» » Принцип стирлинга. Двигатель внешнего сгорания можно сделать из консервной банки

Принцип стирлинга. Двигатель внешнего сгорания можно сделать из консервной банки

Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей - тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА

Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.

Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПДна 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.


Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано

Современная автомобильная промышленность достигла такого уровня, что без серьезных исследований невозможно добиться кардинальной модернизации в конструкции двигателей внутреннего сгорания. Это способствовало тому, что конструкторы стали обращать внимание на альтернативные разработки силовых установок, таких как двигатель Стирлинга.

Одни автоконцерны сконцентрировали свои силы на разработке и подготовке к выпуску в серию электрических и гибридных автомобилей, другие инженерные центры затрачивают финансовые средства в проектирование двигателей на альтернативном топливе, изготовленном из возобновляемых источников. Существуют другие различные разработки двигателей, которые в будущем могут стать новым двигателем для различных средств транспорта.

Таким возможным источником энергии механического движения для автомобильного транспорта будущего может стать двигатель внешнего сгорания, изобретенный в 19 веке ученым Стирлингом.

Устройство и принцип работы

Двигатель Стирлинга выполняет преобразование тепловой энергии, получаемой из внешнего источника, в механическое движение благодаря изменению температуры жидкости, циркулирующей в закрытом объеме.

В первое время после изобретения такой двигатель существовал в виде машины, действующей на принципе теплового расширения.

В цилиндре тепловой машины воздух перед расширением нагревался, перед сжатием охлаждался. Вверху цилиндра 1 находится водяная рубашка 3, дно цилиндра непрерывно нагревается огнем. В цилиндре расположен рабочий поршень 4, имеющий уплотнительные кольца. Между поршнем и дном цилиндра расположен вытеснитель 2, передвигающийся в цилиндре со значительным зазором.

Воздух, находящийся в цилиндре, перекачивается вытеснителем 2 к дну поршня или цилиндра. Вытеснитель движется под действием штока 5, проходящего через уплотнение поршня. Шток в свою очередь приводится в действие эксцентриковым устройством, вращающимся с запаздыванием на 90 градусов от привода поршня.

В позиции «а» поршень расположен в нижней точке, а воздух находится между поршнем и вытеснителем, охлаждается стенками цилиндра.

В следующей позиции «б» вытеснитель перемещается вверх, а поршень остается на месте. Воздух, находящийся между ними, выталкивается ко дну цилиндра, охлаждаясь.

Позиция «в» — рабочая. В ней воздух нагревается дном цилиндра, расширяется и поднимает два поршня к верхней мертвой точке. После выполнения рабочего хода вытеснитель опускается ко дну цилиндра, выталкивая воздух под поршень, и охлаждаясь.

В позиции «г» охлажденный воздух готов к сжатию, и поршень перемещается от верхней точки к нижней. Так как работа сжатия охлажденного воздуха меньше, чем работа расширения нагретого воздуха, то образуется полезная работа. Маховик при этом служит своеобразным аккумулятором энергии.

В рассмотренном варианте двигатель Стирлинга обладает малым КПД, так как теплота воздуха после рабочего хода должна отводиться через стенки цилиндра в охлаждающую жидкость. Воздух за один ход не успевает снизить температуру на необходимую величину, поэтому необходимо было продлить время охлаждения. Из-за этого скорость мотора была маленькой. Термический КПД был также незначительным. Тепло отработанного воздуха уходило в охлаждающую воду и терялось.

Разные конструкции

Существуют различные варианты устройства силовых агрегатов, действующих по принципу Стирлинга.

Конструкция исполнения «Альфа»

Этот двигатель включает в себя два отдельных рабочих поршня. Каждый поршень расположен в отдельном цилиндре. Холодный цилиндр находится в теплообменнике, а горячий нагревается.

Конструкция исполнения «Бета»

Цилиндр с поршнем охлаждается с одной стороны, и нагревается с противоположной стороны. В цилиндре перемещается силовой поршень и вытеснитель, служащий для уменьшения и увеличения объема рабочего газа. Регенератор выполняет обратное перемещение остывшего газа в нагретое пространство двигателя.

