многочисленные письма о поддержке журнала к государственным руководителям разного ранга (обоим президентам РФ, премьер-министрам, обоим московским мэрам, обоим губернаторам Московской области, губернатору родной Кубани, руководителям крупнейших российских компаний) результата не дали.

В связи с вышеизложенным Редакция обращается с просьбой к вам, наши читатели: поддержите журнал, разумеется, по возможности. Квитанция, по которой можно перечислить деньги на уставную деятельность, то бишь издание журнала, опубликована ниже.

Доктор технических наук В. НИСКОВСКИХ (г. Екатеринбург).

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии.

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F =∆p (S б -S м ), где ∆p - разность давлений в ветвях высокого и низкого давлений; S б - рабочая площадь большого ротора; S м - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему