» » Определение замедления тс. Тормозная динамичность автомобиля Определение остановочного пути автомобиля с полной нагрузкой и без нагрузки

Определение замедления тс. Тормозная динамичность автомобиля Определение остановочного пути автомобиля с полной нагрузкой и без нагрузки

Б. М. Тишин ,

негосударственный судебный эксперт в области автотехнической экспертизы,

кандидат технических наук

(г. Санкт-Петербург)

Расстояния тормозного и остановочного пути, рассчитанные имеющимися в экспертной практике методами, основаны на допущении о равенстве скорости движения транспортного средства на всём протяжении процесса торможения. В работе предложена методика уточнённого расчёта расстояний тормозного и остановочного пути транспортных средств, учитывающая снижение скорости на всех этапах процесса торможения. Рассчитанные расстояния методом уточнения дают результат на 10÷20 % меньше, чем по методикам, имеющимся в распоряжении экспертов сегодня.

Ключевые слова: методика расчёта; тормозной путь; остановочный путь; равенство скоростей; снижение скорости; погрешность результатов; замедление; время движения.

Т 47

ББК 67.52

УДК 343.983.25

ГРНТИ 10.85.31

Код ВАК 12.00.12

To the question of the refined calculation of the braking and stopping distance of the vehicle in the analysis of road accidents and the production of auto-technical examinations

B. M. Tishin,

non-state forensic expert in the field of autotechnical expertise

(city Sankt-Peterburg)

The distances of the braking and stopping tracks, calculated by the methods available in expert practice, are based on the assumption that the speed of the vehicle is equal throughout the braking process. In the work the technique of the refined calculation of distances of a brake and stopping way of vehicles, taking into account speed reduction at all stages of process of braking is offered. Calculated distances by the refinement method give a result of 10 ÷ 20 % less than the methods available to experts today.

Keywords : calculation technique; braking distances; stopping way; equality of speeds; reduction in speed; error in results; slowing down; driving time.

_____________________________________

Наиболее объективным показателем, по которому можно судить о скорости движения перед торможением, являются следы, оставленные шинами транспортного средства на дорожном покрытии.

Скорость движения транспортного средства перед торможением в экспертной практике рассчитывают по формуле:

Здесь:

Установившееся замедление при торможении транспортного средства;

Нормативное время нарастания замедления;

- длина замеренного следа торможения до остановки транспортного средства.

В данной формуле учитывается то обстоятельство, что при нажатии на педаль тормоза происходит постепенное нарастание замедления, и поэтому в формуле учитывается изменение скорости за время нарастания замедления как средняя величина при начальном замедлении «0» и конечном - «».

Однако изменение скорости движения в процессе торможения происходит не только за время нарастания замедления, но и за время срабатывания тормозного привода и за время движения транспортного средства, когда водитель принимает решение о необходимости торможения, прекращает подачу топлива и переносит ногу с педали подачи топлива на педаль тормоза. В это время транспортное средство двигается под действием силы инерции, преодолевая сопротивление движению транспортного средства в зависимости от условий движения и сопротивление принудительному прокручиванию коленчатого вала двигателя от колёс через трансмиссию, если не выключена передача на коробке переключения передач (КПП), так как обороты коленчатого вала резко уменьшаются после прекращения подачи топлива, а колёса продолжают вращение какое-то время, практически, с прежней скоростью.

В настоящее время наличие в системе тормозов устройства антиблокировки колёс (АБС), не позволяет колёсам блокироваться при интенсивном (экстренном) торможении. Поэтому следов торможения, как таковых, на дорожном покрытии не остаётся. Это положение закреплено в ГОСТ Р 51709-2001 п. 4.1.16: «АТС, оборудованные антиблокировочными тормозными системами (АБС), при торможениях в снаряжённом состоянии, (с учётом массы водителя), с начальной скоростью, не менее 40 км /час , должны двигаться в пределах коридора движения без видимых следов увода и заноса, а их колёса не должны оставлять следов юза на дорожном покрытии до момента отключения АБС при достижении скорости движения, соответствующей порогу отключения АБС (не более 15 км /час ). Функционирование сигнализаторов АБС должно соответствовать её исправному состоянию».

Это же обстоятельство не позволяет устанавливать скорость транспортного средства перед торможением по приведённой формуле, учитывающей изменение скорости за время нарастания замедления.

Поэтому скорость движения перед торможением устанавливается следствием, судом, экспертами другими методами, когда и изменение скорости за время нарастания замедления не учитывается.

Согласно ГОСТ Р 51709-2001 , под тормозным путём понимается расстояние, пройденное АТС от начала до конца торможения.

Тормозная диаграмма, приведённая в ГОСТ Р 51709-2001 в приложении «Б» изображена на рис. 1.

Рис. 1. Тормозная диаграмма: время запаздывания тормозной системы; время нарастания замедления; время торможения с установившимся замедлением; время срабатывания тормозной системы; установившееся замедление АТС; Н и К - начало и конец торможения соответственно.

Начало торможения - это момент времени, в который транспортное средство получает сигнал о необходимости осуществить торможение. Обозначено точкой «Н» в приложении «Б».

Конец торможения - это момент времени, в который исчезло искусственное сопротивление движению АТС или оно остановилось. Обозначено точкой «К» в приложении «Б».

В приложении «Г» (ГОСТ Р 51709-2001) указано, что допускается вычисление тормозного пути в метрах, для начальной скорости торможения по результатам проверок показателей замедления АТС при торможении по формуле (приложение «Д»):


где: - начальная скорость торможения АТС, км /час ;

Время запаздывания тормозной системы, с ;

Время нарастания замедления, с ;

Установившееся замедление, м /с 2 ;

В приложении «Д» первое слагаемое выражения тормозного пути приравнивается к выражению, в котором «А» - коэффициент, характеризующий время срабатывания тормозной системы.


В этом же приложении даётся таблица значений коэффициента «А», и нормативного установившегося замедления для различных категорий АТС.

Данный способ расчёта применяется при пересчётах нормативов тормозного пути.

Таблица Д. 1

АТС

Исходные данные для расчета норматива тормозного пути АТС в снаряженном состоянии:

А

м /с 2

Пассажирские и грузопассажирские автомобили

М1

0,10

5,8

М2, М3

0,10

5,0

Легковые автомобили с прицепом прицприприцепом

M 1

0,10

5,8

Грузовые автомобили

N 1 , N2, N3

0,15

5,0

Грузовые автомобили с прицепом (полуприцепом)

N 1 , N2, N3

0,18

5,0

Исходя из нормативных значений коэффициента «А», для АТС категорий М1, М2, М3, расстояние тормозного пути увеличивается на 10 % от величины начальной скорости. Для АТС категорий N1, N2, N3 без прицепа - на 15 % от величины начальной скорости. Для АТС категорий N1; N2; N3 с прицепом или полуприцепом - на 18 % величины начальной скорости.

Начальная скорость подставляется в км /час .

В практике анализа ДТП или при производстве автотехнических экспертиз для определения эффективности торможения принимается не тормозной путь, обусловленный техническими параметрами автотранспортного средства, а остановочный путь АТС, обусловленный как техническими параметрами транспортного средства, так и психофизиологическими возможностями водителя.

По определению, данному профессором С. А. Евтюковым - остановочный путь - это расстояние, необходимое водителю для остановки транспортного средства с помощью торможения при начальной скорости торможения при движении в конкретных дорожных условиях. Остановочный путь складывается из расстояния, проходимого транспортным средством за время реакции водителя на опасность, запаздывания тормозного привода и нарастания замедления при экстренном торможении, а также расстояния, проходимого транспортным средством с установившемся замедлением вплоть до полной его остановки.

Как видно из определений тормозного и остановочного пути, они отличаются друг от друга на расстояние, которое проходит транспортное средство за время реакции усреднённого водителя.

В экспертной практике остановочный путь рассчитывается, исходя из нормативов времени реакции усреднённого водителя, по видам дорожно-транспортных ситуаций, нормативного времени запаздывания тормозного привода и нарастания замедления по категориям транспортных средств и видам тормозных приводов.


где: - время реакции водителя, выбираемое экспертом по таблицам дифференцированных значений времени реакции водителя, в соответствии с метеорологическими и дорожными условиями .

- нормативно-технические значения параметров торможения, принимаемые экспертом по таблицам экспериментально расчётных значений параметров торможения автотранспортных средств в экспертной практике .

Как для расчёта тормозного пути по формуле, приведённой в ГОСТ, так и для расчёта остановочного пути по формуле, применяемой в практике экспертных расчётов, сделаны допущения: начальная скорость движения транспортного средства перед торможением принимается равной скорости и при нажатии на педаль тормоза и при начале движения в заторможенном состоянии с установившемся замедлением. То есть условно принимается, что на всём протяжении процесса торможения до момента возникновения установившегося замедления, скорость движения транспортного средства остаётся постоянной.

На самом деле, в процессе торможения постоянно происходит снижение скорости как при движении за время реакции водителя, так и при движении за время срабатывания тормозной системы. При расчёте тормозного и остановочного пути в приведённых формулах применяются параметры, учитывающие расстояния, которые проходит транспортное средство на этапах торможения, но не учитывается, что эти расстояния транспортное средство проходит с постоянно уменьшающейся скоростью.

При движении транспортного средства во время реакции водителя оно под действием силы инерции проходит расстояние , преодолевая силу сопротивления качению по фактическому дорожному покрытию, и, если при нажатии на педаль тормоза не происходит выключения передачи КПП, то и преодолевая силу сопротивления движению от прокручивания коленчатого вала двигателя через трансмиссию.

Сила сопротивления качению транспортного средства в общем случае определяется произведением коэффициента сопротивления качению на фактическом покрытии дороги на силу тяжести транспортного средства:

При движении на горизонтальном участке пути или когда уклоном - подъёмом можно пренебречь,

Сопротивление движению транспортного средства, возникающее от прокручивания коленчатого вала двигателя, очень сложно рассчитать аналитически, поэтому в практике теории движения автомобилей силу сопротивления движению, возникающую от прокручивания вала двигателя через трансмиссию, рассчитывают по эмпирической формуле Ю. А. Кременца :


где - рабочий объём двигателя (литраж), в литрах;

Скорость движения транспортного средства перед торможением в км /час .

Сила тяжести транспортного средства, кг .

Если движение осуществляется не на прямой передаче, то в числитель вводится передаточное число КПП передачи.

Сложность учёта этих параметров заключается в том, что для каждого конкретного случая необходимо вычислять свои значения замедления, возникающего при преодолении сопротивлений движению. Однако это же и повышает точность произведённых расчётов остановочного и тормозного пути.

Замедление транспортного средства при преодолении сопротивления движению определяется по общей формуле замедления:

где - суммарное значение коэффициента сопротивления движению.

В частности, оно включает в себя коэффициент сопротивления качению и условный коэффициент сопротивления от прокручивания вала двигателя через трансмиссию - .

Коэффициент рассчитывается по общей формуле - сила сопротивления, поделённая на силу тяжести транспортного средства.

Замедление транспортного средства, возникающее при движении за время реакции водителя:

За время реакции водителя происходит снижение скорости движения:

м/c

В момент начала реагирования на опасность скорость движения транспортного средства , а в момент нажатия на педаль тормоза -

М/с

Следовательно, всё время движения транспортного средства за время реакции водителя следует рассматривать, как движение со средней скоростью:


Исходя из представленного расчёта, к моменту начала срабатывания тормозной системы скорость транспортного средства будет не

м /с

При движении транспортного средства за время срабатывания тормозной системы (, конец движения осуществляется со скоростью:

м /с

Движение транспортного средства за время срабатывания тормозной системы осуществляется со средней скоростью:


Снижение скорости за время срабатывания тормозной системы

Таким образом, к моменту появления установившегося замедления скорость транспортного средства равна

Именно эту скорость следует подставлять в слагаемое, определяющее расстояние перемещения транспортного средства за время движения с установившимся замедлением до остановки или до заданного значения.

Предложенная методика учёта снижения скорости позволяет предложить другой вариант расчёта остановочного и тормозного пути:


Несмотря на громоздкость предложенных выражений, они несложны в вычислениях, так как здесь приведены общие выводы. При последовательном решении значений средних скоростей по начальным и конечным скоростям, процесс вычислений упрощается.

Рассмотрим какое-либо конкретное событие торможения легкового транспортного средства категории , при времени реакции водителя на опасность, равном 1 с , времени запаздывания тормозного привода равным 0,1 с , времени нарастания замедления, возникающего на сухом асфальтовом покрытии 0,35 с , при установившемся замедлении 6,8 м /с 2 . Рабочий объём двигателя 2 л , фактическая масса транспортного средства 1500 кг , начальная скорость движения транспортного средства перед торможением 90 км /час (25 м /с ). Установившееся замедление принято без учёта влияния системы АБС.

Замедление в процессе движения транспортного средства за время реакции равно:

м/с 2

где - коэффициент сопротивления качению на сухом горизонтальном асфальте - 0,018 .

Условный коэффициент сопротивления прокручиванию коленчатого вала двигателя через трансмиссию:


Замедление транспортного средства за время реакции водителя:

При движении за время реакции водителя происходит снижение скорости движения:

Средняя скорость движения за время реакции водителя:

Скорость в конце времени реакции:

Установившееся замедление за время срабатывания тормозной системы:

Снижение скорости за время срабатывания тормозной системы:

Средняя скорость движения за время срабатывания тормозной системы.

Скорость движения в конце времени срабатывания тормозной системы:

Именно эта скорость и должна подставляться в слагаемое, определяющее расстояние движение транспортного средства в режиме торможения с установившимся замедлением.

Рассчитаем расстояние тормозного пути по формулам, принимаемым в ГОСТ и по предложенной методике:

По методике ГОСТ Р 51709-2001, приложение «Д»:

По методике, допускаемой приложением «Г», ГОСТ Р 51709-2001:



Что составляет, соответственно, 19,8 и 16,6 % от величины тормозного пути, определённого по ГОСТ Р 51709-2001.


По принятой в экспертной практике методике расчёта расстояния остановочного пути:

По предложенной методике уточнённого расчёта:


Что составляет 11,6 % от величины тормозного пути, рассчитанного по принятой методике:


Предлагаемая методика позволяет учитывать влияние конкретной модели транспортного средства и при дифференцированном расчёте тормозного и остановочного пути уменьшить погрешность расчёта. Это позволяет принимать категорический вывод о наличии или отсутствии технической возможности предотвращений дорожно-транспортных происшествий на более обоснованных расчётах, а не на усреднённых нормативных параметрах и допущении о равенстве скорости движения в процессе всего процесса торможения до момента возникновения установившегося замедления.

Применяемые в экспертной практике формулы расчёта тормозного и остановочного пути дают завышенный результат, превышающий 10 %, по сравнению с предлагаемой методикой уточнённого расчёта. При расчёте тормозных и остановочных путей транспортных средств категорий N 1 , N 2 , N 3 по предлагаемой методике разность результатов по сравнению с применяемыми методиками будет увеличиваться, так как растёт значение коэффициента «А».

Литература:

1. Евтюков С.А., Васильев Я. В. Экспертиза ДТП: Справочник. - СПб.: ДНК, 2006.

2. Применение дифференцированных значений времени реакции водителя в экспертной практике: Методические рекомендации ВНИИСЭ. - М., 1987.

3. Использование в экспертной практике экстремально-расчетных значений параметров торможения АТС: Методические рекомендации ВНИИСЭ. - М., 1986.

4. Боровский Б. Е. Безопасность движения автомобильного транспорта. - Л.: Лениздат, 1984.

После каждого дорожно-транспортного происшествия обязательно определяется скорость транспортного средства до и в момент удара или наезда. Данная величина имеет столь большое значение по нескольким причинам:

  • Самый часто нарушаемый пункт правил дорожного движения именно превышение максимально допустимой скорости движения, и, таким образом, становиться возможным определить вероятного виновника ДТП.
  • Также скорость влияет на тормозной путь, а значит и на возможность избежать столкновения или наезда.

Дорогой читатель! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - обращайтесь в форму онлайн-консультанта справа или звоните по телефону.

Это быстро и бесплатно !

Определение скорости автомобиля по тормозному пути

Под тормозным путём обычно понимают расстояние, которое проходит то или иное транспортное средство от начала торможения (или, если быть более точным, с момента активации тормозной системы) и до полной остановки. Общая, недетализированная формула, из которой возможно вывести формулу для расчета скорости, выглядит так:

Va = 0.5 х t3 х j + √2Sю х j = 0,5 0,3 5 + √2 х 21 х 5 = 0,75 +14,49 = 15,24м/с = 54,9 км/ч где: в выражении √2Sю х j, где:

  • Va – начальная скорость автомобиля, измеряемая в метрах в секунду;
  • t3 – время нарастания замедления автомобиля в секундах;
  • j – установившееся замедление автомобиля при торможении, м/с2; обратите внимание, что для мокрого покрытия – 5м/с2 по ГОСТ 25478-91, а для сухого покрытия j=6,8 м/с2, отсюда начальная скорость автомобиля при “юзе” в 21 метр равна 17,92м/с, или 64,5км/ч.
  • – длина тормозного следа (юза), измеряемая так же в метрах.

Более подробно процесс определения скорости во время ДТП рассказан в замечательной статье Учет потенциальной деформации при определении скорости автомобиля в момент ДТП . Вы можете ее в формте PDF. Авторы: А.И. Денега, О.В. Яксанов.

Исходя из указанного выше уравнения, можно сделать вывод, что на тормозной путь влияет в первую очередь скорость автомобиля, которую при известных остальных величинах нетрудно вычислить. Наиболее сложной частью вычислений по этой формуле является точное определение коэффициента трения, так как на его значение влияет целый ряд факторов:

  • тип дорожного покрытия;
  • погодные условия (при смачивании поверхности водой коэффициент трения уменьшается);
  • тип шин;
  • состояние шин.

Для точного результата расчётов также нужно принимать во внимание особенности тормозной системы конкретного транспортного средства, например:

Тормозной след

После достаточно быстрой активации тормозной системы на дорожном покрытии остаются отпечатки – тормозные следы. В случае если колесо во время торможения заблокировано полностью и не вращается, остаются сплошные следы, (которые иногда называют «след юза») которые многие авторы призывают считать следствием максимально возможного нажатия на педаль тормоза («тормоз в пол»). В случае же когда педаль нажата не до конца (или присутствует какой-либо дефект тормозной системы) на дорожном покрытии остаются как бы «смазанные» отпечатки протектора, которые образуются вследствие неполной блокировки колес, которые при таком торможении сохраняют возможность вращаться.

Остановочный путь

Остановочным путём считают то расстояние, которое проходит определённое транспортное средство начиная с обнаружения водителем угрозы и до остановки автомобиля. Именно в этом заключается главное отличие тормозного пути и остановочного пути – последний включает в себя и расстояние, которое преодолел автомобиль за время срабатывания тормозной системы, и расстояние, которое было преодолено за время, понадобившееся водителю на осознание опасности и реакции на нее. На время реакции водителя влияют такие факторы:

  • положение тела водителя;
  • психоэмоциональное состояние водителя;
  • утомление;
  • некоторые заболевания;
  • алкогольное или наркотическое опьянение.

Определение скорости исходя из закона сохранения количества движения

Возможно также и определение скорости движения автомобиля по характеру его перемещения после столкновения, а также, в случае столкновения с другим транспортным средством, по перемещению второй машины в результате передачи кинетической энергии от первой. Особенно часто данный метод используют при столкновениях с неподвижными транспортными средствами, или если столкновение случилось под углом, близким к прямому.

Определение скорости автомобиля исходя из полученных деформаций

Лишь очень незначительное количество экспертов определяют скорость движения автомобиля таким способом. Хотя зависимость повреждений автомобиля от его скорости и очевидна, но единой эффективной, точной и воспроизводимой методики определения скорости по полученным деформациям не существует.

Это связано с огромным количеством факторов, влияющих на образование повреждений, а также с тем, что некоторые факторы попросту невозможно учесть. Оказывать влияние на образование деформаций могут:

  • конструкция каждого конкретного автомобиля;
  • особенности распределения грузов;
  • срок эксплуатации автомобиля;
  • количества и качества пройденных транспортным средством кузовных работ;
  • старение метала;
  • модификации конструкции автомобиля.

Определение скорости в момент наезда (столкновения)

Скорость в момент наезда обычно определяют по тормозному следу, но если это по ряду причин не представляется возможным, то приблизительные цифры скорости можно получить анализируя травмы, полученные пешеходом, и повреждения, образовавшиеся после наезда на транспортном средстве.

К примеру, о скорости автомобиля можно судить по особенностям бампер-перелома – специфической для наезда автомобилем травмы, которая характеризуется наличием поперечно-осколочного перелома с крупным отломком кости неправильной ромбообразной формы на стороне удара. Локализация при ударе бампером легкового автомобиля – верхняя или средняя треть голени, для грузового автомобиля – в участке бедра.

Принято считать, что если скорость транспортного средства в момент удара превышала 60 км/ч, то, как правило, возникает косопоперечный или поперечный перелом, если же скорость была ниже 50 км/ч, то чаще всего образуется поперечно-осколочный перелом. При столкновении с неподвижным автомобилем скорость в момент удара определяется исходя из закона сохранения количества движения.

Анализ методов определения скорости автомобиля при ДТП

По тормозному следу

Достоинства:

  • относительная простота метода;
  • большое количество научных работ и составленных методических рекомендаций;
  • достаточно точный результат;
  • возможность быстрого получения результатов экспертизы.

Недостатки:

  • при отсутствии следов шин (если автомобиль, к примеру, не тормозил перед столкновением, или особенности дорожного покрытия не позволяют с достаточной достоверностью измерить след юза) проведение данного метода невозможно;
  • не учитывается воздействие одного транспортного средства в ходе столкновения на другое, что может.

По закону сохранения количества движения

Преимущества:

  • возможность определения скорости транспортного средства даже при отсутствии следов торможения;
  • при тщательном учёте всех факторов метод имеет высокую достоверность результата;
  • удобство использования метода при перекрёстных столкновениях и столкновениях с неподвижными автомобилями.

Недостатки:

  • отсутствие данных о режиме движения транспортного средства приводит к неточному результату;
  • по сравнению с предыдущим методом более сложные и громоздкие вычисления;
  • метод не учитывает энергию, затраченную на образование деформаций.

Исходя из полученных демормаций

Преимущества:

  • учитывает затраты энергии на образование деформаций;
  • не требует наличия следов торможения.

Недостатки:

  • сомнительная точность получаемых результатов;
  • огромное количество учитываемых факторов;
  • зачастую невозможность определения многих факторов;
  • отсутствие стандартизированных воспроизводимых методик определения.

На практике чаще всего используют два метода – определение скорости по следу торможения и исходя из закона сохранения количества движения. При использовании двух этих методов одновременно обеспечивается максимально точный результат, так как методики дополняют друг друга.

Остальные способы определения скорости транспортного средства значительного распространения не получили по причине недостоверности получаемых результатов и/или необходимости громоздких и сложных вычислений. Также при оценке скорости автомобиля учитывают показания свидетелей происшествия, хотя в таком случае нужно помнить о субъективности восприятия скорости разными людьми.

В некоторой мере помочь разобраться с обстоятельствами происшествия и в итоге получить более точный результат может помочь анализ видео из камер наблюдения и видеорегистраторов.

  • Туренко А.Н., Клименко В.И., Сараев А.В. Автотехническая экспертиза (Документ)
  • Кустарев В.П., Тюленев Л.В., Прохоров Ю.К., Абакумов В.В. Обоснование и проектирование организации по производству товаров (работ, услуг) (Документ)
  • Яковлева Е.В. Заболевания почек в практике участкового терапевта (Документ)
  • Скирковский С.В., Лукьянчук А.Д., Капский Д.В. Экспертиза ДТП (Документ)
  • Пупко Г.М. Ревизия и аудит (Документ)
  • (Документ)
  • Алгоритм проведения гемотрансфузии. Методические рекомендации (Документ)
  • Балакин В.Д. Экспертиза дорожно-транспортных происшествий (Документ)
  • Пучков Н.П., Ткач Л.И. Математика случайного. Методические рекомендации (Документ)
  • n1.doc

    ТЕХНИЧЕСКИЕ ВЕЛИЧИНЫ, ОПРЕДЕЛЯЕМЫЕ ЭКСПЕРТОМ

    Помимо исходных данных, принимаемых на основании постановления следователя и материалов дела, эксперт использует ряд технических величин (параметров), которые им определяются в соответствии с установленными исходными данными. К ним относятся: время реакции водителя, время запаздывания срабатывания тормозного привода, время нарастания замедления при экстренном торможении, коэффициент сцепления шин с дорогой, коэффициент сопротивления движению при качении колес или скольжении тела по поверхности и др. Принятые значения всех величин должны быть подробно обоснованы в исследовательской части экспертного заключения.

    Поскольку эти величины определяются, как правило, в соответствии с установленными исходными данными об обстоятельствах происшествия, они не могут быть отнесены к исходным (т.е. принятым без обоснования или исследования) независимо от того, каким путем эксперт определяет их (по таблицам, расчетным путем или в результате экспериментальных исследований). Эти величины могут быть приняты за исходные данные лишь в случае, если они определены следственными действиями, как правило, при участии специалиста и указаны в постановлении следователя.

    1. ЗАМЕДЛЕНИЕ ПРИ ЭКСТРЕННОМ ТОРМОЖЕНИИ ТРАНСПОРТНЫХ СРЕДСТВ

    Замедление J - одна из основных величин, необходимых при проведении расчетов для установления механизма происшествия и решения вопроса о технической возможности предотвратить происшествие путем торможения.

    Величина установившегося максимального замедления при экстренном торможении зависит от многих факторов. С наибольшей точностью она может быть установлена в результате эксперимента на месте происшествия. Если сделать это не представляется возможным, эту величину определяют с некоторым приближением по таблицам или расчетным путем.

    При торможении негруженого транспортного средства с исправными тормозами на сухой горизонтальной поверхности асфальтового покрытия минимально допустимые значения замедления при экстренном торможении определяются в соответствии с Правилами движения (ст. 124), а при торможении груженого транспортного средства по следующей формуле:


    где:



    -

    минимально допустимое значение замедления негруженого транспортного средства, м/сек,




    -

    коэффициент эффективности торможения негруженого транспортного средства;




    -

    коэффициент эффективности торможения груженого транспортного средства.

    Значения замедления при экстренном торможении всеми колесами в общем случае определяется по формуле:



    где

    ?

    -

    коэффициент сцепления на участке торможения;



    -

    коэффициент эффективности торможения транспортного средства;



    -

    угол уклона на участке торможения (если  ? 6-8°, Cos можно принимать равным 1).

    Знак (+) в формуле принимается при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    2. КОЭФФИЦИЕНТ СЦЕПЛЕНИЯ ШИН С ДОРОГОЙ

    Коэффициент сцепления ? представляет собой отношение максимально возможного на данном участке дороги значения cилы сцепления между шинами транспортного средства и поверхностью дороги Р сц к весу этого транспортного средства G a :

    Необходимость в определении коэффициента сцепления возникает при расчете замедления при экстренном торможении транспортного средства, решении ряда вопросов, связанных с маневром и движением на участках с большими углами наклона. Величина его зависит главным образом от типа и состояния покрытия дороги, поэтому приближенное значение коэффициента для конкретного случая может быть определено по таблице 1 3 .

    Таблица 1


    Вид дорожного покрытия

    Состояние покрытия

    Коэффициент сцепления (? )

    Асфальт, бетон

    сухой

    0,7 - 0,8

    мокрый

    0,5 - 0,6

    грязный

    0,25 - 0,45

    Булыжник, брусчатка

    сухие

    0,6 - 0,7

    мокрые

    0,4 - 0,5

    Грунтовая дорога

    сухая

    0,5 - 0,6

    мокрая

    0,2 - 0,4

    грязная

    0,15 - 0,3

    Песок

    влажный

    0,4 - 0,5

    сухой

    0,2 - 0,3

    Асфальт, бетон

    обледенелые

    0,09 - 0,10

    Укатанный снег

    обледенелый

    0,12 - 0,15

    Укатанный снег

    без ледяной корки

    0,22 - 0,25

    Укатанный снег

    обледенелый, после россыпи песка

    0,17 - 0,26

    Укатанный снег

    без ледяной корки, после россыпи песка

    0,30 - 0,38

    Существенное влияние на величину коэффициента сцепления оказывают скорость движения транспортного средства, состояние протекторов шин, давление в шинах и ряд других неподдающихся учету факторов. Поэтому, чтобы выводы эксперта оставались справедливыми и при других возможных в данном случае его значениях, при проведении экспертиз следует принимать не средние, а предельно возможные значения коэффициента ? .

    Если необходимо точно определить значение коэффициента ? , следует провести эксперимент на месте происшествия.

    Значения коэффициента сцепления, наиболее приближенные к действительному, т. е. к бывшему в момент происшествия, можно установить путем буксировки заторможенного транспортного средства, причастного к происшествию (при соответствующем техническом состоянии этого транспортного средства), замеряя при этом с помощью динамометра силу сцепления.

    Определение коэффициента сцепления с помощью динамометрических тележек нецелесообразно, поскольку действительное значение коэффициента сцепления конкретного транспортного средства может существенно отличаться от значения коэффициента сцепления динамометрической тележки.

    При решении вопросов, связанных с эффективностью торможения, экспериментально определять коэффициент? нецелесообразно, поскольку значительно проще установить замедление транспортного средства, наиболее полно характеризующее эффективность торможения.

    Необходимость в экспериментальном определении коэффициента ? может возникнуть при исследовании вопросов, связанных с маневром, преодолением крутых подъемов и спусков, удержанием на них транспортных средств в заторможенном состоянии.

    3. КОЭФФИЦИЕНТ ЭФФЕКТИВНОСТИ ТОРМОЖЕНИЯ

    Коэффициент эффективности торможения есть отношение расчетного замедления (определенного с учетом величины коэффициента сцепления на данном участке) к действительному замедлению при движении заторможенного транспортного средства на этом участке:

    Следовательно, коэффициент К э учитывает степень использования сцепных качеств шин с поверхностью дороги.

    При производстве автотехнических экспертиз знать коэффициент эффективности торможения необходимо для расчета замедления при экстренном торможении транспортных средств.

    Величина коэффициента эффективности торможения прежде всего зависит от характера торможения, при торможении исправного транспортного средства с блокировкой колес (когда на проезжей части остаются следы юза) теоретически К э = 1.

    Однако при неодновременной блокировке коэффициент эффективности торможения может превышать единицу. В экспертной практике в этом случае рекомендуются следующие максимальные значения коэффициента эффективности торможения:


    К э = 1.2

    при? ? 0.7

    К э = 1.1

    при? = 0,5-0,6

    К э = 1.0

    при? ? 0.4

    Если торможение транспортного средства осуществлялось без блокировки колес, определить эффективность торможения транспортного средства без экспериментальных исследований невозможно, так как не исключено, что тормозная сила ограничивалась конструкцией и техническим состоянием тормозов.

    Таблица 2 4

    Вид транспортного средства

    К э в случае торможения негруженого и полностью груженного транспортных средств при следующих коэффициентах сцепления

    0,7

    0,6

    0,5

    0,4

    Легковые автомобили и другие на их базе









    Грузовые - грузоподъемностью до 4,5 т и автобусы длиной до 7,5 м









    Грузовые - грузоподъемностью свыше 4.5 т и автобусы длиной более 7,5 м









    Мотоциклы и мопеды без коляски









    Мотоциклы и мопеды с коляской









    Мотоциклы и мопеды с рабочим объемом двигателя 49,8 см 3

    1.6

    1.4

    1.1

    1.0

    В этом случае для исправного транспортного средства можно определить лишь минимально допустимую эффективность торможения (максимальное значение коэффициента эффективности; торможения).

    Максимально допустимые значения коэффициента эффективности торможения исправного транспортного средства в основном зависят от типа транспортного средства, его нагрузки и коэффициента сцепления на участке торможения. Располагая этими сведениями можно определить коэффициент эффективности торможения (см. табл. 2).

    Приведенные в таблице значения коэффициента эффективности торможения мотоциклов справедливы при одновременном торможении ножным и ручным тормозами.

    Если транспортное средство нагружено не полностью, коэффициент эффективности торможения может быть определен путем интерполяции.

    4. КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ ДВИЖЕНИЮ

    В общем случае коэффициентом сопротивления движению тела по опорной поверхности называется отношение сил, препятствующих этому движению, к весу тела. Следовательно, коэффициент сопротивления движению позволяет учесть потери энергии при перемещении тела на данном участке.

    В зависимости от природы действующих сил в экспертной практике пользуются различными понятиями коэффициента сопротивления движению.

    Коэффициентом сопротивления качению - ѓ называют отношение силы сопротивления движению при свободном качении транспортного средства в горизонтальной плоскости к его весу.

    На величину коэффициента ѓ , помимо типа и состояния дорожного покрытия, оказывает влияние целый ряд других факторов (например, давление в шинах, рисунок протектора, конструкция подвески, скорость и др.), поэтому более точное значение коэффициента ѓ может быть определено в каждом случае экспериментальным путем.

    Потеря энергии при перемещении по поверхности дороги различных объектов, отброшенных при столкновении (наезде), определяется коэффициентом сопротивления движению ѓ g . Зная величину этого коэффициента и расстояние, на которое переместилось тело по поверхности дороги, можно установить его первоначальную скорость, после чего во многих случаях.

    Значение коэффициента ѓ можно приближенно определить по таблице 3 5 .

    Таблица 3


    Дорожное покрытие

    Коэффициент, ѓ

    Цемент и асфальтобетон в хорошем состоянии

    0,014-0,018

    Цемент и асфальтобетон в удовлетворительном состоянии

    0,018-0,022

    Щебенка, гравий с обработкой вяжущими материалами, в хорошем состоянии

    0,020-0,025

    Щебенка, гравий без обработки, с небольшими выбоинами

    0,030-0,040

    Брусчатка

    0,020-0,025

    Булыжник

    0,035-0,045

    Грунт плотный, ровный, сухой

    0,030-0,060

    Грунт неровный и грязный

    0,050-0,100

    Песок влажный

    0,080-0,100

    Песок сухой

    0,150-0,300

    Лед

    0,018-0,020

    Снежная дорога

    0,025-0,030

    Как правило, при перемещении отброшенных при столкновении (наезде) объектов движение их тормозится неровностями дороги, острые кромки их врезаются в поверхность покрытия и т.п. Учесть влияние всех этих факторов на величину силы сопротивления движению конкретного объекта не представляется возможным, поэтому значение коэффициента сопротивления движению ѓ g может быть найдено лишь экспериментальным путем.

    Следует помнить, что при падении тела с высоты в момент удара гасится часть кинетической энергии поступательного движения за счет прижатия тела к поверхности дороги вертикальной составляющей сил инерции. Поскольку потерянную при этом кинетическую энергию учесть не удается, нельзя определить и действительное значение скорости тела в момент падения, можно определить лишь нижний ее предел.

    Отношение силы сопротивления движению к весу транспортного средства при свободном качении его на участке с продольным уклоном дороги называется коэффициентом суммарного сопротивления дороги ? . Величина его может быть определена по формуле:


    Знак (+) берется при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    При перемещении по наклонному участку дороги заторможенного транспортного средства коэффициент суммарного сопротивления движению выражается аналогичной формулой:


    5. ВРЕМЯ РЕАКЦИИ ВОДИТЕЛЯ

    Под временем реакции водителя в психологической практике понимается промежуток времени с момента поступления к водителю сигнала об опасности до начала воздействия водителя на органы управления транспортного средства (педаль тормоза, рулевое колесо).

    В экспертной практике под этим термином принято понимать промежуток времени t 1 , достаточный для того, чтобы любой водитель (психофизические возможности которого отвечают профессиональным требованиям) после того, как возникнет объективная возможность обнаружить опасность, успевал воздействовать на органы управления транспортного средства.

    Очевидно между этими двумя понятиями имеется существенная разница.

    Во-первых, не всегда сигнал об опасности совпадает с моментом, когда возникает объективная возможность обнаружить препятствие. В момент появления препятствия водитель может выполнять другие функции, отвлекающие его на какое-то время от наблюдения в направлении возникшего препятствия (например, наблюдение за показаниями контрольных приборов, поведением пассажиров, объектами, расположенными в стороне от направления движения, и т. п.).

    Следовательно, время реакции (в том смысле, какой вкладывается в этот термин в экспертной практике) включает в себя время, прошедшее с момента, когда водитель имел объективную возможность обнаружить препятствие, до момента, когда он фактически его обнаружил, и собственно время реакции с момента поступления к водителю сигнала об опасности.

    Во-вторых, время реакции водителя t 1 , которое принимается в расчетах экспертов, для данной дорожной обстановки величина постоянная, одинаковая для всех водителей. Она может значительно превышать фактическое время реакции водителя в конкретном случае дорожно-транспортного происшествия, однако фактическое время реакции водителя не должно быть больше этой величины, так как тогда его действия следует оценивать как несвоевременные. Фактическое время реакции водителя в течении короткого отрезка времени может меняться в широких пределах в зависимости от целого ряда случайных обстоятельств.

    Следовательно, время реакции водителя t 1 , которое принимается в экспертных расчетах, по существу является нормативным, как бы устанавливающим необходимую степень внимательности водителя.

    Если водитель реагирует на сигнал медленнее, чем другие водители, следовательно, он должен быть более внимательным при управлении транспортным средством, чтобы уложиться в этот норматив.

    Было бы правильнее, по нашему мнению, назвать величину t 1 не временем реакции водителя, а нормативным временем запаздывания действий водителя, такое название точнее отражает сущность этой величины. Однако поскольку термин «время реакции водителя» прочно укоренился в экспертной и следственной практике, мы сохраняем его и в настоящей работе.

    Так как необходимая степень внимательности водителя и возможность обнаружения им препятствия в различной дорожной обстановке неодинаковы, нормативное время реакции целесообразно дифференцировать. Чтобы сделать это, необходимы сложные эксперименты с целью выявления зависимости времени реакции водителей от различных обстоятельств.

    В экспертной практике в настоящее время рекомендуется принимать нормативное время реакции водителя t 1 равным 0,8 сек. Исключение составляют следующие случаи.

    Если водитель предупрежден о возможности возникновения опасности и о месте предполагаемого появления препятствия (например, при объезде автобуса, из которого выходят пассажиры, или при проезде с малым интервалом мимо пешехода), ему не требуется дополнительное время на обнаружение препятствия и принятие решения, он должен быть подготовлен к немедленному торможению в момент начала опасных действий пешехода. В подобных случаях нормативное время реакции t 1 рекомендуется принимать 0,4-0,6 сек (большее значение - в условиях ограниченной видимости).

    Когда водитель обнаруживает неисправность органов управления лишь в момент возникновения опасной обстановки, время реакции, естественно, возрастает, так как при этом необходимо дополнительное время для принятия водителем нового решения, t 1 в этом случае равно 2 сек.

    Правилами движения водителю запрещается управлять транспортным средством даже в состоянии самого легкого алкогольного опьянения, а также при такой степени утомления, которая может повлиять на безопасность движения. Поэтому влияние алкогольного опьянения на t 1 не учитывается, а при оценке степени утомляемости водителя и его влияния на безопасность движения следователь (суд) учитывает обстоятельства, которые вынудили водителя управлять транспортным средством в подобном состоянии.

    Полагаем, что эксперт в примечании к заключению может указать на возрастание t 1 в результате переутомления (после 16 час работы за рулем примерно на 0,4 сек).

    6.ВРЕМЯ ЗАПАЗДЫВАНИЯ СРАБАТЫВАНИЯ ТОРМОЗНОГО ПРИВОДА

    Время запаздывания срабатывания тормозного привода (t 2 ) зависит от типа и конструкции системы тормозов, их технического состояния и, в определенной степени, от характера нажатия водителем на педаль тормоза. При экстренном торможении исправного транспортного средства время t 2 сравнительно невелико: 0,1 сек для гидравлического и механического приводов и 0,3 сек - для пневматического.

    Если тормоза с гидравлическим приводом срабатывают со второго нажатия на педаль, время (t 2 ) не превышает 0,6 сек, при срабатывании с третьего нажатия на педаль t 2 = 1.0 сек (по данным экспериментальных исследований, проведенных в ЦНИИСЭ).

    Экспериментальное определение действительных значений времени запаздывания срабатывания тормозного привода транспортных средств с исправными тормозами в большинстве случаев излишне, поскольку возможные отклонения от средних значений не могут существенно повлиять на результаты расчетов и выводы эксперта.

    ПРИМЕР №1.

    Установить замедление и скорость автомобиля перед началом торможения на сухом асфальтобетонном покрытии, если длина следов торможения всех колес составляет 10 м, время нарастания замедления 0,35 с, установившееся замедление 6,8 м/с 2 , база автомобиля 2,5 м, коэффициент сцепления – 0,7.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации в соответствии с зафиксированным следом скорость автомобиля перед началом торможения составляла примерно 40,7 км/ч:

    j = g*φ = 9,81*0,70 = 6,8 м/с 2

    В формуле обозначены:

    t 3 = 0,35 с -- время нарастания замедления.

    j = 6,8 м/с 2 -- установившееся замедление.

    Sю = 10 м -- длина зафиксированного следа торможения.

    L = 2,5 м -- база автомобиля.

    ПРИМЕР №2.

    Установить остановочный путь автомобиля ВАЗ-2115 на сухом асфальтобетонном покрытии, если: время реакции водителя 0,8 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,35 с; установившееся замедление 6,8 м/с 2 ; скорость движения автомобиля ВАЗ-2115 - 60 км/ч, коэффициент сцепления – 0,7.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации остановочный путь автомобиля ВАЗ-2115 составляет примерно 38 м:

    В формуле обозначены:

    t 1 = 0,8 с -- время реакции водителя;

    t 3 = 0,35 с -- время нарастания замедления;

    j = 6,8 м/с 2 -- установившееся замедление;

    V = 60 км/ч -- скорость движения автомобиля ВАЗ-2115.

    ПРИМЕР №3.

    Определить остановочное время автомобиля ВАЗ-2114 на мокром асфальтобетонном покрытии, если: время реакции водителя 1,2 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,25 с; установившееся замедление 4,9 м/с 2 ; скорость движения автомобиля ВАЗ-2114 50 км/ч.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации остановочное время автомобиля ВАЗ-2115 составляет 4,26 с:

    В формуле обозначены:

    t 1 = 1,2 с -- время реакции водителя.

    t 3 = 0,25 с -- время нарастания замедления.

    V = 50 км/ч -- скорость движения автомобиля ВАЗ-2114.

    j = 4,9 м/с 2 -- замедление автомобиля ВАЗ-2114.

    ПРИМЕР №4.

    Определить безопасную дистанцию между движущимся впереди со скоростью автомобилем ВАЗ-2106 и автомобилем КАМАЗ, движущимся с той же скоростью. Для расчета принять следующие условия: включение стоп-сигнала от тормозной педали; время реакции водителя при выборе безопасной дистанции – 1,2 с; время запаздывания срабатывания тормозного привода автомобиля КамАЗ – 0,2 с; время нарастания замедления автомобиля КамАЗ – 0,6 с; замедление автомобиля КамАЗ – 6,2 м/с 2 ; замедление автомобиля ВАЗ – 6,8 м/с 2 ; время запаздывания срабатывания тормозного привода автомобиля ВАЗ – 0,1 с; время нарастания замедления автомобиля ВАЗ – 0,35 с.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации безопасная дистанция между автомобилями составляет 26 м:

    В формуле обозначены:

    t 1 = 1,2 с -- время реакции водителя при выборе безопасной дистанции.

    t 22 = 0,2 с -- время запаздывания срабатывания тормозного привода автомобиля КамАЗ.

    t 32 = 0,6 с -- время нарастания замедления автомобиля КамАЗ.

    V = 60 км/ч -- скорость движения автомобилей.

    j 2 = 6,2 м/с 2 -- замедление автомобиля КамАЗ.

    j 1 = 6,8 м/с 2 -- замедление автомобиля ВАЗ.

    t 21 = 0,1 с -- время запаздывания срабатывания тормозного привода автомобиля ВАЗ.

    t 31 = 0,35 с -- время нарастания замедления автомобиля ВАЗ.

    ПРИМЕР №5.

    Определить безопасный интервал между движущимися в попутном направлении автомобилями ВАЗ-2115 и КамАЗ. Скорость автомобиля ВАЗ-2115 – 60 км/ч, скорость автомобиля КамАЗ – 90 км/ч.

    РЕШЕНИЕ:

    В сложившейся дорожной ситуации при попутном движении транспортных средств безопасный боковой интервал составляет 1,5 м:

    В формуле обозначены:

    V 1 = 60 км/ч - скорость движения автомобиля ВАЗ-2115.

    V 2 = 90 км/ч - скорость движения автомобиля КамАЗ.

    ПРИМЕР №6.

    Определить безопасную скорость автомобиля ВАЗ-2110 по условиям видимости, если видимость в направлении движения составляет 30 метров, время реакции водителя при ориентировании в направлении движения – 1,2 с; время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,25 с; установившееся замедление – 4,9 м/с 2 .

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации безопасная скорость автомобиля ВАЗ-2110 по условию видимости в направлении движения составляет 41,5 км/ч:

    В формулах обозначены:

    t 1 = 1,2 с -- время реакции водителя при ориентировании в направлении движения;

    t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

    t 3 = 0,25 с -- время нарастания замедления;

    jа = 4,9 м/с 2 -- установившееся замедление;

    Sв = 30 м -- расстояние видимости в направлении движения.

    ПРИМЕР №7.

    Установить критическую скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения, если радиус поворота составляет 50 м, коэффициент поперечного сцепления - 0,60; угол поперечного уклона дороги - 10 °

    РЕШЕНИЕ:

    В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения составляет 74,3 км/ч:

    В формуле обозначены:

    R = 50 м -- радиус поворота.

    ф У = 0,60 -- коэффициент поперечного сцепления.

    b = 10 ° -- угол поперечного уклона дороги.

    ПРИМЕР №8

    Определить критическую скорость движения автомобиля ВАЗ-2121 на повороте радиусом 50 м по условию опрокидывания, если высота центра тяжести автомобиля – 0,59 м, колея автомобиля ВАЗ-2121 – 1,43 м, коэффициент поперечного крена подрессоренной массы – 0,85.

    РЕШЕНИЕ:

    В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2121 на повороте по условию опрокидывания составляет 74,6 км/ч:

    В формуле обозначены:

    R = 50 м -- радиус поворота.

    hц = 0,59 м -- высота центра тяжести.

    В = 1,43 м -- колея автомобиля ВАЗ-2121.

    q = 0,85 -- коэффициент поперечного крена подрессоренной массы.

    ПРИМЕР №9

    Определить тормозной путь автомобиля ГАЗ-3102 в условиях гололеда при скорости движения 60 км/ч. Загрузка автомобиля 50%, время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,05 с; коэффициент сцепления – 0,3.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации тормозной путь автомобиля ГАЗ-3102 составляет примерно 50 м:

    В формуле обозначены:

    t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

    t 3 = 0,05 с -- время нарастания замедления;

    j = 2,9 м/с 2 -- установившееся замедление;

    V = 60 км/ч -- скорость движения автомобиля ГАЗ-3102.

    ПРИМЕР №10

    Определить время торможения автомобиля ВАЗ-2107 при скорости 60 км/ч. Дорожные и технические условия: укатанный снег, время запаздывания срабатывания тормозного привода – 0,1 с, время нарастания замедления – 0,15 с, коэффициент сцепления – 0,3.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации время торможения автомобиля ВАЗ-2107 составляет 5,92 с:

    В формуле обозначены:

    t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода.

    t 3 = 0,15 с -- время нарастания замедления.

    V = 60 км/ч -- скорость движения автомобиля ВАЗ-2107.

    j = 2,9 м/с 2 -- замедление автомобиля ВАЗ-2107.

    ПРИМЕР №11

    Определить перемещение автомобиля КамАЗ-5410 в заторможенном состоянии при скорости 60 км/ч. Дорожные и технические условия: загрузка – 50%, мокрый асфальтобетон, коэффициент сцепления – 0,5.

    РЕШЕНИЕ:

    В сложившейся дорожно-транспортной ситуации перемещение автомобиля КамАЗ-5410 в заторможенном состоянии составляет примерно 28 м:

    j = g*φ = 9,81*0,50 = 4,9 м/с 2

    В формуле обозначены:

    j = 4,9 м/с 2 -- установившееся замедление;

    V = 60 км/ч -- скорость движения автомобиля КамАЗ-5410.

    ПРИМЕР №12

    На дороге шириной 4,5 м произошло встречное столкновение двух автомобилей - грузового ЗИЛ130-76 и легкового ГАЗ-3110 "Волга", Как установлено следствием, скорость грузо­вого автомобиля была примерно 15 м/с, легкового - 25 м/с.

    При осмотре места ДТП зафиксированы тормозные следы. Задними шинами грузового автомобиля оставлен след юза длиной 16 м, задними шинами легкового автомобиля - 22 м. В результате следственного эксперимента установлено, что в момент, когда каждый из водителей имел техническую возможность обнаружить встречный автомобиль и оценить дорожную обстановку как опасную, расстояние между автомобилями было около 200 м. При этом грузовой автомобиль находился от места столкновения на удалении примерно 80 м, а легковой - 120 м.

    Установить наличие технической возможности пред­отвратить столкновение автомобилей у каждого из водителей.

    Для исследования приняты:

    для автомобиля ЗИЛ-130-76:

    для автомобиля ГАЗ-3110:

    РЕШЕНИЕ:

    1. Остановочный путь автомобилей:

    грузового

    Легкового

    2. Условие возможности предотвращения столкновения присвоевременном реагировании водителей на препятствие:

    Проверяем это условие:

    Условие выполняется, следовательно, если бы оба водителя правильно оценили создавшуюся дорожную обстановку и одновре­менно приняли правильное решение, то столкновения удалось бы избежать. После остановки автомобилей между ними оставалось бы расстояние S = 200 - 142 = 58 м.

    3.Скорость автомобилей в момент начала полного тор­можения:

    грузового

    легкового

    4. Путь, пройденный автомобилями придвижении юзом (пол­номторможении):

    грузового

    легкового

    5. Перемещение автомобилей от места столкновения в затор­моженном состоянии при отсутствии столкновения:

    грузового

    легкового

    6.Условие возможности предотвращения столкновения у водителей автомобилей в создавшейся обстановке: для грузового автомобиля

    Условие не выполняется. Следовательно, водитель автомобиля ЗИЛ-130-76 даже при своевременном реагировании на появление автомобиля ГАЗ-3110 не имел технической возможности предот­вратить столкновение.

    для легкового автомобиля

    Условие выполняется. Следовательно, водитель автомобиля ГАЗ-3110 при своевременном реагировании на появление автомо­биля ЗИЛ-130-76 имел техническую возможность предотвратить столкновение.

    Вывод. Оба водителя несвоевременно реагировали на появ­ление опасности и оба затормозили с некоторым опозданием. (S" y д = 80 м > S" o = 49,5 м: S" y д = 120 м > S" o = 92,5 м). Однако только водитель легкового автомобиля ГАЗ-3110 в создавшейся обста­новке располагал возможностью предотвратить столкновение.

    ПРИМЕР 13

    Автобусом ЛАЗ-697Н, двигавшимся со скоростью 15 м/с, был сбит пешеход, шедший со скоростью 1,5 м/с. Удар пешеходу нанесен передней частью автобуса. Пешеход успел пройти по полосе движения автобуса 1,5 м. Полное перемещение пешехода 7,0 м. Ширина проезжей части в зоне ДТП равна 9,0 м. Определить возможность предотвращения наезда на пешехода путем объезда пешехода или экстренного торможения.

    Для исследования приняты:

    РЕШЕНИЕ:

    Проверим возможность предотвращения наезда на пешехода путем объезда пешехода спереди и сзади, а также экстренного торможения.

    1. Минимальный безопасный интервал при объезде пешехода

    2. Ширина динамического коридора

    3. Коэффициент маневра

    4. Условие возможности выполнения маневра с учетом дорож­ной обстановки при объезде пешехода:

    сзади

    спереди

    Объезд пешехода возможен лишь сзади (со стороны спины).

    5. Поперечное смещение автобуса, необходимое для объезда пешехода со стороны спины:

    6. Фактически необходимое продольное перемещение автобуса для его смещения в сторону на 2,0 м

    7. Удаление автомобиля от места наезда на пешехода в момент возникновения опасной ситуации

    6. Условие безопасного объезда пешехода:

    Условие выполняется, Следовательно, водитель автобуса имел техническую возможность предотвратить наезд на пешехода путем его объезда со стороны спины.

    7. Длина остановочного пуши автобуса

    Так как S уд =70 м > S o = 37, б м, безопасность перехода пеше­хода можно было также обеспечить путем экстренного тормо­жения автобуса.

    Вывод.Водитель автобуса имел техническую возможность предотвратить наезд на пешехода:

    а) путем объезда пешехода со стороны спины (при неизменной скорости движения автобуса);

    б) путем экстренного торможения с момента начала движения пешехода по проезжей части.

    ПРИМЕР 14.

    Автомобиль марки ЗИЛ-4331 в результате повреждения шины переднего левого колеса внезапно выехал на левую сторону проезжей части дороги, где произошло ло­бовое столкновение со встречным автомобилем марки ГАЗ-3110. Водители обоих автомобилей во избежание столкновения при­меняли торможение.

    На разрешение эксперта поставлен вопрос: имели ли они техническую возможность предотвратить столкновение путем торможения.

    Исходные данные:

    - проезжая часть - асфальтированная, мокрая, горизон­тального профиля;

    - расстояние от места столкновения до начала поворота автомобиля ЗИЛ-164 влево - S = 56 м;

    - длина следа торможения от задних колес автомобиля ГАЗ-3110 - = 22,5 м;

    - длина следа торможения автомобиля ЗИЛ-4331 до удара - = 10,8 м;

    - длина следа торможения автомобиля ЗИЛ-4331 после удара до полной остановки - = 3 м;

    - скорость движения автомобиля ЗИЛ-4331 перед проис­шествием –V 2 = 50 км/ч, скорость движения автомобиля ГАЗ-3110 не установлена.

    Эксперт принял следующие значения технических величин, необходимых для расчетов:

    - замедление автомобилей при экстренном торможении - j = 4м/с 2 ;

    - время реакции водителей – t 1 = 0,8 с;

    - время запаздывания срабатывания тормозного привода автомобиля ГАЗ-3110 – t 2-1 = 0,1 с, автомобиля ЗИЛ-4331 – t 2-2 = 0,3 с;

    - время нарастания замедления автомобиля ГАЗ-3110 - t 3-1 = 0,2 с, автомобиля ЗИЛ-4331 t 3-2 = 0,6 с;

    - вес автомобиля ГАЗ-3110 – G 1 = 1,9 т, вес автомобиля ЗИЛ-4331 – G 2 = 8,5 т.

    Показателями тормозной динамичности автомобиля являются:

    замедление Jз, время торможения tтор и тормозной путь Sтор.

    Замедление при торможении автомобиля

    Роль различных сил при замедлении автомобиля в процессе торможения неодинакова. В табл. 2.1 приведены значения сил сопротивления при экстренном торможении на примере грузового автомобиля ГАЗ-3307 в зависимости от начальной скорости.

    Таблица 2.1

    Значения некоторых сил сопротивления при экстренном торможении грузового автомобиля ГАЗ-3307 общей массой 8,5 тонн

    При скорости движения автомобиля до 30 м/с (100 км/ч) сопротивление воздуха - не более 4 % всех сопротивлений (у легкового автомобиля оно не превышает 7 %). Влияние сопротивления воздуха на торможение автопоезда еще менее значительно. Поэтому при определении замедлений автомобиля и пути торможения сопротивлением воздуха пренебрегают. С учетом вышеуказанного получим уравнение замедления:

    Jз=[(цх+ш)/двр]g (2.6)

    Так как коэффициент цх обычно значительно больше коэффициента ш, то при торможении автомобиля на грани блокировки, когда усилие прижатия тормозных колодок одинаково, что дальнейшее увеличение этого усилия приведет к блокировке колес, величиной ш можно пренебречь.

    Jз=(цх/двр)g

    При торможении с отключенным двигателем коэффициент вращающихся масс можно принять равным единице (от 1,02 до 1,04).

    Время торможения

    Зависимость времени торможения от скорости движения автомобиля показана на рисунке 2.7, зависимость изменения скорости от времени торможения - на рисунке 2.8.

    Рисунок 2.7 - Зависимость показателей


    Рисунок 2.8 - Тормозная диаграмма тормозной динамичности автомобиля от скорости движения

    Время торможения до полной остановки складывается из отрезков времени:

    tо=tр+tпр+tн+tуст, (2.8)

    где tо - время торможения до полной остановки

    tр - время реакции водителя, в течение которого он принимает решение и переносит ногу на педаль тормозного механизма, оно составляет 0,2-0,5 с;

    tпр - время срабатывания привода тормозного механизма, в течение этого времени происходит перемещение деталей в приводе. Промежуток этого времени зависит от технического состояния привода и его типа:

    для тормозных механизмов с гидравлическим приводом - 0,005-0,07 с;

    при использовании дисковых тормозных механизмов 0,15-0,2 с;

    при использовании барабанных тормозных механизмов 0,2-0,4 с;

    для систем с пневматическим приводом - 0,2-0,4 с;

    tн - время нарастания замедления;

    tуст - время движения с установившемся замедлением или время торможения с максимальной интенсивностью соответствует тормозному пути. В этот период времени замедление автомобиля практически постоянно.

    С момента соприкосновения деталей в тормозном механизме, замедление увеличивается от нуля до того установившегося значения, которое обеспечивает сила, развиваемая в приводе тормозного механизма.

    Время, затраченное на этот процесс, называется временем нарастания замедления. В зависимости от типа автомобиля, состояния дороги, дорожной ситуации, квалификации и состояния водителя, состояние тормозной системы tн может меняться от 0,05 до 2 с. Оно возрастает с увеличением силы тяжести автомобиля G и уменьшением коэффициента сцепления цх. При наличии воздуха в гидравлическом приводе, низком давлении в ресивере привода, попадании масла и воды на рабочие поверхности фрикционных элементов значение tн увеличивается.

    При исправной тормозной системе и движении по сухому асфальту значение колеблется:

    от 0,05 до 0,2 с для легковых автомобилей;

    от 0,05 до 0,4 с для грузовых автомобилей с гидравлическим приводом;

    от 0,15 до 1,5 с для грузовых автомобилей с пневматическим приводом;

    от 0,2 до 1,3 с для автобусов;

    Так как время нарастания замедления изменяется по линейному закону, то можно считать, что на этом отрезке времени автомобиль движется с замедлением равным примерно 0,5 Jзmax.

    Тогда уменьшение скорости

    Дх=х-х?=0,5Jустtн

    Следовательно, в начале торможения с установившимся замедлением

    х?=х-0,5Jустtн (2.9)

    При установившемся замедлении скорость уменьшается по линейному закону от х?=Jустtуст до х?=0. Решая уравнение относительно времени tуст и подставляя значения х?, получим:

    tуст=х/Jуст-0,5tн

    Тогда остановочное время:

    tо=tр+tпр+0,5tн+х/Jуст-0,5tн?tр+tпр+0,5tн+х/Jуст

    tр+tпр+0,5tн=tсумм,

    тогда, считая, что максимальная интенсивность торможения может быть получена, только при полном использовании коэффициента сцепления цх получим

    tо=tсумм+х/(цхg) (2.10)

    Тормозной путь

    Тормозной путь зависит от характера замедления автомобиля. Обозначив пути, проходимые автомобилем за время tр, tпр, tн и tуст, соответственно Sр, Sпр, Sн и Sуст, можно записать, что полный остановочный путь автомобиля от момента обнаружения препятствия до полной остановки может быть представлен в виде суммы:

    Sо=Sр+Sпр+Sн+Sуст

    Первые три члена представляют собой путь пройденный автомобилем за время tсумм. Он может быть представлен как

    Sсумм=хtсумм

    Путь, пройденный за время установившегося замедления от скорости х? до нуля, найдем из условия, что на участке Sуст автомобиль будет двигаться до тех пор, пока вся его кинетическая энергия не израсходуется на совершение работы против сил, препятствующих движению, а при известных допущениях только против сил Ртор т.е.

    mх?2/2=Sуст Ртор

    Пренебрегая силами Рш и Рщ, можно получить равенство абсолютных значений силы инерции и тормозной силы:

    РJ=mJуст=Ртор,

    где Jуст - максимальное замедление автомобиля, равное установившемуся.

    mх?2/2=Sуст m Jуст,

    0,5х?2=Sуст Jуст,

    Sуст=0,5х?2/Jуст,

    Sуст=0,5х?2/цх g?0,5х2/(цх g)

    Таким образом, тормозной путь при максимальном замедлении прямо пропорционален квадрату скорости движения в начале торможения и обратно пропорционален коэффициенту сцепления колес с дорогой.

    Полный остановочный путь Sо, автомобиля будет

    Sо=Sсумм+Sуст=хtсумм+0,5х2/(цх g) (2.11)

    Sо=хtсумм+0,5х2/Jуст (2.12)

    Значение Jуст, можно установить опытным путем, используя деселерометр - прибор для измерения замедления движущегося транспортного средства.