Конструкция исполнения «Гамма»

Вся система состоит из двух цилиндров. Первый цилиндр весь холодный. В нем перемещается рабочий поршень, Второй цилиндр с одной стороны нагретый, а с другой – холодный, и предназначен для передвижения вытеснителя. Регенератор для перекачки охлажденного газа может являться общим для двух цилиндров, либо может быть включен в устройство вытеснителя.

Преимущества
  • Как и множество двигателей внешнего сгорания, двигатель Стирлинга способен функционировать на разном топливе, так как для него важно наличие перепада температуры. При этом не важно, каким топливом он вызван.
  • Двигатель имеет простое устройство, и не нуждается во вспомогательных системах и навесных устройствах (коробка передач, ремень ГРМ, стартер и т.д.).
  • Особенности конструкции обеспечивают длительную эксплуатацию: больше 100 тысяч часов постоянной работы.
  • Работа двигателя Стирлинга не создает большого шума, так как внутри двигателя не происходит детонация топлива, и отсутствует выпуск отработанных газов.
  • Исполнение «Бета», снабженное кривошипно-шатунным устройством в виде ромба, является наиболее сбалансированным механизмом, который при функционировании не создает вибрацию.

  • В цилиндрах мотора не возникают процессы, оказывающие вредное воздействие на природную среду. При подборе оптимального источника тепла мотор Стирлинга может стать экологически чистым устройством.
Недостатки
  • При значительных положительных характеристиках быстрое серийное производство двигателей Стирлинга нереально по некоторым причинам. Основной вопрос в материалоемкости устройства. Чтобы охлаждать рабочее тело, необходим большой радиатор, что значительно увеличивает габариты и вес оборудования.
  • Сегодняшний уровень технологий дает возможность двигателю Стирлинга конкурировать по свойствам с новыми бензиновыми двигателями за счет использования сложных типов рабочего тела (водород или гелий), находящихся под очень большим давлением. Это значительно повышает опасность использования таких двигателей.
  • Серьезная проблема эксплуатации связана с проблемами температурной стойкости стальных сплавов и их теплопроводности. Тепло подходит к рабочему пространству с помощью теплообменников. Это приводит к значительным потерям тепла. Также теплообменник должен производиться из термоустойчивых сплавов, которые также должны быть устойчивы к повышенному давлению. Соответствующие этим условиям материалы очень сложны в обработке и имеют высокую стоимость.
  • Принципы перехода двигателя Стирлинга на другие режимы функционирования также существенно отличаются от привычных принципов. Для этого необходимо создание специальных устройств управления. Например, для изменения мощности нужно менять угол фаз между силовым поршнем и вытеснителем, давление в цилиндрах, либо изменить емкость рабочего объема.
Двигатель Стирлинга и его использование

При необходимости создания преобразователя тепла компактных размеров можно вполне использовать мотор Стирлинга. При этом эффективность других аналогичных двигателей значительно ниже.

  • Универсальные источники электричества. Моторы Стирлинга могут преобразовывать тепло в электричество. Существуют проекты солнечных электроустановок с применением таких двигателей. Их используют как автономные электростанции для туристов. Некоторые производители изготавливают генераторы, действующие от газовой конфорки. Существуют также проекты генераторов, которые работают от радиоизотопных источников тепла.
  • Насосы . Если в контуре системы отопления установлен насос, то эффективность отопления значительно возрастает. В системах охлаждения также устанавливают насосы. Электрический насос может выйти из строя, к тому же, он потребляет электрическую энергию. Насос, действующий по принципу Стирлинга, решает этот вопрос. Двигатель Стирлинга для перекачивания жидкостей будет проще обычной схемы, так как вместо поршня может применяться сама перекачиваемая жидкость, служащая также для охлаждения.
  • Холодильное оборудование . В конструкции всех холодильников используется принцип тепловых насосов. Некоторые производители холодильников планируют устанавливать на свои изделия двигатель Стирлинга, которые будут очень экономичны. Рабочим телом будет выступать воздух.
  • Сверхнизкие температуры . Для сжижения газов такие моторы очень эффективны. Их использование более выгодное, чем турбинные устройства. Также двигатель Стирлинга применяется в устройствах для охлаждения датчиков точных приборов.

  • . Электрическую энергию можно получать путем преобразования энергии солнца. Для этого могут применяться двигатели Стирлинга, которые устанавливают в фокус зеркала так, чтобы место нагрева непрерывно освещалось лучами солнца. Отражатель управляется по мере перемещения солнца, энергия которого концентрируется на малой площади. При этом происходит отражение излучения зеркалами около 92%. Рабочим телом двигателя служит чаще всего гелий или водород.
  • Аккумуляторы тепла . С помощью устройства Стирлинга можно резервировать тепловую энергию, используя теплоаккумуляторы на основе расплавов солей. Такие устройства имеют запас энергии, превосходящий химические , и имеют меньшую стоимость. Применяя для регулировки мощности увеличение и уменьшение угла фазы между двумя поршнями, можно накапливать механическую энергию, осуществляя торможение двигателя. При этом двигатель служит тепловым насосом.
  • Автомобилестроение . Несмотря на сложности, существуют действующие модели мотора Стирлинга, использующиеся для автомобилей. Заинтересованность в таком двигателе, подходящем для автомобиля, возникла еще в прошлом веке. Разработки в этом направлении проводили английские и немецкие автоконцерны. В Швеции также был разработан двигатель Стирлинга, в котором применялись унифицированные серийные агрегаты и узлы. В результате получился 4-цилиндровый мотор, параметры которого сравнимы с характеристиками небольшого дизельного двигателя. Этот двигатель был успешно испытан в качестве силового агрегата для многотонного грузовика.

Сегодня исследования установок Стирлинга для подводных, космических и других установок, а также проектирование основных двигателей проводятся во многих зарубежных странах. Такой высокий интерес к моторам Стирлинга стал итогом интереса общественности в борьбе с загрязнением атмосферы, шумом и сохранением природных энергетических источников.

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Доктор технических наук В. НИСКОВСКИХ (г. Екатеринбург).

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии.

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F =∆p (S б -S м ), где ∆p - разность давлений в ветвях высокого и низкого давлений; S б - рабочая площадь большого ротора; S м - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему

Обострение глобальных проблем, требующих срочного решения (истощение природных ресурсов, загрязнение окружающей среды и т. д.), привело в конце XX века к необходимости принятия ряда международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, ресурсо- и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д.

Одним из перспективных путей решения этих задач является разработка и широкое внедрение энергопреобразующих систем на основе двигателей (машин) Стирлинга. Принцип работы таких двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая мощность равна максимальной мощности тепловых машин (цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа при его охлаждении. Двигатель содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно имеющей температуру окружающей среды) и «горячей» частью, которая нагревается за счет сжигания различного топлива или за счет других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания (ДВПТ). Поскольку, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура и при отсутствии газораспределительного механизма клапанов.

Необходимо отметить, что за рубежом уже начато производство двигателей Стирлинга, технические характеристики которых превосходят ДВС и газотурбинные установки (ГТУ). Так, двигатели Стирлинга фирм «Philips», «STM Inc.», «Daimler Benz», «Solo», «United Stirling» мощностью от 5 до 1200 кВт имеют к.п.д. более 42%, рабочий ресурс более 40 тыс. часов и удельную массу от 1,2 до 3,8 кг/кВт.

В мировых обзорах по энергопреобразующей технике двигатель Стирлинга рассматривается как наиболее перспективный в XXI веке. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на различных топливах, большой ресурс, хорошие характеристики крутящего момента - все это делает двигатели Стирлинга более конкурентоспособными в сравнении с ДВС.

Где могут применяться двигатели Стирлинга?

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) могут найти применение в регионах России, где нет запасов традиционных энергоносителей – нефти и газа. В качестве топлива можно использовать торф, древесину, сланцы, биогаз, уголь, отходы сельского хозяйства и лесоперерабатывающей промышленности. Соответственно, исчезает проблема с энергообеспечением многих регионов.

Такие энергетические установки экологически чисты, так как концентрация вредных веществ в продуктах сгорания почти на два порядка ниже, чем у дизельных электростанций. Поэтому стирлинг-генераторы можно устанавливать в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии. Генератор мощностью 100 кВт может обеспечить электроэнергией и теплом любой населенный пункт с населением более 30-40 человек.

Автономные энергетические установки с двигателями Стирлинга найдут широкое применение и в нефтегазовой промышленности РФ при освоении новых месторождений (особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ). В качестве топлива здесь можно использовать неочищенный природный газ, попутный нефтяной газ и газовый конденсат.

