» » Электронные системы пассивной безопасности. Системы активной и пассивной безопасности автомобиля

Электронные системы пассивной безопасности. Системы активной и пассивной безопасности автомобиля

Что такое система активной безопасности и чем она отличается от пассивной? Второй случай представлен всевозможными приспособлениями, не влияющими на процесс управления. Яркими представителями системы являются ремень и подушка. Активная безопасность автомобиля выражена более сложными устройствами. К этой группе относятся, в основном, всевозможные электронные системы. В своей работе они используют алгоритмы. Любое отклонение от показателей сразу же вызывает реакцию, приводящую значения в норму.

Можно говорить о перехвате управления автомобилем электронной системой управления.

Виды систем

На сегодняшний день существует большое количество всевозможных электронных систем на борту автомобиля. Все они направлены на облегчение процесса вождения и повышают возможность маневрирования. Можно провести условное разделение на основные и вспомогательные системы.

Вспомогательные

Сюда же можно включить все средства, помогающие водителю в тех или иных ситуациях. Например, круиз-контроль, автоматически удерживающий скорость и распознающий расстояние до ближайших преград. Специальные парковочные программы позволят определить расстояние между автомобилем и препятствием, сообщая водителю насколько еще можно подъехать.

Основные

Это такие системы, которые работают автоматически. Они не дают водителю потерять контроль над управлением. Благодаря их наличию на большинстве современных автомобилей удалось существенно снизить количество ДТП. О них далее и пойдет речь.

Самыми популярными и эффективными считаются такие системы.

  1. АБС (ABS) – антиблокировочная система тормозов.
  2. ПБС (ASR/TCS/DTC) – противобуксовочная система.
  3. СДС – система динамической стабилизации.
  4. СРТУ (EBD/EBV) – система распределения тормозных усилий автомобиля.
  5. СЭТ – системы экстренного торможения.
  6. ЭБД – электронная блокировка дифференциала .

АБС

АБС получила свое развитие ближе к концу прошлого века. Ее возможности удалось раскрыть только благодаря электронике. Сегодня, многие страны не допускают производства или управления автомобиля без наличия АБС на борту. Особенно важно это для общественного автотранспорта.

Принцип работы.

  1. АБС считывает показания датчика, определяющего скорость вращения колеса.
  2. Во время торможения система рассчитывает необходимую скорость замедления.
  3. Если колесо остановилось, а движение продолжается, то клапан перекрывает поступление тормозной жидкости.
  4. С помощью клапана выпуска происходит сброс давления в контуре.
  5. Закрывается клапан выпуска, открывается клапан впуска тормозной жидкости. Создается давление.
  6. Если колесо опять блокировалось, то весь цикл повторяется заново.

Современные АБС способны осуществлять до 15 циклов в секунду.

Преимущества

Список преимуществ достаточно большой. Такое устройство в автомобиле помогает сделать следующее:

  • повысить безопасность движения;
  • уменьшить тормозной путь;
  • распределить износ шины по всему колесу;
  • увеличить контроль в экстренных ситуациях.

АБС разрабатывалась компанией Bosch, эта же фирма является основным производителем и лидером на рынке. Текущие модели способны работать с каждым колесом индивидуально.

ПБС

На базе АБС работает еще одна важная система – ПБС. Что она делает? Следит за тем, чтобы колеса не начали буксовать и скользить. В большинстве автомобилей она пользуется теми же датчиками, что и АБС, на низких скоростях использует тормоза, а на скорости свыше 80 км/час – замедляет движение с помощью двигателя, работая с ЭБУ в одной связке. Это приводит к повышению устойчивости автомобиля как на трассе, так и на грунтовых дорогах. В отличие от АБС, ПБС может быть отключена водителем.

СРТУ

Как и ПБС, СРТУ использует датчики и механизмы АБС, имеет схожий принцип работы. Она обеспечивает равномерное торможение передних и задних колес, приводя процесс к сбалансированному замедлению. Для чего это нужно?

В случае экстренного торможения вся нагрузка, вместе с центром тяжести, перемещается на передние колеса. В этот момент на заднюю пару не оказывается необходимое давление, а значит – снижается сцепление с дорогой.

СЭТ

СЭТ – одна из важнейших элементов активной безопасности. По принципу действия она делится на системы автоматического экстренного торможения и системы помощи.

Автоматическое торможение

Среди всех вариантов работы можно выделить общий принцип действия.

  1. Датчики распознают препятствия, скорость сокращения расстояния.
  2. Подается сигнал об опасности водителю.
  3. Если ситуация остается критической, то запускается процесс наиболее эффективной остановки.

Многие СЭТ имеют в своем арсенале куда большие функции, включая воздействие на работу двигателя, тормозов и даже систему пассивной безопасности.

Помощь

Помощник торможения имеет совершенно другие функции и задачи. Он использует датчики скорости нажатия педали тормоза. Если в экстренной ситуации водитель недожимает педаль или по какой-то причине не может этого сделать, то компьютер все сделает за него.

ЭБД

ЭБД служит для предотвращения скольжения одного из ведущих колес во время разгона и набора скорости. С его помощью удается достичь максимального контроля во время ускорения и более быстрого набора скорости.

СДС

СДС является представительницей электронных систем с более высоким уровнем, чем все предыдущие. Более того, она контролирует работу следующих систем:

  • СРТУ;

В чем заключается ее роль? В удерживании выбранного курса и максимальной управляемости автомобилем во время маневров. Пользуясь механизмами регулировки, удается добиться уверенных поворотов, без заносов, ускорения или замедления во время маневров и много прочего.

Ассистенты

Как уже говорилось, к этой категории относятся всевозможные вспомогательные программы и блоки.

Среди них можно выделить представителей, обладающих следующими возможностями.

  1. Обнаружение пешеходов, предупреждение о возможном столкновении, экстренное торможение, если контакт практически неизбежен.
  2. Обнаружение велосипедистов и принятие мер для избежания столкновения. Распознавание работает как во время движения, так и при его отсутствии.
  3. Распознавание крупных диких животных на трассе.
  4. Помощь при спуске и подъеме.
  5. Парковочная система, вполне способная проводить парковку автоматически.
  6. Панорамный обзор на низкой скорости.
  7. Защита от непреднамеренного ускорения или ошибки в нажатии педали.
  8. Круиз-контроль – функция определения расстояния до впереди идущего автомобиля и автоматическое поддержание выбранной скорости.
  9. Перехват рулевого управления в критических случаях. Блок находится на финальной стадии разработки.
  10. Контроль движения по определенной полосе.
  11. Помощь в перестраивании.
  12. Улучшение управления в ночное время. Экраны ночного видения на панели управления.
  13. Распознавание усталости водителя и засыпания за рулем.
  14. Возможность распознавать дорожные знаки.
  15. Обнаружение автомобилей, светофоров с помощью WLAN-технологии. Находится в стадии активной разработки.

На сегодняшний день каждый производитель автомобилей может предложить свои системы, которые, так или иначе, отличаются от аналогов на рынке. Некоторые разработки применяются всего лишь несколькими компаниями.

Да Нет

В таком сложном агрегате как автомобиль, очень легко позабыть об одной из самых основных систем - системе защиты и безопасности. И если активная безопасность всегда подробно освещается как СМИ, так и самими дилерами или продавцами, то пассивная безопасность – не что иное как серая мышка внутри сложной конструкции транспортного средства.

Что такое пассивная безопасность автомобиля

Пассивная безопасность – это набор свойств и приспособлений транспортного средства, которые имеют свои уникальные конструктивные и эксплуатационные отличия, однако функционально направлены на обеспечение максимально безопасных условий при попадании в аварию. В отличии от активной системы безопасности, действие которой направлены на сохранение автомобиля от аварий, система пассивной безопасности автомобиля активизируется уже после того как авария имело место быть.

Для того, чтобы снизить последствия аварии применяется целая совокупность из устройств, цель которых снизить тяжесть возникшего ДТП. Для более точной классификации используют разделение на две основные группы:

Внутренняя система – в её состав входят:

  1. Подушки безопасности
  2. Ремни безопасности
  3. Конструкция сидений (подголовники, подлокотники, и т.д.)
  4. Энергопоглотители кузова
  5. Другие мягкие элементы интерьера

Внешняя система –еще одна, не менее важная группа, представляется в виде:

  1. Бамперов
  2. Выступов на кузове
  3. Стекол
  4. Усилителей стоек

С недавнего времени, на страницах известных информационных агентств начали подробно освещать пункты, которые сообщают о всех элементах пассивной безопасности в авто. Кроме того, не стоит забывать и деятельности независимой организации Euro NCAP (European New Car Assessment Programme). Этот комитет уже довольно долгое время проводит краш-тесты всех выходящих на рынок моделей, присуждая ведомости о результатах проверки как активной системы безопасности так и пассивной. С данными по результатам краш-тестов может ознакомится любой желающий, удостоверившись в каждой из составляющих системы защиты.

Изображение демонстрирует как гармонично работают все системы пассивной безопасности во время аварийной ситуации (ремни безопасности, подушки безопасности, сиденье с подголовником).

Внутренняя пассивная безопасность

Все элементы пассивной безопасности входящие в этот список призваны обезопасить всех находящихся в салоне автомобиля, который попал в аварию. Именно поэтому, очень важно помимо оснащения автомобиля специальным оборудованием (исправного вида), его необходимо использовать всеми участниками езды по назначению. Только соблюдение всех правил позволит получить наивысшую защиту. Далее мы рассмотрим самые основные пункты, которые входят в перечень внутренней пассивной безопасности.

  1. Кузов – основа всей системы безопасности. Прочность автомобиля и возможные деформации его частей напрямую зависят от материала, состояния, а также конструктивных особенностей кузова автомобиля. Чтобы обезопасить пассажиров от попадания подкапотного содержимого в салон, конструкторы специально используют «решетку безопасности» - прочный пласт, который не позволяет нарушить салонную основу.
  2. Безопасность салона от элементов конструкции – это целый перечень устройств и технологий, которые призваны обезопасить здоровье водителя и пассажиров. Например, многие салоны предусматривают наличие складывающегося руля, который не позволяет нанести дополнительный урон водителю. Кроме того, современные автомобили оснащены травмобезопасным педальным узлом, действие которого предусматривает отсоединение педалей от креплений, снижая нагрузку на нижние конечности.

Чтобы рассчитывать на максимальную безопасность во время использование подголовника, необходимо очень четко установить его положение на определенную высоту, подходящую именно вам.

  1. Ремни безопасности – от принятого стандарта поясных 2-х точечных ремней, которые удерживали пассажира обычной стяжкой через живот или грудь, отказались еще в середине прошлого века. Подобные пассивные средства безопасности требовали улучшений, которые пришли в виде многоточёчных ремней. Повышенная функциональность такого типа устройств позволяла равномерно распределить кинетику по всему телу, не подвергая травматизации отдельных областей тела.
  2. Подушки безопасности – вторая по важности (первую строчку здесь уверенно удерживают пояса безопасности), пассивная система безопасности. Получив признание в конце 70-ых гг. они плотно вошли в состав всех транспортных средств. Современный автопром начали оснащать целым набором из систем подушек безопасности, которые окружают водителя и пассажиров со всех сторон, перекрывая потенциальные зоны повреждений. Резкое раскрывание камеры с хранением подушки активирует стремительное наполнение последней воздушной смесью, которая амортизирует приближающегося по инерции человека.
  3. Сиденья и подголовники – само по себе сиденье не представляет дополнительных функций во время аварии, кроме как выполнение фиксации пассажира на месте. Однако подголовники, напротив, свой функционал раскрывают как раз в момент столкновения, предотвращая запрокидывание головы с последующей травматизацией шейных позвонков.
  4. Другие средства внутренней пассивной безопасности – во многих автомобилях предусмотрено наличие высоконапряженных листов из металла. Такой апгрейд позволяет сделать автомобиль более жестким к ударам, одновременно снижая его массу. Во многих автомобилях также используется активная система областей разрушения, которые при столкновении гасят возникающую кинетику, а сами при этом разрушаются (повышенные деструкции автомобиля ничто в сравнении с жизнью и здоровьем человека).

На примере каркаса небольшого кузова Smart автомобиля, можно убедиться, как пассивная безопасность играет основополагающую роль еще на стадии проектирования будущего автомобиля.

Внешняя пассивная безопасность

Если в предыдущем пункте мы рассматривали средства и устройства автомобиля, защищающие пассажиров и водителей в момент совершения аварии, то в этот раз поговорим о комплексе, который позволяет максимально обезопасить здоровье пешехода, попавшего под колеса рассматриваемого автомобиля.

  1. Бамперы – в конструкции современных бамперов входит несколько энерго- и кинетически-поглощающих элементов, которые присутствуют как на передней части автомобиля так и сзади. Их предназначением является абсорбация возникающей от удара энергии за счёт подверженных к сминанию блоков. Это не только позволяет понизить риск нанесения урона пешеходу, но и здорово уменьшает повреждения внутри салона авто.
  2. Наружные выступы автомобилей – как правило, к полезным свойствам таких элементов приписать тяжело. Однако, как это может показаться на первый взгляд, большинство из этих элементов имеют схожий принцип самодеструкции, описанный ранее в пункте 6. раздела «Внутренняя пассивная безопасность».
  3. Приспособления для защиты пешеходов – отдельные компании-производители в лице Bosch, Siemens, TRW и других, на протяжении нескольких десятилетий активно разрабатывают системы обеспечивающие дополнительную безопасность пешеходам, попавшим в ДТП. Например, система Electronic Pedestrian Protection позволят поднимать крышу капота, увеличивая область столкновения того с телом пешехода, выступая при этом в роли «щита» от более твердых и не ровных частей моторного отсека.

Активная безопасность автомобиля – это совокупность его конструктивных и эксплуатационных свойств, направленных на предотвращение и снижение вероятности аварийной ситуации на дороге.

Таблица 1.1 - Системы активной безопасности автомобиля

Название системы

Описание системы

Антиблокировочная система тормозов

Это система, которая предотвращает блокировку колес автомобиля при торможении. Ее основное предназначение в том, чтобы предотвратить потерю управления транспортным средством при резком торможении, а также избежать скольжения автомобиля.

Система АБС существенно сокращает тормозной путь и позволяет водителю сохранить сохранять контроль над автомобилем во время экстренного торможения, то есть при наличии данной системы возможным становится совершение резких маневров в процессе торможения. Сейчас АБС может включать в себя также антипробуксовочную систему, систему электронного контроля устойчивости и систему помощи при экстренном торможении. Помимо автомобилей, АБС устанавливается также на мотоциклах, прицепах и колесном шасси самолетов.

Продолжение таблицы 1.1

Антипробуксовочная система (Противобуксовочная система,Система контроля тяги)

Предназначена для устранения потери сцепления колес с дорогой при помощи контроля над буксованием ведущих колес.

АПС значительно упрощает управление автомобилем на влажной дороге или в иных условиях недостаточного сцепления.

Электронный контроль устойчивости (Система курсовой устойчивости)

Это активная система безопасности, которая позволяет предотвратить занос автомобиля посредством управления компьютером момента силы колеса (одновременно одного или нескольких). Является вспомогательной системой автомобиля.

Данная система стабилизирует движение в опасных ситуациях, когда вероятна или уже произошла потеря управляемости автомобилем. ЭКУ является одной из наиболее эффективных систем безопасности автомобиля.

Система распределения тормозных усилий

Данная система является продолжением системы AБС (Антиблокировочной системы тормозов). Отличается тем, что помогает водителю управлять автомобилем постоянно, а не только в случае экстренного торможения. Так как степень сцепления колес с дорогой разная, а тормозное усилие, передаваемое на колеса, одинаковое, система распределения тормозных усилий помогает автомобилю сохранить устойчивость при торможении, анализируя положение каждого

Продолжение таблицы 1.1

колеса и дозируя тормозное усилие на нем.

Электронная блокировка дифференциала

В первую очередь дифференциал необходим для передачи крутящего момента от коробки передач к колесам ведущего моста. Он работает, когда ведущие колеса прочно сцеплены с дорогой. Но, в ситуациях, когда одно из колес оказывается в воздухе или на льду, то вращается именно это колесо, в то время как другое, стоящее на твердой поверхности, теряет всякую силу.

Блокировка дифференциала необходима для передачи крутящего момента обоим его потребителям (полуосям или карданам).

Помимо вышеперечисленных систем активной безопасности автомобиля существуют также вспомогательные системы. К ним относят:

    Парктроник(Парковочный радар, Акустическая Парковочная Система, Ультразвуковой датчик парковки). Система при помощи ультразвуковых датчиков измеряет дистанцию от автомобилядо ближайших объектов. Если автомобиль парковке находится на «опасном» расстоянии от препятствий, система издает предупреждающий звук или отображает информацию о дистанции на дисплее;

    Адаптивный круиз-контроль Круиз-контроль – это устройство, которое поддерживает постоянную скорость автомобиля, автоматически прибавляя ее при снижении скорости движения и уменьшая скорость при ее увеличении;

    Система помощи при спуске;

    Система помощи при подъеме;

    Стояночный тормоз (Ручной тормоз, ручник) - система, которая предназначена для удержания автомобиля в неподвижном состоянии относительно опорной поверхности. Ручной тормоз помогает при затормаживании автомобиля на стоянках и удержании его на уклонах.

Министерство образования и науки

Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

КОНТРОЛЬНАЯ РАБОТА №1,№2

по дисциплине «Безопасность транспортных средств»

Активная и пассивная безопасность автомобиля

Введение

1 Техническая характеристика автомобиля

2 Активная безопасность автомобиля

3 Пассивная безопасность автомобиля

4 Экологическая безопасность автомобиля

Заключение

Литература


ВВЕДЕНИЕ

Современный автомобиль по своей природе представляет собой устройство повышенной опасности. Учитывая социальную значимость автомобиля и его потенциальную опасность при эксплуатации, производители оснащают свои автомобили средствами, способствующими его безопасной эксплуатации. Из комплекса средств, которыми оборудован современный автомобиль, большой интерес представляют средства пассивной безопасности. Пассивная безопасность автомобиля должна обеспечивать выживание и сведение к минимуму количества травм у пассажиров автомобиля, попавшего в дорожно-транспортное происшествие.

В последние годы пассивная безопасность автомобилей превратилась в один из наиважнейших элементов с точки зрения производителей. В изучение данной темы и её развитие инвестируются огромные средства по причине того, что фирмы заботятся о здоровье клиентов.

Попробую объяснить несколько определений, скрывающихся под широким определением «пассивной безопасности».

Она подразделяется на внешнюю и внутреннюю.

К внутренней относится мероприятия по защите людей, сидящих в автомобиле, путем специального оборудования салона. К внешней пассивной безопасности относятся мероприятия по защите пассажиров путем придания кузову особых свойств, например, отсутствия острых углов, деформации.

Пассивная безопасность - совокупность узлов и устройств, позволяющих сохранить жизнь пассажиров автомобиля при аварии. Включает в себя, помимо прочего:

1.подушки безопасности;

2.сминаемые или мягкие элементы передней панели;

3.складывающуюся рулевую колонку;

4.травмобезопасный педальный узел - при столкновении педали отделяются от мест крепления и уменьшают риск повреждения ног водителя;

5.инерционные ремни безопасности с преднатяжителями;

6.энергопоглощающие элементы передней и задней частей автомобиля, сминающиеся при ударе - бамперы;

7.подголовники сидений - защищают от серьезных травм шею пассажира при ударе автомобиля сзади;

8.безопасные стекла: закаленные, которые при разрушении рассыпаются на множество неострых осколков и триплекс;

9.дуги безопасности, усиленные передние стойки крыши и верхняя рамка ветрового стекла в родстерах и кабриолетах поперечные брусья в дверях.


1 Технические характеристики автомобиля ГАЗ-66-11

Таблица 1 – Характеристика ГАЗ – 66 – 11

Модель автомобиля ГАЗ – 66 - 11
Год выпуска 1985 – 1996 гг.
Размерные параметры, мм
Длина 5805
Ширина 2322
Высота 2520
База 3300
Колея, мм
Передних колёс 1800
Задних колёс 1750
Весовые характеристики
Масса в снаряжённом состоянии, кг 3640
Грузоподъёмность, кг 2000
Полная масса, кг 3055
Скоростные характеристики
Максимальная скорость, км/ч 90
Время разгона до 100 км/ч, сек нет данных
Тормозные механизмы
Передней оси Барабанного типа с внутренними колодками. Диаметр 380 мм., ширина накладок 80 мм.
Задней оси

Таблица 2. – Значения установившегося замедления.

2 Активная безопасность автомобиля

Говоря научным языком - это совокупность конструктивных и эксплуатационных свойств автомобиля, направленных на предотвращение дорожно-транспортных происшествий и исключение предпосылок их возникновения, связанных с конструктивными особенностями автомобиля.

А если говорить проще, то это те системы автомобиля, которые помогают в предотвращении аварии.

БЕЗОТКАЗНОСТЬ

Безотказность узлов, агрегатов и систем автомобиля является определяющим фактором активной безопасности. Особенно высокие требования предъявляются к надежности элементов, связанных с осуществлением маневра - тормозной системе, рулевому управлению, подвеске, двигателю, трансмиссии и так далее. Повышение безотказности достигается совершенствованием конструкции, применением новых технологий и материалов.

КОМПОНОВКА АВТОМОБИЛЯ

Компоновка автомобилей бывает трех видов:

а) Переднемоторная - компоновка автомобиля, при которой двигатель расположен перед пассажирским салоном. Является самым распространенной и имеет два варианта: заднеприводную (класическую) и переднеприводную. Последний вид компоновки - переднемоторная переднеприводная - получил в настоящее время широкое распространение благодаря ряду преимуществ перед приводом на задние колеса:

Лучшая устойчивость и управляемость при движении на большой скорости, особенно по мокрой и скользкой дороге;

Обеспечение необходимой весовой нагрузки на ведущие колеса;

Меньшему уровню шума, чему способствует отсутствие карданного вала.

В тоже время переднеприводные автомобили обладают и рядом недостатков:

При полной нагрузке ухудшается разгон на подъеме и мокрой дороге;

В момент торможения слишком неравномерное распределение веса между осями (на колеса передней оси приходится 70%-75% веса автомобиля) и соответственно тормозных сил (см. Тормозные свойства);

Шины передних ведущих управляемых колес нагружены больше соответственно больше подвержены износу;

Привод на передние колеса требует применение сложных узлов - шарниров равных угловых скоростей (ШРУСов)

Объединение силового агрегата (двигатель и КПП) с главной передачей усложняет доступ к отдельным элементам.

б) Компоновка с центральным расположением двигателя - двигатель находится между передней и задней осями, для легковых автомобилей является достаточно редкой. Она позволяет получить наиболее вместительный салон при заданных габаритах и хорошее распределение по осям.

в) Заднемоторная - двигатель расположен за пассажирским салоном. Такая компоновка была распространена на малолитражных автомобилях. При передаче крутящего момента на задние колеса она позволяла получить недорогой силовой агрегат и распределение такой нагрузки по осям, при которой на задние колеса приходилось около 60% веса. Это положительно сказывалось на проходимости автомобиля, но отрицательно на его устойчивости и управляемости, особенно на больших скоростях. Автомобили с этой компоновкой, в настоящее время, практически не выпускаются.

ТОРМОЗНЫЕ СВОЙСТВА

Возможность предотвращения ДТП чаще всего связана с интенсивным торможением, поэтому необходимо, чтобы тормозные свойства автомобиля обеспечивали его эффективное замедление в любых дорожных ситуациях.

Для выполнения этого условия сила, развиваемая тормозным механизмом, не должна превышать силы сцепления с дорогой, зависящей от весовой нагрузки на колесо и состояния дорожного покрытия. Иначе колесо заблокируется (перестанет вращаться) и начнет скользить, что может привести (особенно при блокировке нескольких колес) к заносу автомобиля и значительном увеличении тормозного пути. Чтобы предотвратить блокировку, силы, развиваемые тормозными механизмами, должны быть пропорциональны весовой нагрузки на колесо. Реализуется это с помощью применения более эффективных дисковых тормозов.

На современных автомобилях используется антиблокировочная система (АБС), корректирующая силу торможения каждого колеса и предотвращающая их скольжение.

Зимой и летом состояние дорожного покрытия разное, поэтому для наилучшей реализации тормозных свойств необходимо применять шины, соответствующие сезону.

ТЯГОВЫЕ СВОЙСТВА

Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличивать скорость движения. От этих свойств во многом зависит уверенность водитель при обгоне, проезде перекрестов. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.

Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше силы сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противобуксовочная система (ПБС). При разгоне автомобиля она притормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.

УСТОЙЧИВОСТЬ АВТОМОБИЛЯ

Устойчивость - способность автомобиля сохранять движение по заданной траектории, противодействуя силам, вызывающих его занос и опрокидывание в различных дорожных условиях при высоких скоростях.

Различают следующие виды устойчивости:

Поперечная при прямолинейном движении (курсовая устойчивость).

Ее нарушение проявляется в рыскании (изменении направления движения) автомобиля по дороге и может быть вызвано действием боковой силы ветра, разными величинами тяговых или тормозных сил на колесах левого или правого борта, их буксованием или скольжением. большим люфтом в рулевом управлении, неправильными углами установки колес и т.д.;

Поперечная при криволинейном движении.

Ее нарушение приводит к заносу или опрокидывании под действием центробежной силы. Особенно ухудшает устойчивость повышение положения центра масс автомобиля (например, большая масса груза на съемном багажнике на крыше);

Продольная.

Ее нарушение проявляется в буксовании ведущих колес при преодолении затяжных обледенелых или заснеженных подъемов и сползании автомобиля назад. Особенно это характерно для автопоездов.

УПРАВЛЯЕМОСТЬ АВТОМОБИЛЯ

Управляемость - способность автомобиля двигаться в направлении, заданном водителем.

Одной из характеристик управляемости является поворачиваемость - свойство автомобиля изменять направление движения при неподвижном рулевом колесе. В зависимости от изменения радиуса поворота под воздействием боковых сил (центробежной силы на повороте, силы ветра и т.д.) поворачиваемость может быть:

Недостаточной - автомобиль увеличивает радиус поворота;

Нейтральной - радиус поворота не изменяется;

Избыточной - радиус поворота уменьшается.

Различают шинную и креновую поворачиваемость.

Шинная поворачиваемость

Шинная поворачиваемость связана со свойством шин двигаться под углом к заданному направлению при боковом уводе (смещение пятна контакта с дорогой относительно плоскости вращения колеса). При установке шин другой модели поворачиваемость может измениться и автомобиль на поворотах при движении с большой скоростью поведет себя иначе. Кроме того, величина бокового увода зависит от давления в шинах, которое должно соответствовать указанному в инструкции по эксплуатации автомобиля.

Креновая поворачиваемость

Креновая поворачиваемость связана с тем, что при наклоне кузова (крене) колеса изменяют свое положение относительно дороги и автомобиля (в зависимости от типа подвески). Например, если подвеска двухрычажная, колеса наклоняются в стороны крена, увеличивая увод.

ИНФОРМАТИВНОСТЬ

Информативность - свойство автомобиля обеспечивать необходимой информацией водителя и остальных участников движения. Недостаточная информация от других транспортных средств, находящихся на дороге, о состояния дорожного покрытия и т.д. часто становится причиной аварии. Внутренняя обеспечивает возможность водителю воспринимать информацию, необходимую для управления автомобилем.

Она зависит от следующих факторов:

Обзорность должна позволять водителю своевременно и без помех получать всю необходимую информацию о дорожной обстановке. Неисправные или неэффективно работающие омыватели, система обдува и обогрева стекол, стеклоочистители, отсутствие штатных зеркал заднего вида резко ухудшают обзорность при определенных дорожных условиях.

Расположение панели приборов, кнопок и клавиш управления, рычага переключения скоростей и т.д. должно обеспечивать водителю минимальное время для контроля показаний, воздействий на переключатели и т.д.

Внешняя информативность - обеспечение других участников движения информацией от автомобиля, которая необходима для правильного взаимодействия с ними. В нее входят система внешней световой сигнализации, звуковой сигнал, размеры, форма и окраска кузова. Информативность легковых автомобилей зависит от контрастности их цвета относительно дорожного покрытия. По статистике автомобили, окрашенные в черный, зеленый, серый и синий цвета, в два раза чаще попадают в аварии из-за трудности их различения в условиях недостаточной видимости и ночью. Неисправные указатели поворотов, стоп-сигналы, габаритные огни не позволят другим участникам дорожного движения вовремя распознать намерения водителя и принять правильное решение.

КОМФОРТАБЕЛЬНОСТЬ

Комфортабельность автомобиля определяет время, в течение которого водитель способен управлять автомобилем без утомления. Увеличению комфорта способствует использование АККП, регуляторов скорости (круиз-контроль) и т.д. В настоящее время выпускаются автомобили, оборудованные адаптивным круиз-контролем. Он не только автоматически поддерживает скорость на заданном уровне, но и при необходимости снижает ее вплоть до полной остановки автомобиля.

3 Пассивная безопасность автомобиля

КУЗОВ

Она обеспечивает приемлемые нагрузки на тело человека от резкого замедления при ДТП и сохраняет пространство пассажирского салона после деформации кузова.

При тяжёлой аварии есть опасность, что двигатель и другие агрегаты могут проникнуть в кабину водителя. Поэтому, кабина окружена особой «решёткой безопасности», представляющей собой абсолютную защиту в подобных случаях. Такие же рёбра и брусья жесткости можно найти и в дверях автомобиля (на случай боковых столкновений). Сюда же относятся и области погашения энергии.

При тяжёлой аварии происходит резкое и неожиданное замедление до полной остановки автомобиля. Этот процесс вызывает огромные перегрузки на тела пассажиров, могущие оказаться фатальными. Из этого следует, что необходимо найти способ «замедлить» замедление для того, чтобы уменьшить нагрузки на тело человека. Одним из способов решения данной задачи является проектирование областей разрушения, гасящих энергию столкновения, в передней и задней части кузова. Разрушения автомобиля будут более тяжёлыми, зато пассажиры останутся целыми (и это по сравнению со старыми «толстокожими» машинами, когда машина отделывалась «лёгким испугом», зато пассажиры получали тяжёлые травмы).

Конструкция кузова предусматривает, что при столкновении части кузова деформируются как бы по отдельности. Плюс к этому в конструкции использованы высоконапряженные металлические листы. Это делает машину более жесткой, а с другой стороны позволяет ей быть не такой тяжелой

РЕМНИ БЕЗОПАСНОСТИ

Поначалу на автомобили ставились ремни с двухточечным креплением, которые «держали» седоков за живот или грудь. Не прошло и полувека, как инженеры смекнули, что многоточечная конструкция гораздо лучше, потому что при аварии позволяет распределить давление ремня на поверхность тела более равномерно и значительно снизить риск травмирования позвоночника и внутренних органов. В автоспорте, например, применяются четырёх-, пяти- и даже шеститочечные ремни безопасности - они держат человека в кресле «намертво». Но на «гражданке» из-за своей простоты и удобства прижились трёхточечные.

Чтобы ремень нормально отработал своё предназначение, он должен плотно прилегать к телу. Раньше ремни приходилось регулировать, подгонять по фигуре. С появлением инерционных ремней необходимость «ручной регулировки» отпала - в нормальном состоянии катушка свободно крутится, и ремень может обхватить пассажира любой комплекции, он не сковывает действия и каждый раз, когда пассажир захочет сменить положение тела, ремешок всегда плотно прилегает к телу. Но в тот момент, когда наступит «форс-мажор» - инерционная катушка тут же зафиксирует ремень. Кроме того, на современных машинах в ремнях применяются пиропатроны. Небольшие заряды взрывчатки детонируют, дёргают ремень, и тот прижимает пассажира к спинке кресла, не давая ему удариться.

Ремни безопасности - это одно из самых действенных средств защиты при аварии.

Поэтому легковые автомобили должны оборудоваться ремнями безопасности, если для этого предусмотрены места крепления. Защитные свойства ремней во многом зависят от их технического состояния. К неисправностям ремней, при которых не допускается эксплуатация автомобиля, относятся видимые невооружённым глазом надрывы и потёртости тканевой ленты лямок, ненадёжная фиксация языка лямки в замке или отсутствие автоматического выброса языка при отпирании замка. У ремней безопасности инерционного типа лента лямки должна свободно втягиваться в катушку и блокироваться при резком движении автомобиля со скоростью 15 – 20 км/ч. Замене подлежат ремни, испытавшие критические нагрузки во время ДТП, в которых кузов автомобиля получил серьёзные повреждения.

ПОДУШКИ БЕЗОПАСНОСТИ

Одной из распространённых и действенных систем безопасности в современных автомобилях (после ремней безопасности) являются воздушные подушки. Они начали широко использоваться уже в конце 70-х годов, но лишь десятилетие спустя они действительно заняли достойное место в системах безопасности автомобилей большинства изготовителей.

Они размещаются не только перед водителем, но и перед передним пассажиром, а также с боков (в дверях, стойках кузова и т.д.). Некоторые модели автомобилей имеют их принудительное отключение из-за того, что люди с больным сердцем и дети могут не выдержать их ложного срабатывания.

Сегодня надувные подушки безопасности - обычное дело не только на дорогих машинах, но и на маленьких (и относительно недорогих) автомобильчиках. Зачем же нужны подушки безопасности? И что они из себя представляют?

Разработаны подушки безопасности, как для водителей, так и для пассажиров на переднем сиденье. Для водителя подушка устанавливается обычно на рулевом управлении, для пассажира - на приборной панели (в зависимости от конструкции).

Передние подушки безопасности срабатывают при получении аварийного сигнала от блока управления. В зависимости от конструкции, степень наполнения подушки газом может варьироваться. Предназначение передних подушек – защита водителя и пассажира от травмирования твёрдыми предметами (кузов двигателя и др.) и осколками стёкол при фронтальных столкновениях.

Боковые подушки предназначены для уменьшения повреждения людей, находящихся в автомобиле при боковом ударе. Они устанавливаются на дверях, либо в спинках сидений. При боковом столкновении внешние датчики посылают сигналы в центральный блок управления подушками безопасности. Это делает возможным срабатывание как некоторых, так и всех боковых подушек.

Вот схема работы системы подушек безопасности:



Исследования влияния надувных подушек безопасности на вероятность гибели водителя при лобовых столкновениях показали, что таковая уменьшается на 20-25%.

В случае, если подушки безопасности сработали, или были каким-либо образом повреждены, они не могут быть отремонтированы. Вся система подушек безопасности подлежит замене.

Воздушная подушка водителя имеет объём от 60 до 80 литров, а переднего пассажира – до 130 литров. Нетрудно представить, что при срабатывании системы, объём салона уменьшается на 200-250 литров в течение 0,04 сек(см. рисунок), что даёт немалую нагрузку на барабанные перепонки. Кроме того, вылетающая со скоростью более 300 км/ч подушка, таит в себе немалую опасность для людей, если они не пристёгнуты ремнём безопасности и ничто не задерживает инерционное движение тела навстречу подушке.

Существует статистика, говорящая о влиянии надувных подушек безопасности на травматизм при аварии. Что же нужно делать, чтобы уменьшить вероятность травмы?

Если в машине имеется подушка безопасности, не стоит размещать повернутые назад детские сиденья на сиденье автомобиля, где эта подушка безопасности находится. При надувании подушка безопасности может сдвинуть сиденье и нанести травму ребенку.

Подушки безопасности на пассажирском месте повышают вероятность гибели детей до 13 лет, сидящих на этом месте. Ребёнок ниже 150 см роста может получить удар в голову воздушной подушкой, открывающейся со скоростью 322 км/ч.

ПОДГОЛОВНИКИ

Роль подголовника – предотвратить резкое движение головы во время аварии. Поэтому следует отрегулировать высоту подголовника и его позицию в правильное положение. Современные подголовники имеют две степени регулировки, позволяющие предотвратить травмы шейных позвонков при движении «взахлест», столь характерных при наездах сзади.

Эффективная защита при использовании подголовника может быть достигнута, если он находится точно на линии центра головы на уровне ее центра тяжести и не далее 7 см от задней ее части. Помните, что некоторые опции сидений изменяют размер и положение подголовника.

ТРАВМОБЕЗОПАСНЫЙ РУЛЕВОЙ МЕХАНИЗМ

Травмобезопасное рулевое управление является одним из конструктивных мероприятий, обеспечивающих пассивную безопасность автомобиля – свойство уменьшать тяжесть последствий дорожно-транспортных происшествий. Рулевой механизм рулевого управления может нанести серьёзную травму водителю при лобовом столкновении с препятствием при смятии передней части автомобиля, когда весь рулевой механизм перемещается в сторону водителя.

Водитель также может получить травму от рулевого колеса или рулевого вала при резком перемещении вперёд вследствие лобового столкновения, когда при слабом натяжении ремней безопасности перемещение составляет 300…400 мм. Для уменьшения тяжести травм, получаемых водителем при лобовых столкновениях, которые составляют около 50% всех дорожно-транспортных происшествий, применяют различные конструкции травмобезопасных рулевых механизмов. С этой целью кроме рулевого колеса с утопленной ступицей и двумя спицами, позволяющих значительно снизить тяжесть наносимых травм при ударе, в рулевом механизме устанавливают специальное энергопоглащающее устройство, а рулевой вал часто выполняют составным. Все это обеспечивает незначительное перемещение рулевого вала внутрь кузова автомобиля при лобовых столкновениях с препятствиями, автомобилями и другими транспортными средствами.

В травмобезопасных рулевых управлениях легковых автомобилей применяются и другие энергопоглащающие устройства, которые соединяют составные рулевые валы. К ним относятся резиновые муфты специальной конструкции, а также устройства типа «японский фонарик», который выполнен в виде нескольких продольных пластин, приваренных к концам соединяемых частей рулевого вала. При столкновениях резиновая муфта разрушается, а соединительные пластины деформируются и уменьшают перемещение рулевого вала внутри салона кузова.

Основными элементами колеса в сборе являются обод с диском и пневматическая шина, которая может быть бескамерной или состоять из покрышки, камеры и ободной ленты.

ЗАПАСНЫЕ ВЫХОДЫ

Люки крыши и окна автобусов могут быть использованы в качестве запасных выходов для быстрой эвакуации пассажиров из салона при ДТП или пожаре. С этой целью внутри и снаружи пассажирского помещения автобусов предусмотрены специальные средства для открытия аварийных окон и люков. Так, стекла могут устанавливаться в оконные проёмы кузова на двух замковом резиновом профиле, имеющем замковый шнур. При возникновении опасности необходимо выдернуть замковый шнур с помощью скобы, прикреплённой к нему, и выдавить стекло. Некоторые окна подвешиваются в проеме на петлях и снабжаются ручками для их открывания наружу.

Устройства для приведения в действие аварийных выходов автобусов, находящихся в эксплуатации, должны быть в работоспособном состоянии. Однако в процессе эксплуатации автобусов работники АТП нередко снимают скобу на аварийных окнах, опасаясь умышленной порчи уплотнения окон пассажирами или пешеходами в случаях, когда это не диктуется необходимостью. Подобная «предусмотрительность» делает невозможным экстренную эвакуацию людей из автобусов.

4 Экологическая безопасность автомобиля

Экологическая безопасность – это свойство автомобиля, позволяющее уменьшать вред, наносимый участникам движения и окружающей среде в процессе его нормальной эксплуатации. Мероприятиями по уменьшению вредного воздействия автомобилей на окружающую среду следует считать снижение токсичности отработавших газов и уровня шума.

Основными загрязняющими веществами при эксплуатации автотранспорта являются:

выхлопные газы;

– нефтепродукты при их испарении;

– продукты истирания шин, тормозных колодок и дисков сцепления, асфальтовых и бетонных покрытий.

Основными мероприятиями по предотвращению и уменьшению вредного воздействия автомобилей на окружающую среду следует считать:

1) разработку таких конструкций автомобилей, которые меньше загрязняли бы атмосферный воздух токсичными компонентами отработавших газов и создавали бы шум более низкого уровня;

2) совершенствование методов ремонта, обслуживания и эксплуатации автомобилей с целью снижения концентрации токсичных компонентов в отработавших газах, уровня шума, производимого автомобилями, и загрязнения окружающей среды эксплуатационными материалами;

3) соблюдение при проектировании и строительстве автомобильных дорог, инженерных сооружений, объектов обслуживания таких требований, как вписывание объекта в ландшафт; рациональное сочетание элементов плана и продольного профиля, обеспечивающее постоянство скорости движения автомобиля; защита поверхностных и грунтовых вод от загрязнения; борьба с водной и ветровой эрозией; предотвращение оползней и обвалов; сохранение животного и растительного мира; сокращение площадей, отводимых под строительство; защита зданий и сооружений вблизи дороги от вибраций; борьба с транспортным шумом и загрязнением воздуха; применение методов и технологии строительства, приносящих наименьший ущерб окружающей среде;

4) использование средств и методов организации и регулирования движения, обеспечивающих оптимальные режимы движения и характеристики транспортных потоков, сокращение остановок у светофоров, числа переключения передач и времени работы двигателей на неустановившихся режимах.

Методы снижения уровня шума автомобилей

Для снижения шума автомобиля, прежде всего, стремятся конструировать менее шумные механические узлы; уменьшать число процессов, сопровождающихся ударами; снижать величину неуравновешенных сил, скорости обтекания деталей газовыми струями, допуски сопрягаемых деталей; улучшать смазку; применять подшипники скольжения и бесшумные материалы. Кроме того, уменьшение шума автомобиля достигается применением шумопоглощающих и шумоизолирующих устройств.

Шум во впускном тракте двигателя может быть уменьшен с помощью воздухоочистителя специальной конструкции, имеющего резонансную и расширительную камеры, и конструкций впускных труб, уменьшающих скорости обтекания внутренних поверхностей потоком топливовоздушной смеси. Эти устройства позволяют снижать уровень шума впуска на 10–15 дБ по шкале А.

Уровень шума, при выпуске отработавших газов (при их истечении через выпускные клапаны), может достигать 120–130 дБ по шкале А. Чтобы уменьшить шум при выпуске, устанавливают активные или реактивные глушители. Наиболее распространенные простые и дешевые активные глушители представляют собой многокамерные каналы, внутренние стенки которых изготовлены из звукопоглощающих материалов. Звук гасится в результате трения отработавших газов о внутренние стенки. Чем больше длина глушителя и меньше сечение каналов, тем интенсивнее гасится звук.

Реактивные глушители представляют собой сочетание элементов различной акустической упругости; снижение шума в них происходит вследствие многократного отражения звука и возвращения его к источнику. Следует помнить, что чем эффективнее работает глушитель, тем больше уменьшается эффективная мощность двигателя. Эти потери могут достигать 15% и более. В процессе эксплуатации автомобилей необходимо тщательно следить за исправностью (прежде всего – герметичностью) впускного и выпускного трактов. Даже небольшая разгерметизация глушителя резко усиливает шум выпуска. Шум в трансмиссии, ходовой части и кузове нового исправного автомобиля может быть уменьшен путем конструктивных усовершенствований. В коробке передач применяются синхронизаторы, косозубые шестерни постоянного зацепления, блокирующие конусные кольца и ряд других конструктивных решений. Получают распространение промежуточные опоры карданного вала, гипоидные главные передачи, менее шумные подшипники. Совершенствуются элементы подвески. В конструкциях кузовов и кабин широко используются сварка, шумоизолирующие прокладки и покрытия. Шум в перечисленных выше частях и механизмах автомобилей может возникать и достигать значительных величин только при неисправностях отдельных узлов и деталей: поломке зубьев шестерни, коробления дисков сцепления, дисбалансе карданного вала, нарушении зазоров между зубчатыми колесами в главной передаче и т.д. Особенно резко возрастает шум автомобиля при неисправности различных элементов кузова. Основной путь устранения шума – правильная техническая эксплуатация автомобиля.

ЗАКЛЮЧЕНИЕ

Обеспечение исправного состояния элементов конструкции автомобиля, требования к которому рассмотрены ранее, позволяет снизить вероятность ДТП. Однако создать абсолютную безопасность на автодорогах пока не удаётся. Вот почему специалисты многих стран уделяют большое внимание так называемой пассивной безопасности автомобиля, позволяющим уменьшить тяжесть последствий ДТП.

ЛИТЕРАТУРА

1. www.anytyres.ru

2. www.transserver.ru

3. Теория и конструкция автомобиля и двигателя

Вахламов В.К., Шатров М.Г., Юрчевский А. А.

4. Организация автомобильных перевозок и безопасность движения 6 учеб. пособие студ.высш.учеб. заведений/ А.Э.Горев, Е.М.Олещенко.- М.: Издательский центр «Академия». 2006.(стр.187-190)

Безопасность транспортных средств. Безопасность транспортного средства включает в себя комплекс конструктивных и эксплуатационных свойств, снижающих вероятность дорожно-транспортных происшествий, тяжесть их последствий и отрицательное влияние на окружающую среду.

Понятие безопасность конструкции автомобиля включает в себя активную и пассивную безопасность.

Активная безопасность конструкции — это конструктивные меры, направленные на предупреждение аварий. К ним относятся меры, обеспечивающие управляемость и устойчивость при движении, эффективное и надежное торможение, легкое и надежное рулевое управление, малую утомляемость водителя, хорошую обзорность, эффективное действие внешних осветительных и сигнальных приборов, а также повышение динамических качеств автомобиля.

Пассивная безопасность конструкции — это конструктивные мероприятия, исключающие или сводящие к минимуму последствия аварии для водителя, пассажиров и груза. Они предусматривают применение травмобезопасных конструкций рулевых колонок, энергоемких элементов на передней и задней части автомобилей, мягкой обивки кабины и кузова и мягких накладок, ремней безопасности, безосколочных стекол, герметичной топливной системы, надежных противопожарных устройств, замков для капота и кузова с блокирующими устройствами, безопасной компоновки деталей и всего автомобили.

В последние годы уделяется большое внимание совершенствованию безопасности конструкции автомобилей во всех производящих их странах. В Соединенных Штатах Америки более широко. Под активной безопасностью транспортного средства понимаются его свойства, снижающие вероятность возникновения дорожнотранспортного происшествия.

Активная безопасность обеспечивается несколькими эксплуатационными свойствами, позволяющими водителю уверенно управлять автомобилем, разгоняться и тормозить с необходимой интенсивностью, совершать маневрирование на проезжей части, которого требует дорожная обстановка, без значительных затрат физических сил. Основные из этих свойств: тяговые, тормозные, устойчивость, управляемость, проходимость, информативность, обитаемость.

Под пассивной безопасностью транспортного средства понимаютсяего свойства, снижающие тяжесть последствий дорожно-транспортного происшествия.

Различают внешнюю и внутреннюю пассивную безопасность автомобиля. Основным требованием внешней пассивной безопасности является обеспечение такого конструктивного выполнения наружных поверхностей и элементов автомобиля, при котором вероятность повреждений человека этими элементами в случае дорожно - транспортного происшествия была бы минимальной.


Как известно, значительное количество происшествий связано со столкновениями и наездами на неподвижное препятствие. В связи с этим одним из требований к внешней пассивной безопасности автомобилей является предохранение водителей и пассажиров от ранений, а также самого автомобиля от повреждений с помощью внешних элементов конструкции.

Рисунок 8.1 - Схема сил и моментов действующих на автомобиль

Рисунок 8.1 - Структура безопасности транспортных средств

Примером элемента пассивной безопасности может быть травмобезопасный бампер, назначение которого - смягчать удары автомобиля о препятствия при малых скоростях движения (например, при маневрировании в зоне стоянки).

Пределом выносливости перегрузок для человека является 50-60g (g-ускорение свободного падения). Пределом выносливости для незащищённого тела является величина энергии, воспринимаемая непосредственно телом, соответствующая скорости движения около 15 км/ч. При 50 км/ч энергия превышает допустимую примерно в 10 раз. Следовательно задача состоит в снижении ускорений тела человека при столкновении за счёт продолжительных деформаций передней части кузова автомобиля, при которых поглощалось бы как можно больше энергии.

То есть, чем больше деформация автомобиля и чем дольше она происходит, тем меньшие перегрузки испытывает водитель при столкновении с препятствием.

К внешней пассивной безопасности имеют отношение декоративные элементы кузова, ручки, зеркала и другие детали, закреплённые на кузове автомобиля. На современных автомобилях всё шире применяются утомленные ручки дверей, не наносящие травм пешеходам в случае дорожно - транспортного происшествия. Не применяются выступающие эмблемы заводов-изготовителей на передней части автомобиля.

К внутренней пассивной безопасности автомобиля предъявляются два основных требования:

Создание условий, при которых человек мог бы безопасно выдержать любые перегрузки;

Исключение травмоопасных элементов внутри кузова (кабины). Водитель и пассажиры при столкновении после мгновенной остановки автомобиля еще продолжают двигаться, сохраняя скорость движения, которую автомобиль имел перед столкновением. Именно в это время происходит большая часть травм в результате удара головой о ветровое стекло, грудью о рулевое колесо и рулевую колонку, коленями о нижнюю кромку щитка приборов.

Анализ дорожно-транспортных происшествий показывает, что подавляющее большинство погибших находилось на переднем сиденье. Поэтому при разработке мероприятий по пассивной безопасности в первую очередь уделяется внимание обеспечению безопасности водителя и пассажира, находящихся на переднем сиденье.

Конструкция и жесткость кузова автомобиля выполняются такими, чтобы при столкновениях деформировались передняя и задняя части кузова, а деформация салона (кабины) была по возможности минимальной для сохранения зоны жизнеобеспечения, то есть минимально необходимого пространства, в пределах которого исключено сдавливание тела человека, находящегося внутри кузова.

Кроме того, должны быть предусмотрены следующие меры, снижающие тяжесть последствии при столкновении:

Необходимость перемещения руля и рулевой колонки и поглощения ими энергии удара, а также равномерного распределения удара по поверхности груди водителя;

Исключение возможности выброса или выпадения пассажиров и водителя (надежность дверных замков);

Наличие индивидуальных защитных и удерживающих средств для всех пассажиров и водителя (ремни безопасности, подголовники, пневмоподушки);

Отсутствие травмоопасных элементов перед пассажирами и водителем;

Оборудование кузова травмобезопасными стеклами. Эффективность применения ремней безопасности в сочетании с другими мероприятиями подтверждена статистическими данными. Так, использование ремней уменьшает количество травм на 60 - 75% и снижает их тяжесть.

Одним из эффективных способов решения проблемы ограничения перемещения водителя и пассажиров при столкновении является применение пневматических подушек, которые при столкновении автомобиля с препятствием наполняются сжатым газом за 0,03 - 0,04с, воспринимают на себя удар водителя и пассажиров и тем самым снижают тяжесть травмы.

Под послеаварийной безопасностью транспортного средства понимаются его свойства в случае аварии не препятствовать эвакуации людей, не наносить травм при эвакуации и после нее. Основными мерами послеаварийной безопасности являются противопожарные мероприятия, мероприятия по эвакуации людей, аварийная сигнализация.

Наиболее тяжелым последствием дорожно - транспортного происшествия является возгорание автомобиля. Чаще всего возгорание происходит при тяжелых происшествиях, таких как столкновение автомобилей, наезды на неподвижные препятствия, а также опрокидывание. Несмотря на небольшую вероятность возгорания (0,03 -1,2% от общего количества происшествий), их последствия тяжелейшие.

Они вызывают почти полное разрушение автомобиля и при невозможности эвакуации - гибель людей, В таких происшествиях топливо выливается из поврежденного бака или из заливной горловины. Возгорание происходит от горячих деталей системы выпуска отработавших газов, от искры при неисправной системе зажигания или возникшей от трения деталей кузова об дорогу или о кузов другого автомобиля. Могут быть и другие причины возгорания.

Под экологической безопасностью транспортного средства понимается его свойство снижать степень отрицательного воздействия на окружающую среду. Экологическая безопасность охватывает все стороны использования автомобиля. Ниже перечислены основные аспекты экологии, связанные с эксплуатацией автомобиля.

Потеря полезной площади земли . Земля, необходимая для движения и стоянки автомобилей, исключается из пользования других отраслей народного хозяйства. Общая протяженность мировой сети автомобильных дорог с твердым покрытием превышает 10 млн км, что означает потерю площади свыше 30 млн га. Расширение улиц и площадей приводит к «увеличению территорий городов и удлинению всех коммуникаций. В городах с развитой дорожной сетью и предприятиями автосервиса площади, отведенные для движения и стоянок автомобилей, занимают до 70 % всей территории.

Кроме того, огромные территории занимают заводы по производству и ремонту автомобилей, службы обеспечения функционирования автомобильного транспорта: АЗС, СТО, кемпинги и т.д.

Загрязнение атмосферы . Основная масса вредных примесей, рассеянных в атмосфере, является результатом эксплуатации автомобилей. Двигатель средней мощности выбрасывает в атмосферу за один день эксплуатации около 10 м 3 отработавших газов, в состав которых входит окись углерода , углеводороды , окислы азота и многие другие токсичные вещества.

В нашей стране установлены следующие нормы среднесуточных предельно допустимых концентраций токсичных веществ в атмосфере:

Углеводороды - 0,0015 г/м;

Окись углерода - 0,0010 г/м;

Двуокись азота - 0,00004 г/м.

Использование природных ресурсов. На производство и экплуатацию автомобилей используются миллионы тонн высококачественных материалов, что приводит к истощению их природных запасов. При экспоненциальном росте потреблении энергии на душу населения, характерном для промышленно развитых стpaн, скоро наступит такой момент, когда существующие источники энергии не смогут удовлетворить потребности человека.

Значительная доля потребляемой энергии расходуется автомобилями, к.п.д. двигателей которых составляет 0,3 0,35, Следовательно, 65 - 70% энергетического потенциала не используется.

Шум и вибрация. Уровень шума, длительно переносимым человеком без вредных последствий, составляем 80 - 90 дБ На улицах крупных городов и промышленных центров уровень шума достигает 120- 130 дБ. Колебания почвы, вызванные движением автомобилей, пагубно сказываются на зданиях и сооружениях. Для защиты человека от пагубного влиянии шума транспортных средств применяют различные приемы: совершенствование конструкции автомобилей, шумозащитные сооружения и зеленые насаждения вдоль оживленных городских магистралей, организация такого режима движения, когда уровень шума наименьший.

Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу сцепления ведущих колес с дорогой. Если тяговая сила превысит силу сцепления колес с дорогой, то ведущие колеса будут пробуксовывать.

Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен нормальной нагрузке, приходящейся на затормаживаемые колеса.

Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шин (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля. Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно при увеличении скорости движения и изношенном протекторе шин. Например, при сухой дороге с асфальтобетонным покрытием коэффициент сцепления равен 0,7 - 0,8, а для мокрой - 0,35 - 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1 - 0,2.

Сила тяжести автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45 - 0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому нормальная нагрузка легкового автомобиля распределяется по его осям примерно поровну, т.е. сцепной вес равен 50 % нормальной нагрузки.

Высота расположения центра тяжести у грузовых автомобилей 0,65 - 1 м. У полностью груженных грузовых автомобилей сцепной вес составляет 60 75 % нормальной нагрузки. У полноприводных автомобилей сцепной вес равен нормальной нагрузке автомобиля.

При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение нормальной нагрузки между осями автомобилям при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля - передние колеса. Кроме того, перераспределение нормальной нагрузки между передними и задними колесами имеет место при движении автомобиля на спуск или на подъем.

Перераспределение нагрузки, изменяя величину сцепного веса, влияет на величину сцепления колес с дорогой, тормозные свойства и устойчивость автомобиля.

Силы сопротивления движению . Тяговая сила на ведущих колесах автомобиля. При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха. При движении автомобиля на подъем возникает сила сопротивления подъему (рис. 8.2), а при разгоне автомобиля - сила сопротивления разгону (сила инерции).

Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению нормальной нагрузки автомобиля на коэффициент сопротивления качению.

Рисунок 8.2 - Схема сил и моментов действующих на автомобиль

Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля. Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014 0,020, для сухой грунтовой дороги - 0,025-0,035.

На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах, и возрастает с ростом скорости движения, а также с увеличением тормозного и крутящего моментов.

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля. Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь - колеей колес (расстоянием между центрами шин) и высотой автомобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля.

Сила сопротивления подъему тем больше, чем больше масса автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах или величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Вели коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% т нормальной нагрузки автомобиля.

Сила сопротивления разгону (сила инерции) зависит от массы автомобиля, его ускорения (приросту скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Торможение автомобиля. Тормозная динамичность характеризуется способностью автомобиля быстро уменьшить скорость и остановиться. Надежная и эффективная тормозная система позволяет водителю уверенно вести автомобиль с большой скоростью и при необходимости остановить его на коротком участке пути.

Современные автомобили имеют четыре тормозные системы: рабочую, запасную, стояночную и вспомогательную. Причем, привод ко всем контурам тормозной системы раздельный. Наиболее важной для управления и безопасности является рабочая тормозная система. С ее помощью осуществляется служебное и экстренное торможение автомобиля.

Служебным называют торможение с небольшим замедлением (1-3 м/с 2). Его применяют для остановки автомобиля на ранее намеченном месте или для плавного снижения скорости.

Экстренным называют торможение с большим замедлением, обычно максимальным, доходящим до 8 м/с2. Его применяют в опасной обстановке для предотвращении пасши ни неожиданно появившееся препятствие.

При торможении автомобиля на и о колеса действует не сила тяги, а тормозные силы Рт1 и Рт2, как показано на (рис. 8.3). Сила инерции в этом случае направлена в сторону движения автомобиля.

Рассмотрим процесс экстренного торможения. Водитель заметив препятствие, оценивает дорожную обстановку, принимает решение о торможении и переносит ногу на тормозную педаль. Время t , необходимое для этих действий (время реакции водителя), изображено на (рис. 8.3) отрезком АВ.

Автомобиль за это время проходит путь S не снижая скорости. Затем водитель нажимает на тормозную педаль и давление от главного тормозного цилиндра (или тормозного крана) передается колесным тормозам (время срабатывания тормозного привода tpт - отрезок ВС. Время tт зависит в основном от конструкции тормозного привода. Оно равно в среднем 0,2-0,4с у автомобилей с гидравлическим приводом и 0,6-0,8 с с пневматическим. У автопоездов с пневматическим тормозным приводом время tт может достигать 2-3 с. Автомобиль за время tт проходит путь Sт, так же не снижая скорости.

Рисунок 8.3 - Остановочный и тормозной пути автомобиля

По истечении времени tрт тормозная система полностью включена (точка С), и скорость автомобиля начинает снижаться. При этом замедление сначала увеличивается (отрезок CD, время нарастания тормозной силы tнт), а затем остается примерно постоянным (установившимся) и равным jуст (время t уст, отрезок DE).

Длительность периода tнт зависит от массы транспортного средства, типа и состояния дорожного покрытия. Чем больше масса автомобиля и коэффициент сцепления шин с дорогой, тем больше время t. Значение этого времени находится в пределах 0,1-0,6 с. За время tнт автомобиль перемещается на расстояние Sнт, и скорость его несколько снижается.

При движении с установившимся замедлением (время tуст, отрезок DE), скорость автомобиля за каждую секунду уменьшается на одну и ту же величину. В конце торможения она падает до нуля (точка Е), и автомобиль, пройдя путь Sуст, останавливается. Водитель снимает ногу с тормозной педали и происходит оттормажи-вание (время оттормаживания toт, участок EF).

Однако под действием силы инерции передний мост при торможении нагружается, а задний, напротив, разгружается. Поэтому реакция на передних колесах Rzl увеличивается, а на задних Rz2 уменьшается. Соответственно изменяются силы сцепления, поэтому у большинства автомобилей полное и одновременное использование сцепления всеми колесами автомобиля наблюдается крайне редко и фактическое замедление меньше максимально возможного.

Чтобы учесть снижение замедления, в формулу для определения jуст приходится вводить поправочный коэффициент эффективности торможения K.э, равный 1,1-1,15 для легковых автомобилей и 1,3-1,5 для грузовых автомобилей и автобусов. На скользких дорогах тормозные силы на всех колесах автомобиля практически одновременно достигают значения силы сцепления.

Тормозной путь меньше остановочного, т.к. за время реакции водителя автомобиль перемещается на значительное расстояние. Остановочный и тормозной пути увеличиваются с ростом скорости и уменьшением коэффициента сцепления. Минимально допустимые значения тормозного пути при начальной скорости 40 км/ч на горизонтальной дороге с сухим, чистым и ровным покрытием нормированы.

Эффективность тормозной системы в большой степени зависит от ее технического состояния и технического состояния шин. В случае проникновения в тормозную систему масла или воды снижается коэффициент трения между тормозными накладками и барабанами (или дисками), и тормозной момент уменьшается. При износе протекторов шин уменьшается коэффициент сцепления.

Это влечет за собой снижение тормозных сил. В эксплуатации часто тормозные силы левых и правых колес автомобиля различны, что вызывает его поворот вокруг вертикальной оси. Причинами могут быть различный износ тормозных накладок и барабанов или шин или проникновение в тормозную систему одной стороны автомобиля масла или воды, уменьшающих коэффициент трения и снижающих тормозной момент.

Устойчивость автомобиля. Под устойчивостью понимают свойства автомобиля противостоять заносу, скольжению, опрокидыванию. Различают продольную и поперечную устойчивость автомобиля. Более вероятна и опасна потеря поперечной устойчивости.

Курсовой устойчивостью автомобиля называют его свойство двигаться в нужном направлении без корректирующих воздействий со стороны водителя, т.е. при неизменном положении рулевого колеса. Автомобиль с плохой курсовой устойчивостью все время неожиданно меняет направление движения.

Это создает угрозу другим транспортным средствам и пешеходам. Водитель, управляя неустойчивым автомобилем, вынужден особенно внимательно следить за дорожной обстановкой и постоянно корректировать движение, чтобы предотвратить выезд за пределы дороги. При длительном управлении таким автомобилем водитель быстро утомляется, повышается возможность ДТП.

Нарушение курсовой устойчивости происходит в результате действия возмущающих сил, например, порывов бокового ветра, ударов колес о неровности дороги, а также из-за резкого поворота управляемых колес водителем. Потеря устойчивости может быть вызвана и техническими неисправностями (неправильная регулировка тормозных механизмов, излишний люфт в рулевом управлении или его заклинивание, прокол шины и др.)

Особенно опасна потеря курсовой устойчивости при большой скорости. Автомобиль, изменив направление движения и отклонившись даже на небольшой угол, может через короткое время оказаться на полосе встречного движения. Так, если автомобиль, движущийся со скоростью 80 км/ч, отклонится от прямолинейного направления движения всего на 5°, то через 2,5с он переместиться в сторону почти на I м и водитель может не успеть вернуть автомобиль на прежнюю полосу.

Рисунок 8.4 - Схема сил, действующих на автомобиль

Часто автомобиль теряет устойчивость при движении по дороге с поперечным уклоном (косогору) и при повороте на горизонтальной дороге.

Если автомобиль движется по косогору (рис.8.4,а) сила тяжести G составляет с поверхностью дороги угол β и ее можно разложить на две составляющие: силу Р1, параллельную дороге, и силу Р2, перпендикулярную ей.

Сила Р1, стремиться сдвинуть автомобиль под уклон и опрокинуть его. Чем больше угол косогора β , тем больше сила Р1 , следовательно, тем вероятнее потеря поперечной устойчивости. При повороте автомобиля причиной потери устойчивости является центробежная сила Рц (рис. 8.4,б), направленная от центра поворота и приложенная к центру тяжести автомобиля. Она прямо пропорциональна квадрату скорости автомобиля и обратно пропорциональна радиусу кривизны его траектории.

Поперечному скольжению шин по дороге противодействуют силы сцепления, как уже отмечалось выше, которые зависят от коэффициента сцепления. На сухих, чистых покрытиях силы сцепления достаточно велики, и автомобиль не теряет устойчивости даже при большой поперечной силе. Если дорога покрыта слоем мокрой грязи или льда, автомобиль может занести даже в том случае, когда он движется с небольшой скоростью по сравнительно пологой кривой.

Максимальная скорость, с которой можно двигаться по криволинейному участку радиусом R без поперечного скольжения шин, равна Так, выполняя поворот на сухом асфальтобетонном покрытии (jx = 0,7) при R = 50м, можно двигаться со скоростью около 66 км/ч. Преодолевая тот же поворот после дождя (jx = 0,3) без скольжения можно двигаться лишь при скорости 40-43 км/ч. Поэтому перед поворотом нужно уменьшить скорость тем больше, чем меньше радиус предстоящего поворота. Формула определяет скорость, при которой колеса обоих мостов автомобиля скользят в поперечном направлении одновременно.

Такое явление в практике наблюдается крайне редко. Гораздо чаще начинают скользить шины одного из мостов - переднего или заднего. Поперечное скольжение переднего моста возникает редко и к тому же быстро прекращается. В большинстве скользят колеса заднего моста, которые, начав двигаться в поперечном направлении, скользят все быстрее. Такое ускоряющееся поперечное скольжение называют заносом. Для гашения начавшегося заноса нужно повернуть рулевое колесо в сторону заноса. Автомобиль при этом начнет двигаться по более пологой кривой, радиус поворота увеличиться, а центробежная сила уменьшится. Поворачивать рулевое колесо нужно плавно и быстро, но не на очень большой угол, чтобы не вызвать поворот в противоположную сторону.

Как только занос прекратиться, нужно также плавно и быстро вернуть рулевое колесо в нейтральное положение. Следует также заметить, что для выхода из заноса заднеприводного автомобиля подачу топлива нужно уменьшить, а на переднеприводном, напротив, увеличить. Часто занос возникает во время экстренного торможения, когда сцепление шин с дорогой уже использовано для создания тормозных сил. В этом случае следует немедленно прекратить или ослабить торможение и тем самым повысить поперечную устойчивость автомобиля.

Под действием поперечной силы автомобиль может не только скользить по дороге, по и опрокинуться на бок или на крышу. Возможность опрокидывания зависит от положения центра, тяжести автомобиля. Чем выше от поверхности автомобиля находится центр тяжести, тем вероятнее опрокидывание. Особенно часто опрокидываются автобусы, а также грузовые автомобили, занятые на перевозке легковесных, объемных грузов (сено, солома, пустая тара и т.д.) и жидкостей. Под действием поперечной силы рессоры с одной стороны автомобиля сжимаются и кузов его наклоняется, увеличивая опасность опрокидывания.

Управляемость автомобиля. Под управляемостью понимают свойство автомобиля обеспечивать движение в направлении, заданном водителем. Управляемость автомобиля больше, чем другие его эксплуатационные свойства, связана с водителем.

Для обеспечения хорошей управляемости конструктивные параметры автомобиля должны соответствовать психофизиологическим характеристикам водителя.

Управляемость автомобиля характеризуется несколькими показателями. Основные из них: предельное значение кривизны траектории при круговом движении автомобиля, предельное значение скорости изменения кривизны траектории, количество энергии, затрачиваемой на управление автомобилем, величина самопроизвольных отклонений автомобиля от заданного направления движения.

Управляемые колеса под воздействием неровностей дороги постоянно отклоняются от нейтрального положения. Способность управляемых колес сохранять нейтральное положение и возвращаться в него после поворота называется стабилизацией управляемых колес. Весовая стабилизация обеспечивается поперечным наклоном шкворней передней подвески. При повороте колес благодаря поперечному наклону шкворней автомобиль приподнимается, но своим весом стремиться вернуть повернутые колеса в исходное положение.

Скоростной стабилизирующий момент обусловлен продольным наклоном шкворней. Шкворень расположен так, что его верхний конец направлен назад, а нижний вперед. Ось шкворня пересекает поверхность дороги впереди пятна контакта колеса с дорогой. Поэтому при движении автомобиля сила сопротивления качению создает стабилизирующий момент относительно оси шкворня. При исправном рулевом приводе и рулевом механизме после поворота автомобиля управляемые колеса и рулевое колесо должны возвращаться в нейтральное положение без участия водителя.

В рулевом механизме червяк расположен относительно ролика с небольшим перекосом. В связи с этим в среднем положении зазор между червяком и роликом минимален и близок к нулю, а при отклонении ролика и сошки в любую сторону зазор увеличивается. Поэтому при нейтральном положении колес в рулевом механизме создается повышенное трение, способствующее стабилизации колес и скоростного стабилизирующих моментов.

Неправильная регулировка рулевого механизма, большие зазоры в рулевом приводе могут стать причиной плохой стабилизации управляемых колес, причиной колебания курса автомобиля. Автомобиль с плохой стабилизацией управляемых колес самопроизвольно меняет направление движения, вследствие чего водитель вынужден непрерывно поворачивать рулевое колесо то в одну, то в другую сторону, чтобы возвратить автомобиль на свою полосу движения.

Плохая стабилизация управляемых колес требует значительных затрат физической и психической энергии водителя, повышает износ шин и деталей рулевого привода.

При движении автомобиля на повороте наружные и внутренние колеса катятся по окружностям различного радиуса (рис. 8.4). Для того, чтобы колеса катились без скольжения, их оси должны пересекаться в одной точке. Л для выполнения этого условия управляемые колеса должны поворачиваться на разные углы. Поворот колес автомобиля на разные углы обеспечивает рулевая трапеция. Наружное колесо всегда поворачивается на меньший угол, чем внутреннее, и эта разница тем больше, чем больше угол поворота колес.

Значительное влияние на поворачиваемость автомобиля оказывает эластичность шин. При действии на автомобиль боковой силы (неважно, силы инерции или бокового ветра) шины деформируются и колеса вместе с автомобилем смещаются в сторону действия боковой силы. Это смещение тем больше, чем больше боковая сила и чем выше эластичность шин. Угол между плоскостью вращения колеса и направлением его движения называется углом увода 8 (рис. 8.5).

При одинаковых углах увода передних и задних колес автомобиль сохраняет заданное направление движения, но повернут относительно него на величину угла увода. Если угол увода колес передней оси больше угла увода колес задней тележки, то при движении автомобиля на повороте он будет стремиться двигаться по дуге большего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется недостаточной поворачиваемостью.

Если угол увода колес задней оси больше угла увода колес передней оси, то при движении автомобиля на повороте он будет стремиться двигаться по дуге меньшего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется избыточной поворачиваемостью.

Поворачиваемостью автомобиля можно в некоторой степени управлять, применяя шины разной пластичности, изменяя давление в них, изменяя распределение массы автомобиля по осям (за счет размещения груза).

Рисунок 8.5 - Кинематика поворота автомобиля и схема увода колеса

Автомобиль с избыточной поворачиваемостью более маневренный, но требует большего внимания и высокого профессионального мастерства от водителя. Автомобиль с недостаточной поворачиваемостью требует меньшего внимания и мастерства, но затрудняет работу водителя, так как требует поворотов рулевого колеса на большие углы.

Влияние поворачиваемости и на движение автомобиля становится заметным и существенным только на высоких скоростях.