Сейчас в РФ ежегодно пропадает до 10 млрд. куб. м попутного газа. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава. Чтобы газ не загрязнял атмосферу, он попросту сжигается. В то же время его использование в качестве моторного топлива даст существенный экономический эффект.

Энергоустановки мощностью 3-5 кВт целесообразно использовать в системах автоматизации, связи и катодной защиты на магистральных газопроводах. А более мощные (от 100 до 1000 кВт) - для электро- и теплоснабжения больших вахтовых поселков газовиков и нефтяников. Установки свыше 1 тыс. кВт могут применяться на наземных и морских буровых объектах нефтегазовой промышленности.

Проблемы создания новых двигателей

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий к.п.д. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат был разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с к.п.д. до 15%. Лишь к 1953 году голландской фирмой «Филипс» были созданы первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

В России попытки создания отечественных двигателей Стирлинга предпринимались неоднократно, однако успеха не имели. Есть несколько основных проблем, сдерживающих их разработку и широкое применение.

Прежде всего это создание адекватной математической модели проектируемой машины Стирлинга и соответствующего метода расчета. Сложность расчета определяется сложностью реализации термодинамического цикла Стирлинга в реальных машинах, обусловленной нестационарностью тепломассового обмена во внутреннем контуре - вследствие непрерывного движения поршней.

Отсутствие адекватных математических моделей и методов расчета - главная причина неудач ряда зарубежных и отечественных предприятий в разработке как двигателей, так и холодильных машин Стирлинга. Без точного математического моделирования доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования.

Еще одна проблема заключается в создании конструкций отдельных узлов, сложностях с уплотнениями, регулированием мощности и т.д. Трудности конструктивного исполнения обусловлены применяемыми рабочими телами, в качестве которых используется гелий, азот, водород и воздух. Гелий, например, обладает сверхтекучестью, что диктует повышенные требования к уплотняющим элементам рабочих поршней, и т. д.

Третья проблема - высокий уровень технологии производства, необходимость применения жаростойких сплавов и металлов, новых методов их сварки и пайки.

Отдельный вопрос - изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой - низкого гидравлического сопротивления.

Отечественные разработки машин Стирлинга

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Особое внимание в ходе исследований уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также созданию новых принципиальных схем установок различного функционального назначения. Предлагаемые технические решения с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить экономическую эффективность применения новых двигателей по сравнению с традиционными преобразователями энергии.

Производство двигателей Стирлинга является экономически целесообразным с учетом практически неограниченного спроса на экологически чистое и высокоэффективное энергетическое оборудование как в России, так и за рубежом. Однако без участия и поддержки государства и крупного бизнеса проблема их серийного производства не может быть решена в полном объеме.

Как помочь производству двигателей Стирлинга в России?

Очевидно, что инновационная деятельность (особенно освоение базисных инноваций) - сложный и рискованный вид хозяйственной деятельности. Поэтому она должна опираться на механизм государственной поддержки, особенно «на старте», с последующим переходом на обычные рыночные условия.

Механизм создания в России крупномасштабного производства машин Стирлинга и энергопреобразующих систем на их основе мог бы включать:
- прямое долевое бюджетное финансирование инновационных проектов по машинам Стирлинга;
- косвенные меры поддержки за счет освобождения продукции, выпускаемой по стирлинг-проектам, от НДС и других налогов федерального и регионального уровней в течение первых двух лет, а также предоставление налогового кредита по такой продукции на последующие 2-3 года (учитывая, что издержки освоения принципиально новой продукции нецелесообразно включать в ее цену, т.е. в расходы производителя или потребителя);
- исключение из налогооблагаемой базы по налогу на прибыль вклада предприятия в финансирование стирлинг-проектов.

В дальнейшем, на этапе устойчивого продвижения энергетического оборудования на основе машин Стирлинга на внутреннем и внешнем рынках, восполнение капиталов для расширения производства, технического переоснащения и поддержки очередных проектов по производству новых типов оборудования может осуществляться за счет прибыли и продажи акций успешно освоенного производства, кредитных ресурсов коммерческих банков, а также привлечения иностранных инвестиций.

Можно предположить, что благодаря наличию технологической базы и накопленного научного потенциала в проектировании машин Стирлинга, при разумной финансовой и технической политике Россия может уже в ближайшем будущем стать мировым лидером в области производства новых экологически чистых и высокоэффективных двигателей.