Управляемость автомобиля зависит от технического состояния его ходовой части и рулевого управления. Уменьшение давления в одной из шин увеличивает ее сопротивление качению и уменьшает поперечную жесткость. Поэтому автомобиль со спущенной шиной постоянно отклоняемся и ее сторону. Для компенсации этого увода водитель поворачивает управляемые колеса в сторону, противоположную уводу, и колеса начинают катиться с боковым скольжением, интенсивно изнашиваясь при этом.

Износ деталей рулевого привода и шкворневого соединения приводит к образованию зазоров и возникновению произвольных колебаний колес.

При больших зазорах и высокой скорости движения колебания передних колес могут быть настолько значительными, что нарушится их сцепление с дорогой. Причиной колебания колес может явиться их дисбаланс из-за дисбаланса шины, заплатки па камере, грязи на диске колеса. Для предотвращения колебаний колес их необходимо балансировать на специальном стенде установкой на диск балансировочных грузов.

Проходимость автомобиля. Под проходимостью понимают свойство автомобиля двигаться по неровной и труднопроходимой местности не задевая за неровности нижним контуром кузова. Проходимость автомобиля характеризуется двумя группами показателей: геометрическими показателями проходимости и опорно- сцепными показателями проходимости. Геометрические показатели характеризуют вероятность задевания автомобиля за неровности, а опорно - сцепные характеризуют возможность движения по труднопроходимым участкам дорог и бездорожью.

По проходимости все автомобили можно разделить на три группы :

Автомобили общего назначения (колесная формула 4x2, 6x4);

Автомобили повышенной проходимости (колесная формула 4x4, 6x6);

Автомобили высокой проходимости, имеющие специальную компоновку и конструкцию, многоосные со всеми ведущими колесами, гусеничные или полугусеничные, автомобили - амфибии и другие автомобили, специально предназначенные для работы только в условиях бездорожья.

Рассмотрим геометрические показатели проходимости. Дорожный просвет - это расстояние между низшей точкой автомобиля и поверхностью дороги. Этот показатель характеризует возможность движения автомобиля без задевания за препятствия, расположенные на пути движения (рис.8.6).

Рисунок 8.6 - Геометрические показатели проходимости

Радиусы продольной и поперечной проходимости представляют собой радиусы окружностей, касательных к колесам и низшей точки автомобиля, расположенной внутри базы (колеи). Эти радиусы характеризуют высоту и очертания препятствия, которое может преодолеть автомобиль, не задевая за него. Чем они меньше, тем выше способность автомобиля преодолевать значительные неровности без задевания за них своими низшими точками.

Передний и нижний углы свеса, соответственно αп1 и αп2, образованы поверхностью дороги и плоскостью, касательной к передним или задним колесам и к выступающим низшим точкам передней или задней части автомобиля.

Максимальная высота порога, который может преодолеть автомобиль, для ведомых колес составляет 0,35...0,65 радиуса колеса. Максимальная высота порога, преодолеваемого ведущим колесом, может достигать радиуса колеса и иногда ограничивается не тяговыми возможностями автомобиля или сцепными свойствами дороги, а малыми величинами углов свеса или просвета.

Максимально необходимая ширина проезда при минимальном радиусе поворота автомобиля характеризует возможность маневрировать на малых площадках, поэтому проходимость автомобиля в горизонтальной плоскости часто рассматривают как отдельное эксплуатационное свойство маневренность. Наиболее маневренными являются автомобили со всеми управляемыми колесами. В случае буксировки прицепом или полуприцепов маневренность автомобиля ухудшается, так как мри поворотах автопоезда прицеп смешается к центру поворота, именно поэтому ширина полосы движения автопоезда больше, чем одиночного автомобиля.

К опорно - сцепным показателям проходимости относятся следующие. Максимальная сила тяги - наибольшая сила тяги, которую способен развивать автомобиль па низшей передаче. Сцепной вес - сила тяжести автомобиля, приходящаяся на ведущие колеса. Чем больше сцен пой вес, тем выше проходимость автомобиля.

Среди автомобилей с колесной формулой 4x2 наибольшую проходимость имеют заднемоторные заднеприводные и переднемоторные переднеприводные автомобили, так как при такой компоновке ведущие колеса всегда нагружены массой двигателя. Удельное давление шин на опорную поверхность определяется как отношение вертикальной нагрузки на шину к площади контакта, замеренной по контуру пятна контакта шины с дорогой q = GF.

Этот показатель имеет большое значение для проходимости автомобиля. Чем меньше удельное давление, тем меньше разрушается грунт, меньше глубина образуемой колеи, меньше сопротивление качению и выше проходимость автомобиля.

Коэффициент совпадении колеи представляет собой отношение колеи передних колес к колее задних колес. При полном совпадении колеи передних и задних колес задние катятся по грунту, уплотненному передними колесами, и сопротивление качению при этом минимально. При несовпадении колеи передних и задних колес затрачивается дополнительная энергия на разрушение задними колесами уплотненных стенок колеи, образованной передними колесами. Поэтому у автомобилей повышенной проходимости часто на задние колеса устанавливают одинарные шины, уменьшая тем самым сопротивление качению.

Проходимость автомобиля во многом зависит от его конструкции. Так, например, в автомобилях повышенной проходимости применяют дифференциалы повышенного трения, блокируемые межосевые и межколесные дифференциалы, широкопрофильные шины с развитыми грунтозацепами, лебедки для самовытаскивания и другие приспособления, облегчающие проходимость автомобиля в условиях бездорожья.

Информативность автомобиля. Под информативностью понимают свойство автомобиля обеспечивать необходимой информацией водителя и других участников движения. В любых условиях воспринимаемая водителем информация имеет важнейшее значение для безопасного управления автомобилем. При недостаточной видимости, особенно ночью, информативность среди других эксплуатационных свойств автомобиля оказывает особенное влияние на безопасность движения.

Различают внутреннюю и внешнюю информативность.

Внутренняя информативность - это свойство автомобиля обеспечивать водителя информацией о работе агрегатов и механизмов. Она зависит от конструкции панели приборов, устройств, обеспечивающих обзорность, рукояток, педалей и кнопок управления автомобилем.

Расположение приборов на панели и их устройство должны позволять водителю тратить минимальное время для наблюдения за показаниями приборов. Педали, рукоятки, кнопки и клавиши управления должны быть расположены так, чтобы водитель легко их находил, особенно ночью.

Обзорность зависит в основном от размера окон и стеклоочистителей, ширины и расположения стоек кабины, конструкции стеклоомывателей, системы обдува и обогрева стекол, расположения и конструкции зеркал заднего вида. Обзорность зависит также от удобства сиденья.

Внешняя информативность - это свойство автомобиля информировать других участников движения о своем положении на дороге и намерениях водителя по изменению направления и скорости движения. Она зависит от размеров, формы и окраски кузова, расположения световозвращателей, внешней световой сигнализации, звукового сигнала.

Грузовые автомобили средней и большой грузоподъемности, автопоезда, автобусы благодаря своим габаритам более заметны и лучше различимы, чем легковые автомобили и мотоциклы. Автомобили, окрашенные в темные цвета (черный, серый, зеленый, синий), из-за трудности их различения в 2 раза чаще попадают в ДТП, чем окрашенные в светлые и яркие цвета.

Система внешней световой сигнализации должна отличаться надежностью работы и обеспечивать однозначное толкование сигналов участниками дорожного движения в любых условиях видимости. Фары ближнего и дальнего света, а также другие дополнительные фары (прожектор, противотуманные) улучшают внутреннюю и внешнюю информативность автомобиля при движении ночью и в условиях недостаточной видимости.

Обитаемость автомобиля. Обитаемость транспортного средства - это свойства окружающей водителя и пассажиров среды, определяющие уровень комфортабельности и эстетичное i и места их труда и отдыха. Обитаемость характеризуется микроклиматом, эргономическими характеристиками кабины, шумом и вибрациями, загазованностью и плавностью хода.

Микроклимат характеризуется совокупностью температуры, влажности и скорости воздуха. Оптимальной температурой воздуха в кабине автомобиля считается 18...24°С. Понижение или повышение температуры, особенно на длительный период времени, сказывается на психофизиологических характеристиках водителя, приводит к замедлении) реакции и умственной деятельности, к физическому утомлению и, как результат, к снижению производительности труда и безопасности движения.

Влажность и скорость воздуха в значительной степени влияют на терморегуляцию организма. При низкой температуре и высокой влажности повышается теплоотдача и организм подвергается более интенсивному охлаждению. При высокой температуре и влажности теплоотдача резко снижается, что ведет к перегреву организма.

Водитель начинает ощущать движение воздуха в кабине при его скорости 0,25 м/с. Оптимальная скорость движения воздуха в кабине около 1м/с.

Эргономические свойства характеризуют соответствие сиденья и органов управления транспортного средства антропометрическим параметрам человека, т.е. размерам его тела и конечностей.

Конструкция сиденья должна способствовать посадке водителя за органами управления, обеспечивающей минимум затрат энергии и постоянную готовность в течении длительного времени.

Цветовая гамма внутри салона тоже оказывает определенное внимание на психику водителя, что, естественно, сказывается на работоспособности водителя и безопасности движения.

Природа шума и вибраций одна и та же - механические колебания деталей автомобиля. Источниками шума в автомобиле являются двигатель, трансмиссия, система выпуска отработавших газов, подвеска. Действие шума на водителя является причиной увеличения его времени реакции, временного ухудшения характеристик зрения, снижения внимания, нарушения координации движений и функций вестибулярного аппарата.

Отечественные и международные нормативные документы устанавливают предельно допустимый уровень шума в кабине в пределах 80 - 85 ДБ.

В отличие от шума, воспринимаемого ухом, вибрации воспринимаются поверхностью тела водителя. Так же, как и шум, вибрация наносит большой вред состоянию водителя, а при постоянном воздействии в течении длительного времени может повлиять на его здоровье.

Загазованность характеризуется концентрацией отработавших газов, паров топлива и других вредных примесей в воздухе. Особую опасность для водителя представляет окись углерода - газ без цвета и запаха. Попадая в кровь человека через легкие, он лишает ее возможности доставлять кислород клеткам организма. Человек погибает от удушья, ничего не чувствуя и не понимая, что с ним происходит.

В этой связи водитель должен внимательно следить за герметичностью выпускного тракта двигателя, предотвращать засасывание газов и паров из моторного отсека в кабину. Категорически запрещается пускать и главное прогревать двигатель в гараже при нахождении в нем людей.